Index

A
Accessory factors, 543–544
Acid resistance systems
ADJ, 103
F1F0 ATPase complex, 101–102
GAD system, 102–103
sensors and regulators, 104–105
thiamine system, 103
Acid stress, 316
Acid stress induced radiation resistance in
E. coli O157:H7, 311
Acid stress on foodborne pathogen virulence
factors, 315
Acid tolerance response (ATR), 97, 101
Acid-adapted strains, 315–316
Acid-induced adaptive proteins, 315
Actin-filament-dependent mechanism, 48
Actin-filament-independent mechanism, 48
Active packaging, 317
Acyl-homoserine lactones (AHLs), 216
Adhesion
CadF, 47
CapA, p95 and MOMP, 47
for C. jejuni, 47
FnpA, 47
and host cell receptors, 46
human infection mechanisms, 46
ADI. See Arginine deiminase (ADI)
ystem
Adult intestinal botulism, 575
A/E lesions, 357
A/E pathogens, 366
Agency for Healthcare Research and Quality
(AHRQ), 608
Aging
human immune response, 431
and listeriosis
categorizing, 425
in chronic diseases, 424
epidemiologic data, 424
immunity, 423
meningitis, 424
National Health Interview, 423
non-pregnancy, 423, 424
relative risk, 423
in sporadic cases, 423
US FoodNet data, 424
US Renal System Data Report, 424
and microbiome, 433–434
Agriculture industry, 306
Air-drying, 312
Alarmone guanosine pentaphosphate
(ppGpp), 252
Alternative sigma factors
Bacillus cereus, 240–242
Bacillus subtilis σB, 237–240
clostridial foodborne pathogens,
249–251
Gram-negative bacteria, 251–273
Rpos (see Rpos)
Listeria monocytogenes, 242–245
Staphylococcus aureus, 246–249
Alternative sigma subunit of RNA
polymerase S
in Gram-negative bacteria, 308
Alternative stress sigma factor
in Gram-positive microbes, 308
Animal dose-response model, 398
Animal in vivo models, 541–542
Animal infection model
acute self-limiting ulcerative enterocolitis, 53
campylobacteriosis symptoms, 52
CD3+ T-lymphocytes, 53
gnotobiotic mouse model, 52
in vivo, 52
TLRs and IL-10, 52
Animal models
strain-induced apoptosis, 139
Antacids, 435, 436
Antibiotics, 306
Anti-inflammatory effects, 427
Anti-inflammatory IL-10 (increase), 434
Antimicrobial activity, 612, 614
Antimicrobial peptides (AMP), 619
Antimicrobial resistance, 306
Antimicrobial resistance phenotype, 339
Anti-neoplastic drug, 427
Anti-neoplastic therapy, 428
Anti-virulence strategies, 307
Apoptosis, 138–139, 360
CRL, 364
EspF, 364
EspO, 366
EspZ (SepZ), 365, 366
GlcNAc, 365
LEE-encoded effectors, 365, 366
MTS, 364
NieB1, 364
NieF, 365
NieH, 365
programmed cell death pathways, 364
T3SS effector Cif, 364
T3SS effector Map, 364
TRADD, 365
Apoptosis signaling pathways, 357
Arginine deiminase (ADI) system,
103–104
Arthritic inflammation, 436
Aspirin, 436
ATR. See Acid tolerance response (ATR)
Azithromycin, 191

Bactericidal activity in stomach, factors
affecting
gastric acid reduction, 471–472
gastric acidity and emptying, 472–474
pathogens on foods, 474, 476, 478, 479
Bacteriocins, 608
Bacteroides thetaiotaomicron, 615
Bax inhibitor-1 (BI-1), 365
Bifidobacterium, 434
Bifidobacterium thermophiles, 619
Bile salts, 313
Bile stress, 106
Biofilm formation, 310, 311
Biofilms, 307
BioMark real-time PCR system, 19
Biopreservatives, 316–317
Biphasic variants, 156
Botulinum neurotoxin (BoNT), 249, 250
antitoxin assays, 566
blood pressure, 562
bont gene sequencing, 566
C. botulinum spores, 561
foodborne and waterborne diseases, 554
foodborne diseases, 555
gene clusters, 565
Gram-positive bacteria, 555
H chain, 563
high potency, 555
human disease, 566
intestinal transfer, 569
isolation, 561
kinetic studies, 560
lymphatic system, 563
molecular mechanisms, 560
motor paralysis, 562
multi-BoNT producing strains, 565
neurotoxicogenic clostridia, 555
neurotoxicogenic strains, 566
NMJ preparations, 561
noncovalent modifications, 569
pathology, 563
phrenic diaphragm, 560
phylogenomic studies, 565
physiological features, 569
poisonous substance, 554
prodigious microbiologists, 561
protein complexes, 562
rRNA binding, 568
serotype, 560, 562, 566
single chain, 568
SNARE proteins, 563
SNARE substrates, 560
structural modeling, 566
temperatures, 561
three-dimensional structure, 563
type B, 559
 vesicular trafficking, 563

Botulism
 CDC, 557
 definitions, 577
 diagnosis, 577–578
 differential diagnosis, 578
 epidemiology, 572
 evaluation, 561
 laboratory confirmation
 antibody-based assays, 581
 antibody-based tests, 581
 assays, 579
 bioassay, 580
 BoNT detection, 579
 C. botulinum cells, 582
 C. botulinum strains, 580
 in food systems, 581
 gas emission, 582
 intoxication process, 581
 laboratory-confirmed case, 578
 limitations, 580
 mass spectroscopy, 582
 mouse symptoms, 579–580
 neuronal cell-based assays, 580
 putative cases, 579
 rodent hemidiaphragm assay, 581
 trypsin, 579
 laboratory methods, 557
 life-threatening disease, 557
 neuromuscular regions, 556
 pathology
 autonomic nervous system, 570
 bulbar palsy, 571
 cells/tissues, 571
 cranial and skeletal muscle, 570
 cranial neuropathies, 571
 foodborne paralytic botulism
 symptoms, 571
 motor and sensory nerves, 569
 muscle fibers, 571
 nervous system, 569
 non-neuronal organs, 569
 pharmacological treatments, 570
 primary clinical signs, 570
 steps, 570
 striated muscle, 570
 symptoms, 569, 571
 phylgenomic diagram, 567
 physical examination, 557
 prevention, 586–587
 public health emergency, 557
 recovery, 585–586
 symptoms, 562
 Bovine spongiform encephalopathy (BSE), 604

C
 C. botulinum intoxications
 anaerobic bacterium, 559
 anecdotal evidence, 558
 cranial neuronal disturbances, 558
 Kerner’s disease, 559
 neutralization of toxicity, 559
 toxin-forming bacterium, 559
 C. jejuni-containing vacuole (CCV), 50
 Campylobacter, 454, 455, 457, 460, 461, 518
 invasive pathogen, 546
 polar flagella, 544
 slaughter plant, 537
 strains, 541
 Campylobacter flagella, 280, 281
 Campylobacter invasion antigens (CiaA-H), 48
 Campylobacter jejuni, 44–47, 470, 482
 adhesion (see Adhesion)
 catalase gene katA, 51
 CCV, 50 (see also Cellular invasion)
 characteristic corkscrew-like behavior, 42
 chemoorganotrophs, 42
 developing and developed countries, 43
 diseases, 42
 family Campylobacteraceae, 42
 high prevalence of, 43
 host animals, 43
 immune cells, 51–52
 in vitro and in vivo, 50
 incident rates, 43
 microaerobic and capnophilic, 42
 molecular virulence mechanisms, 45–46
 motility, 42
 non-C. jejuni/coli infections, 43
 specific IgG antibodies, 44
 strain variability
 DNA typing methods, 44
 domestic chickens, 44
 flagellum-specific pentabodies, 45
 genomic variability of, 45
 intervention strategies, efficacy, 45
 vaccines development, 45
 survival, 51
 transmigration, 49–50
 Cantaloupe outbreak, 2011, 75
 Capsule production, 142
 Caramel apple outbreak, 2014, 74, 75
 Cardiovascular/cerebrovascular disease, 436
 CC4. See Clonal Complex 4 (CC4)
 CCV. See C. jejuni-containing vacuole (CCV)
 CD40 Ligand (CD40L), 359
 Cell death receptors, 360
 Cell death signaling, 359–360
 Cell surface receptors, 358
 Cell-mediated immunity, 427, 432
Cell-mediated Th1 response, 432
Cell-to-cell communications, 307
Cellular invasion
 actin-filament-independent and/or
 actin-filament-dependent
 mechanism, 48
Cia proteins, 48
FedA-D and CiaA-H, 48
flagellar export machinery, 48
gentamicin protection assays, 48
intestinal biopsy samples, 48
type-III/type-IV secretion systems, 48
Centers of Disease Control and Prevention (CDC), 420, 425
Challenge testing, 387
Chemokine Ligand 20 (CCL20), 358
Chocolate milk febrile gastroenteritis outbreak, 1994, 73
Cholecystitis, 428
Chronic diseases, 423, 424
Cia-A-H. See Campylobacter invasion antigens (CiaA-H)
Ciprofloxacin, 191
Class three-stress gene repressor (CtsR), 314
Clonal Complex 4 (CC4), 64
Clonal complex 6 (CC6), 71
Clostridial foodborne pathogens, 249–251
Clostridium, 234, 240, 249, 250
Clostridium botulinum, 555
culturing, 582–583
molecular typing, 583–584
neurotoxigenic clostridia, 564
phylogenomic analyses, 565
plasmids, 564
resistance properties, 564
serotype-specific antibodies, 565
sporadic isolates, 564
taxonomic classification, 564
taxonomic delineations, 565
treatment, 584–585
Clostridium difficile, 456
Clostridium perfringens, 555
ClpXP, 276–277
Clustered, regularly interspersed short palindromic repeats (CRISPRs), 64
Codex guidelines, 389
Cold shock proteins (CSPs), 97
Cold tolerance response
 ATR, 97
 compatible solutes, 97
 CSPs, 97
 food production and storage, 97
gene transcription evaluation, 97
osmolyte transporter genes, 97
Pta-AckA pathway, 97
refrigeration technique, 97
Colonies forming units (CFU), 420
Commercial food production and processing industry, 343
Commercial sterility/shelf stability, 309
Consumption data from dietary surveys, 398
Contiguous discrete segments of DNA sequence, 337
Continuing Survey of Food Intakes by Individuals, 398
Cost-efficient production, 306
cpa. See Cronobacter plasminogen activator (cpa)
CRISPRs. See Clustered, regularly interspersed short palindromic repeats (CRISPRs)
Cronobacter
 adult infections, 125
 bacterially-contaminated and reconstituted infant formula, 124, 128
central nervous system, 131–132
 DNA-DNA hybridization and phenotyping, 126
 Enterobacteriaceae family, 124
 environments, 125
 FAO-WHO, 128
 gastrointestinal tract infection, 131
 ICMSF, 125
 low-birth-weight neonates, 125
 MLST, 125, 127
 nasogastric feeding tubes, 129
 in neonates, 128
 NICU, 126
 normal flora, 125 (see also Pathogenicity mechanisms)
 PFGE, 128
 phylogenetic analysis, 127
 ribosomal-MLST and core-genome MLST, 126
 species, 126
 16S rDNA gene sequence analysis, 126
 throat swabs, 127
 UTIs, 129
 virulence factors, 125
 whole genome phylogeny, 126
Cronobacter infections, 517
Cronobacter plasminogen activator (cpa), 139–140
Cronobacter sakazakii, 517
Cross-adaptation
dairy products, 107
description, 106
minimally processed RTE, 107
pathogen contamination, 108
RNAseq approach, 107
Index

salt stress exposure, 107
stress-related proteins, 107
Cross protection
by stresses, 318–319
Cryptosporidium parvum, 470
CSPs. See Cold shock proteins (CSPs)
C-type lectin receptors (CLR), 358
Cullin Ring E3 Ligases (CRLs), 364
Cytokine profile, 429, 431
Cytoplasmic death domains (DD), 360
Cytoplasmic receptors, 358
Cytoskeleton organization, 357
Cytoskeleton rearrangement, 135

D
Death receptors, 360
Death-inducing signaling complex (DISC), 365
β-Defensin, 614
Deli meat MRA, 401
Dendritic cells (DCs), 361, 615
Desiccation/removal of water from cells, 312–313
Developing control strategies, 307
DHHS-CDC, 409
DHHS-FDA, 395, 396, 398, 399, 401, 405, 406, 409, 410
DHHS-FDA/USDA-FSIS 2003, 398
Diarrhea-associated hemolytic uremic syndrome, 461
Dietary modulation, 215, 216, 220
Dihydropteroate synthase (DHPS), 191
Direct-fed microbials (DFM), 216, 217
DNA damage, 360
DNA mutations, 343
DNA repair, 312
DNA repairing mechanisms, 311
Dose response
bacterial pathogens, 533
capacity, 532
disease presentation, 532
infectious microorganisms, 532
knowledge, 533
models, 536–538
pathogenesis, 532
virulence effects, 533–536
Drug infliximab (Remicade), 427

E
E. coli, 470, 482–484, 486, 487, 533
O157:H7, 210, 211, 217, 540
probiotic bacteria, 535
RpoS, 260–262
ECF. See Extracytoplasmic function (ECF)
Effectors, 172
EHEC. See Enterohemorrhagic E. coli (EHEC)
EIEC. See Enteroinvasive E. coli (EIEC)
3′end of tRNA genes, 308
Enterobacter sakazakii, 517
Enterohemorrhagic E. coli (EHEC), 261, 277, 316, 357, 359–360
A/E lesions, 357
apoptosis, 364–366
baseline food testing, 22
bovine fecal and crop soil samples, 23
cell death signaling, 359
cytotoxicity scores, 23
discriminative genetic markers, 19
E. coli O26 strains, 19
and EPEC, 357
and EPEC T3SS effectors, 367–368
FDA-ECID microarray, 19
Fluidigm system, 19
food sample screenings, 20–21
host response, 358–359
human illness, 23
immunity to A/E pathogens, 366
Inflammasomes, 366
inflammation (see Inflammation pathways)
laboratory-confirmed illnesses, 24
LEE, 357
low-income and high-income countries, 356
molecular methods, 22
non-O157 STEC strains, 23
non-O157/non-“big six” illnesses, 24
outbreaks, 25, 356
pathogenic bacterial strains, 18
risk profile, 20
serogroups, 19, 20
seropathotypes, 22
serotype O157
H7, 357
H7, 357
Shiga toxin 2a, 24
somatic and flagellar antigens, 21
STEC, 18
Stx, 357
stx and/or eae genes, 18
stx1 and stx2 gene testing, 20
Tir, 357
transmission, 357
USDA-FSIS MLG, 21
verotoxins (cytotoxins), 22
World Health Organization (WHO), 24
Enteroinvasive E. coli (EIEC), 172
Enteropathogenic E. coli (EPEC), 261, 614
Enterotoxins, 137
Environmental stresses
animal host, 546
colonization, 546
food processing, 540
foodborne pathogens, 549
low pH, 547
prophage-encoded Shiga toxin, 548
RpoS regulon, 547
spices, 547
Epithelial barriers, 431
Escherichia coli (E. coli), 510–517
epidemiology and surveillance, 511–513
human and animal studies, 514–515
in vitro studies, 515–517
EspF, 364
EspO, 366
EspZ (SepZ), 365, 366
Etanercept (Enbrel), 427
European 100 CFU/g, 388, 389
European Commission Regulation 2073/2005, 380–386
Extracytoplasmic function (ECF), 234
Extrinsic signals, 360

F
F1F0 ATPase complex, 101–102
FADD-TRADD, 365
FAS-FADD, 365
FDA CFSAN SNP pipeline, 338
FDA-ECID microarray, 19
FDA-FSIS MRA, 398, 399
FDA-FSIS MRA risk ranking, 409
FedA-D. See Flagellar co-expressed determinants (FedA-D)
Fe-S cluster assembly genes, 315
First-order semi-logarithmic kinetics, 309
Flagella, 142
Flagellar co-expressed determinants (FedA-D), 48
Flagellated campylobacters, 539
Flagellin, 358
FliA
Campylobacter, 280–281
HBB, 280
Salmonella and E. coli, 280
Fluidigm system, 19
Flu-like symptoms, 394, 425
Focal adhesion kinase (FAK) signaling, 366
Follow-up Caco-2 invasion assay and mouse infection experiments, 310
Food commodities, 306
Food composition on foodborne illness infectious dose and vehicle, 469–471
Food contact surface testing, 402
Food contact surfaces, 404
Food industry
WGS, 343–345
Food Marketing Institute (FMI), 408
Food matrix
cellular homeostasis, 95
Codex Alimentarius guidelines, 94
decomposed plant material and bacterial cells, 95
L. monocytogenes contamination, 94
low pH and antimicrobials, 95
treatments/conditions, 95
Food packaging, 317
Food Safety and Inspection Service (FSIS), 396
Food Safety for Older Adults, 464
Food Safety Modernization Act (FSMA), 463, 464
Foodborne botulism, 572–573
Foodborne gastroenteritis, 452
Foodborne illness, 210, 335, 460
diarrhea-associated hemolytic uremic syndrome, 461
GBS, 460
meningitis, 461, 462
PI-IBS, 461
reactive arthritis, 460
Foodborne infection, 452
Foodborne microbes, 308
Foodborne microbial-induced gastroenteritis, 462
Foodborne outbreak data, 399
Foodborne pathogenic bacteria, 486
Foodborne pathogens, 230–237, 305, 485, 534
disease, 604–606
probiotics, 606–608
sigma factors
characterization, 230–237
TSP, 230
sources, 605–606
stress response proteins, 229
virulence (see Virulence)
FoodNet, 23, 211, 424, 429, 455, 457–459, 513, 517
Forego testing, 401
Frozen vegetables outbreak, 2015, 76
Full-length genetic code, 334

G
GAD. See Glutamate decarboxylase acid resistance (GAD) system
Galacto-oligosaccharides (GOS), 623
Gamma radiation, 311
Ganglioside-like lipooligosaccharides, 49
Gastric atrophy, 436
Gastroenteritis, 456–459
in long-term care facilities, 453–454
microbial pathogens and, 455–459
Campylobacter, 457, 458
Clostridium difficile, 456
Listeria monocytogenes, 458
non-typhoidal Salmonella, 456, 457
norovirus, 456
Shigella, 458
STEC, 458
Vibrio, 459
Yersinia, 459
prevention from foodborne-induced, 462–464
Gastrointestinal (GI) illness, 420
Gastrointestinal tract (GIT), 608
Gender-based differences
human susceptibility, 429–430
Generally Recognized as Safe (GRAS), 610
Generally Regarded as Safe (GRAS), 608
Genetic makeup, 421
Genetic polymorphisms, 437
Genetic susceptibility factors, 437
Genetically-modified organisms (GMOs), 624
GenomeTrakr, 70, 338
WGS, 335–336
Gentamicin protection assays, 48
Germ-free (GF), 614
GlcNAc, 365
Global deployment
WGS, 345
Global transcriptome, 310
Globotriascylcermid 3 (Gb3) receptors, 359, 621
Glutamate decarboxylase acid resistance (GAD) system, 102, 316
Glutamate decarboxylase genes, 547
Gnotobiotic piglets, 362
Good Manufacturing Practices (GMP), 390
Gram-negative bacteria, 234
Gram-positive bacteria, 234
Guillain Barré Syndrome (GBS), 42, 460, 585, 604
Gut microbiome
and aging, 433–434

H
Hazard Analysis and Critical Control Point (HACCP), 379, 390
Heat shock, 310
Heat shock proteins (HSP), 96, 273
Heat tolerance response, 96
Hemolysins, 141–142
Hemolytic uremic syndrome (HUS), 18, 210–212, 214, 219, 221, 357, 458, 460, 461, 604, 620
Hepatitis A virus (HAV), 604
Hepatitis E virus (HEV), 604
High hydrostatic pressure (HHP), 313
High temperature requirement A (HtrA), 49, 50
High-hydrostatic pressure, 314
High-hydrostatic pressure modulates, 314
High-pressure processing (HPP), 313, 314
hlyCABD operon, 261
Hook basal body (HBB), 280
Horizontal gene transfer (HGT), 343
Host, 543
HSP. See Heat shock proteins (HSP)
HtrA. See High temperature requirement A (HtrA)
Human exposure estimates, 540–541
Human ingestion experiments, 538–539
Human susceptibility, 422–426
CFU, 420
diabetes, 428
diagnosis, 429
disease status, 428
epidemiologic studies, 438
Etanercept (Enbrel), 427
gender-based differences, 429–430
genetic susceptibility factors, 437
HIV, 428
immune status, 426
immune-suppressive therapy, 426
immunity, 430–433
immunosuppressive therapy, 427
infectious and chronic disease(s), 426
infliximab, 427
interference, 427
listeriosis, 420
medications, 426, 435–437
meningoencephalitis, 428
methotrexate, 427
microbiome, 433–435
non-invasive listeriosis, 420
nutritional factors, 437
populations
aging, 423–425
physiological conditions, 422
pregnancy, 425–426
pregnancy-related cases, 439
relative risk (RR), 421
risk factors, 421
social and behavioral factors, 438
trimethoprim-sulfamethoxazole, 428
WHO, 428
Human-murine chimeric monoclonal antibody, 427
Hurdle technology, 306
HUS. See Hemolytic uremic syndrome (HUS)
Hydroxyl radical leading to DNA disruption, 311
Hyper- and hypovirulent clones, 79–82
Hypochlorhydria, 472

I
iap. See Invasion-associated protein (iap)
Iatrogenic botulism, 576
ICEs. See Integrative chromosomal elements (ICEs)
IL-10, 437
IL-8, 358–361, 364, 365
Immune system manipulation
adaptive immune system, 183–184
innate immune system, 181–183
Immune-suppressive therapy, 426
Immunity, 423
Immunity vs. L. monocytogenes
aging, 431
defensin secretion, 430
in vitro experiments, 430
intravenous injection, 430
memory T cell response, 430
neonatal immune factors, 432–433
pregnancy and susceptibility, 431
T cell response, 430
Immunomodulation, 614–617, 619
Immunoreceptor tyrosine-based inhibitory motifs (ITIM), 363
Immunosenescence, 423
Immunosuppressive therapy, 427
In vitro approaches, 538–543
In vitro model systems, 479–482
In vivo approach
bacterial factors, 543
bacterial species, 544
epidemiologic studies, 540–541
human ingestion experiments, 538
surrogates of disease, 538
In vivo studies, 362
Inducible nitric oxide synthase (iNOS), 138
Industrial revolution, 305
Industry reduction of Lm U.S. Regulatory Policies, 402–406
Infant botulism, 574–575
Infant microbiome, 435
Inflammasomes, 366
Inflammation pathways
MAPK signaling, 363–364
NF-κB signaling, 361–363
Inflammatory bowel disease (IBD), 617
Inflammatory cytokines, 359, 361
Inflammatory markers, 433
Inflammatory responses, 357
Infliximab, 427
Ihalational botulism, 576–577
inB mutations, 68
iNOS. See Inducible nitric oxide synthase (iNOS)
Integrative chromosomal elements (ICEs), 64
Integrin signaling, 366
Integrin-linked kinase (ILK), 366
Interference, 427
Internalin (InLA), 545
Internalins, 64
International Nucleotide Sequence Database Collaboration (INSDC), 336
International Standards Organization (ISO), 345
Intrinsic signals, 360
Invasion-associated protein (iap), 68
Invasive listeriosis
cases reported from 2004–2011, 420, 421
InvR RNA, 342
Ion uptake, 312
Ionizing radiation, 311
IraD, 255
IraL, 255
IraM, 255
iraP promoter, 255
Iron acquisition gene system, 140–141
Irradiation, 311–312
Irritable bowel syndrome, 460
Isolate level, 334

K
Karoun cheese outbreak, 2014, 73, 74
Kdp/Trk system, 312
Kmer, 338
kSNP method, 338
Kyoto Encyclopedia of Genes and Genomes (KEGG), 343, 344

L
L. monocytogenes, 546
Lactic acid bacteria (LAB), 609
Lactobacillus, 434
Lactobacillus plantarum, 486
Lambert-Eaton syndrome, 582
LEE. See Locus of enterocyte effacement (LEE)
LEE-encoded effectors, 363, 365, 366
Lipid bilayer, 314
Lipopolysaccharide (LPS), 358, 359
Lipopolysaccharide (LPS) endotoxin, 136, 137

Listeria
- genomic island 2 (LGI2), 70
- monocytophages, 242
- challenge testing, 387
- contaminated foodstuffs, 377–379
- control, 379
- criteria, 380
- EC Regulation 2073/2005, 381, 382
- environmental stresses, 244
- foodborne illness, 377
- historical data, 386
- internalins, 243, 244
- outbreak and scientific data, 386
- predictive mathematical modelling, 386–387
- prevention (see Prevent *Lm* in RTE)
- PrfA regulon, 245
- shelf-life testing, 387
- sigma factor σB, 243
- stress response, 245
- susceptibility (see Human susceptibility)
- taxonomy, 376
- testing, 381

Listeria Pathogenicity Island 1 (LIPI-1), 67
Listeria Pathogenicity Island 3 (LIPI-3), 64, 70
Listeria Pathogenicity Island 4 (LIPI-4), 64
Listeria species, 507–510
- epidemiology and surveillance, 508
- human and animal studies, 509
- in vitro studies, 509–510

Listeriosis, 95, 96
- and aging, 423–425
- bacterial inhibitors, 109
- ClpP serine protease, 109
- environmental stress, 94
- EU non-compliance, 94
- food matrices, 108
- food matrix, 94–96
- functional categories, 108
- *G. mellonella* model, 110
- gastrointestinal tract, 111
- gene expression, 109
- high mortality, at-risk populations, 93
- *infA* genotypes, 110
- and microbiome, 433–435
- PMSC, 110
- proteome profile, 108
- RTE foods, 108
- strain-specific stress responses, 112
- stress response (see Stress response)
- virulence genes, 109

Listeriosis-related biliary tract infections, 428

Locus of enterocyte effacement (LEE), 211, 261, 277, 357

Long-Term Care Facilities (LTCFs), 453, 454

Low-aw foods, 312

LPS. See Lipopolysaccharide (LPS) endotoxin

LPS Biosynthesis Loci, 155

M
- Macrophage surface receptors, 431
- Major histocompatibility class (MHC)-II, 431
- Mammalian innate immune system, 358
- MAPK signaling pathway, 358, 360, 363–364
- Maternal-fetal susceptibility to listeriosis, 425
- Maximum Parsimony optimization, 340
- Median deaths per serving vs. deaths per annum, 409

Medications
- and listeriosis risk
 - animal studies, 436
 - antacids, 435, 436
 - aspirin, 436
 - gastric atrophy, 436
 - mortality rate, 436
 - NSAIDs, 435–437
 - PPIs, 436, 437
- Membrane composition, 311
- Membrane proteins, 307
- Membrane ruffling, 179
- Memorial Sloan–Kettering Cancer Center, 428
- Memory T cell response, 430
- Meningitis, 460–462
- Meningoencephalitis, 428
- Mesenteric lymph nodes (MLN), 621
- Metabolic pathways databases, 343
- Metadata fields, 336
- Metagenomic data, 334
- Methotrexate, 427
- Microbial molecules, 358
- Microbial risk assessment models, 544
- Microbial virulence
 - cell-to-cell communications, 307
 - characteristics, 307
 - factors, 307–308
 - pathogenicity islands, 307–308
 - regulation and role of stress signals, 308
 - sensory mechanisms, 307
 - Microbiological risk assessments (MRAs)
 - age-based sub-groups, 398
 - animal dose-response model, 398
 - application, 395
 - category of RTE food, 399
 - consumer refrigeration, 398
Microbiological risk assessments (MRAs) (cont.)
consumption data from dietary surveys, 398
estimates, 400
FDA-FSIS MRA, 398, 399
food contact surface testing, 402
food safety, 396, 397
food safety controls, 400
forego testing, 401
identification, 399
limitations of food safety, 396
Lm, 396
product testing, 402
quantitative, 398
sanitation SOPs, 401
systematic and scientifically based approach, 395
testing and process controls, 402
types, 399
types of RTE foods, 398
2003 USDA-FSIS deli meat MRA, 400
USDA-FSIS and FDA, 399
USDA-FSIS verification testing programs, 398
Microbiologically-based exposure-based approach, 399
Microbiome and aging, 433
infant, 435
placental, 434–435
Miller-Fisher syndrome, 42
Mitigating risk at retail, U.S.
deli meats, 406
FMI, 408
2013 Interagency Retail Lm MRA, 406–408
Lm-positive RTE meat and poultry products, 406
MRA, 406, 407
simulation results, 408
Mitochondrial targeting sequence (MTS), 364
MLGT. See Multi-locus genotyping scheme (MLGT)
MLST. See Multi-locus sequence typing (MLST)
MLVA. See Multi-locus variable-number tandem-repeat analysis (MLVA)
MLVST. See Multi-virulence locus typing (MLVST)
Mobile elements, 343
Modified atmosphere packaging (MAP), 317
Molecular biology experimentation, 342
Mono-compartmental models, 480
Mortality rate, 436
Motility organelles, 307
Multidrug-resistant (MDR), 190
Multi-locus genotyping scheme (MLGT), 63, 71
Multi-locus sequence typing (MLST), 63
host system tropisms and co-morbidity profiles, 78, 79
in human virulence, 77, 78
large-scale surveillance, 77
specific subtypes (STs), 77
Multi-locus variable-number tandem-repeat analysis (MLVA), 63
Multi-virulence locus typing (MLVST), 63
Myasthenia Gravis, 582, 585
Mycobacterium tuberculosis, 239

N
National Center for Biotechnology Information (NCBI), 336, 337, 339
National Health Interview, 423
Natural killer (NK) cells to produce IFNγ, 430
NCBI’s Prokaryotic Genome Automatic Annotation Pipeline, 341
Necrotizing enterocolitis (NEC), 131
Neisseria menigitidis, 461
Neonatal immune factors, 432–433
Neonatal listeriosis, 425
Neonates
case-fatality rate, 129
low-birth-weight, 125
neurological sequelae and developmental disorders, 128
sialic acid and N-acetylglucosamine residues, 140
Neuromuscular junction (NMJ), 563, 569
Neuronal Wiskott-Aldrich syndrome protein (N-WASP), 180
Next-generation sequencing (NGS). See also Whole genome sequencing (WGS)
application, 335
platform, 336
NF-κB signaling, 359, 360
NF-κB signaling pathway
in vivo studies, 362
ITIM, 363
LEE-encoded effector, 363
NleC, 362, 363
NleE, 361
non-LEE encoded effectors, 362
OspG, 362
NleB1, 364
NleC, 362, 363
NleE, 361
NleF, 365
NleH, 365
NOD-like receptors (NLR), 358
Noncoding bacterial small RNAs (sRNAs), 342
Noncoding RNAs, 342
Non-invasive listeriosis, 420
Non-LEE encoded effectors, 362
Nonsteroidal anti-inflammatory drugs (NSAIDs), 421, 435–438
Norovirus (NoV), 453, 456, 622
Nuclear factor kappa B (NF-κB), 615
Nucleic acid, 358
Nucleotide
DNA mutations, 343
foodborne illness outbreak analysis, 341
gain and loss of genes, 343
HGT, 343
KEGG, 343, 344
Maximum Parsimony optimization, 340
metabolic pathways databases, 343
molecular biology experimentation, 342
noncoding RNAs, 342
phenotypic changes in bacterium, 340
primary sequence onto 3-dimensional protein structure, 341, 342
SNP mutation, 341
SNPs, 342
synonymous/nonsynonymous substitutions, 341
three-dimensional protein homology structure, 342
virulence genes, 342
Nutritional factors, 437
Nutritional status, 421

O
O-antigen biosynthesis gene cluster, 156
Omic-based food safety system, 346
Oomics tools
bacterial pathogen virulence, 62
circular DNA chromosomes, 63
description, 62
individual genes, RNAs/proteins, 62
PFGE molecular subtyping system, 63
sequence polymorphisms, 63
sequence-based, 63
OmpA
Cronobacter invasion, host cells, 134
false-negative virulence gene probes, 135
INT-407 and Caco-2 cells, 134
and OmpX, 134
OmpR, 313
OMVs. See Outer membrane vesicles (OMVs)
Open-source genome sequence databases, 346
Open-source phylogenetic tree, Salmonella enterica, 337
Organic acids/fermentation products, 484–485
Osmoadaptation, 312
Osmotic stress, 312–313
Osmotolerance response
compatible solutes, 98, 99
Ctc proteins, 98
H2O2 catalysis, 100
lineages, 99
OTR, 98
salting, 98
sigma factor B (σB) dependent genes, 99
temperature-dependent conditions, 99
two-component regulatory system, 98
OspG, 362
Outer membrane vesicles (OMVs), 138
Oxidative stress
environmental stress conditions, 105
MnSOD, 106
sanitizers, disinfectants and MAP, 105
SOD, 106
stress regulators, 105
P
PAI. See Pathogenicity islands (PAI)
Pathogen
Campylobacter, 540
dose-response framework, 536–537
food-borne, 533
gastrointestinal tract, 535
host, 532
human disease presentation, 542
members, 532
microorganisms, 533, 535
properties, 533
strains, 533
virulence capability, 543
Pathogen Reduction and Hazard Analysis and Critical Control Point (PR/HACCP) regulatory program, 397, 398
Pathogen-associated molecular patterns (PAMPs), 358
Pathogenicity. See Campylobacter jejuni
Pathogenicity islands (PAIs), 153, 156, 307–308
SHI-1 locus, 186
SHI-2 locus, 186–188
SHI-3 locus, 188
SHI-O loci, 189, 190
SRL locus, 188, 189
virulence, 185
Index

Pathogenicity mechanisms, 134–135
 adhesins, 132
 apoptosis, 138–139
 attachment, 133
 candidate virulence determinants, 132
 capsule production, 142
 Cpa, 139–140
 cytoskeleton rearrangement, 135
 enterotoxin production, 132
 enterotoxins, 137
 flagella, 142
 hemolysins, 141–142
 immune response, 143
 iNOS production, 138
 invasion, 134
 iron acquisition gene system, 140–141
 LPS endotoxin, 136–137
 OmpA expression, 132
 OmpA, role of (see OmpA)
 OMVs, 138
 putative virulence factors, 143, 144
 sialic acid utilization, 140
 SOD, 142
 T6SS, 137
 tight junctions, 136
 translocation, 134
Pathogen-killing capacity, 431
Pattern recognition receptors (PRRs), 358, 615
 Pediococcus acidilactici, 622
Peptidoglycan, 358
pH, 315–316
Phage shock protein (PSP), 278
Photodynamic therapy, 312
Phylogenetic analysis methods, 335
Phylogenetic methods, 335
Phylogenetics
 clinical and regulatory scientists, 335
 food and environmental isolates, 336
 in molecular epidemiology
 genome scale, 337
 genome-scale/phylogenomics, 336
 multigene alignments, 337
 NGS, 336, 337
 ortholog determination, 337
 peer-reviewed evolutionary theory
 manuscripts, 336
 physical nucleotide change, 338
 regulatory framework, 338
 SNP-based methods, 338
 SNPs, 338
 validating traditional methods, 336
 whole bacterial comparative genomics
 analysis, 335
Phylogenomics, 336
Physico-chemical environment, 309
Placental microbiome, 434
Plasmid-mediated quinolone resistance
determining regions (PMQR), 191
PMSC. See Premature stop codon (PMSC)
Point of care (POC), 582
Polymorphism, 437
Polysaccharide capsules, 307
Postinfectious Irritable bowel syndrome
 (PI-IBS), 461
Post-lethality exposed pasteurized milk, 396
PR/HACCP, 410
Prebiotics
 symbiotics, 623
Predictive mathematical modelling, 385, 386
Pregnancy, 431–432
 immunity vs. L. monocytogenes
 and susceptibility, 431–432
 and listeriosis risk, 425–426
Pregnancy-related cases, 439
Pregnancy-related listeriosis, 425, 426
Premature stop codon (PMSC), 66, 67, 546
Preservatives, 315
Pressure
 CtsR, 314
 Fe-S cluster assembly genes, 315
 high-hydrostatic pressure, 314
 high-pressure processing, 313, 314
 inactivation of microbial spores, 315
 pressure-sensitive (ATCC 35150) strains, 314
 pressure-tolerant (EC-88) strains, 314
 process temperatures, 313
Pressure-sensitive (ATCC 35150) strains, 314
Pressure-tolerant (EC-88) strains, 314
Prevent Lm in RTE
 complexity of factors, 410
 FSIS, 410
 high and low risk, 409
 knowledge gaps, 410
 listeriosis outbreaks, 409
 median deaths per serving vs. deaths
 per annum, 409
 MRAs, 410
 outbreaks, 410, 411
 PR/HACCP, 410
risk-informed policies and programs
 dose-response model, 396
 host susceptibility, 395
 Industry Reduction, 402–406
 MRAs, 395, 397–402
 PR/HACCP, 397–402
 strain variability, 395
 zero tolerance, 396–397
Index

timeline, 410, 411
zero tolerance, 410, 411
PrfA, 310
Probiotics, 218–219
antimicrobial activity, 612–614
bacteria, 607
definition, 610
enteric pathogens, 618–623
foodborne pathogen, 606–608
health benefits, 610–611
human health conditions, 612
immunomodulation, 614–617
intestinal barrier, 617–618
safety, 608–609
yeast, 607
Process controls, 402
Programmed cell death pathways, 364
Pro-inflammatory cytokines, 430, 431
Pro-inflammatory IL-8 (reduction), 434
Prophages, 64
Protein, 482–483
Protein moonlighting, 312
Proton motive force (PMF), 278
Proton pump inhibitors (PPIs), 436–438, 547
Pseudomonas effector, 175
PSP. See Phage shock protein (PSP)
Public Health Information System (PHIS), 403
Public health organizations, 346
Public health regulatory context
prevention of Lm, 394
Pulsed-field gel electrophoresis (PFGE), 157
Putative botulism
media releases, 558
sensitive issue, 558
symptoms, 558

Q
Quality control (QC) standards, 336
Quinolone resistance determining regions (QRDR), 191
Quorum sensing, 307
Quorum sensing regulatory systems, 249

R
Rabbit enteropathogenic E. coli (REPEC), 366
Radiation resistance, 305–319
Rapid Annotations using Subsystems Technology (RAST), 154
Reactive arthritis (ReA), 460
Ready-to-eat (RTE) foods, 394
EU Regulation 2073/2005, 382
European 100 CFU/g, 388–389
food safety, 388
L. monocytogenes growth, 384, 385
meat and poultry products, 394
prevention, LM (see Prevent Lm in RTE)
RecA, 312
Refrigeration technique, 97
Regulatory environment, 394, 406, 410, 411
Regulatory framework, 338
Relative risk (RR), 423
Riboflavin (vitamin B2), 437
Ribosomal protein 3 (RPS3), 362
Ribosomal RNAs (rRNAs), 342
RIG-I-like receptors (RLR), 358
Risk management strategy, 394, 411
RNA polymerase (RNAp), 231, 256
RpoE
activation, 265–273
Escherichia coli, 270–271
Salmonella enterica, 269–270
and sRNAs, 267–269
Vibrio, 272–273
Yersinia, 271–272
RpoH
ClpXP, 276, 277
regulation, 273–275
regulon members and pathogenesis, 275–276
T3SS, 276, 277
RpoN
polymyxin B resistance, 277–278
PSP response
E. coli, 278
Nramp1, 279
PspE, 279
S. Typhimurium, 278
Yersinia enterocolitica, 278
RpoS
E. coli, 251, 260–262
RNAp, 256
Salmonella, 257–259
Shigella, 259–260
stability, 254–256
IraD, 255
IraL, 255, 256
IraM, 255
IraP, 255
RssB, 254
stress-specific regulation, 257
transcriptional regulation, 252
translational regulation, 253–254
Vibrio, 263–265
Yersinia, 262–263
RssB, 254
S
S. coelicolor, 239
S. Enteritidis, 539
S. Typhimurium, 539
S-adenosyl-L-methionine (SAM), 361
Salmonella matrix, 310
Salmonella
bacterial pathogens, 533
contamination, 547
Enteritidis, 160
evolution
PAI, 153, 156
S. enterica, 153
synteny, 153
T3SS, 153, 154
Tetrathionate, 153
gastroenteritis, 152
gene expression, 160, 161
genomic analyses, 159
Gifsy-1 and Gifsy-2 prophage, 159, 160
human infection, 152, 153
nonmotile variants, 545
pathogenesis, 160, 161
ranges, 539
RpoS, 257–259
strains, 539
symptoms, 152
Typhimurium, 160
virulence, 160, 161
Salmonella containing vacuole (SCV), 258
Salmonella Dublin, 497, 498
Salmonella enterica, 497, 504, 507, 539, 548
Enteritidis, 158
E. coli, 270–271
flagellin genes, 156
foodborne illness outbreaks, 25
human infections, 158
O-antigen gene cluster, 156
pathogenic in humans, 25
PFGE, 157
phylogenetic analyses, 157
RpoE, 269–270
S. Enteritidis, 157
S. Typhi virulence, 158
SPI, 25
Typhimurium, 157
Salmonella gastroenteritis, 456
Salmonella pathogenicity islands (SPI), 25
Salmonella species, 496–507
epidemiology and surveillance, 498–503
human and animal studies, 503, 505
in vitro studies, 504–507
serovars causing human salmonellosis, 499–500
serovars recovered from animals, 501–502
Salmonella Tennessee, 482, 483
Salmonella Typhimurium, 159, 496–498, 507, 518
Salt stress, 313
Sanger sequencing, 337
Sanitary SOPs, 403
Sanitation programs, 394, 397
Sanitation Standard Operating Procedures (Sanitation SOPs), 401
Science-based prevention
MRAs, 397–402
PR/HACCP, 397–402
Scientific Committee on Animal Nutrition (SCAN), 609
SCVs. See Small-colony variants (SCVs)
Secretory proteins, 307
Sensors and regulators
σB, role of, 104, 105
environmental changes, 104
stress-responsive sigma factors, 104
transcriptional networks and negative regulators, 105
Serotype O157:H7, 357
Serum therapy, 555, 559
Shelf-life testing, 387
Shiga toxin (Stx), 184, 185
Shiga toxin-producing E. coli (STEC)
cattle reservoir
AHLs, 216
DFM, 216, 217
dietary alterations, 215, 216
E. coli O157, 217
intestinal microbiota, 215
monensin, 217
probiotics, 216
supershedder, 215
dietary fatty acids, 219–221
globotriasylceramide (Gb3), 211
HC and HUS, 210
human infection, 210
LEE, 211
microbiota and probiotics, 218, 219
natural compounds, 220, 221
Stxs, 212
treatment
antimicrobials, 212, 213
E. coli O104
H4, 213, 214
waterborne outbreak, 210
Zinc, 220, 221
Shiga toxin-producing Escherichia coli (STEC), 458, 620–621
Shiga toxins (Stx), 357–359
Shiga-toxin producing E. coli (STEC), 256
Social and behavioral factors
human susceptibility, 438
SOD. See Superoxide dismutase (SOD)
Soft cheese, 396
Solid-organ transplant recipients, 427, 428
SPI. See Salmonella pathogenicity islands (SPI)
Sporadic cases, 423
Staphylococcal virulence factors, 312
Staphylococcus aureus
bone-forming osteoblasts, 248
macrophages, 248
proteomics and transcriptomics
analysis, 247
SarA, 246
SarS and ArlRS, 247
SCVs, 248
sigB, 246
sigB mutation, 247
sigC gene, 249
STEC. See Shiga toxin-producing E. coli
(STEC)
Strain variation
human pathogens, 62
pathogenesis mechanisms and host-pathogen interactions, 62
PFGE, 76
virulence (see Virulence)
WGS (see Whole genome sequencing (WGS))
“zero” tolerance, 62
Streptococcus pneumoniae, 461
Streptomyces, 239
Stress response
of antibiotic resistance, 96
in vivo, 96
occurrence of cross adaptation, 95
storage under abusive temperatures, 95
Stress response systems, 308
Stress signals
and virulence regulation, 308–309
Stressosome, 238
Sublethal injury, 311
Superoxide dismutase (SOD), 142
Supershedder, 215
Surface receptors, 307
Symbiotics, 623
Synteny, 153

T
T cell-mediated immunity, 425
T cell response, 430
T cells, 431
T6SS. See Type-six secretion systems (T6SS)
TAK1-binding proteins 2 and 3, 361
Type III secretion systems (T3SSs), 153, 154, 357, 359–368
Chlamydia, 174
effectors, 172, 175 and flagellar system, 174
genetics, 174
glycoprotein 2, 177
IpaA, 179
IpaB and IpaC, 178, 179
macrophages, 178
membrane ruffling, 179
N-WASP, 180
pseudomonas effector, 175
regulation, 176–177
RpoH, 276–277
sipC, 180
structure, 174, 175
transcytose, 177
Type-six secretion systems (T6SS), 137

U
U.S. Department of Agriculture (USDA), 396
U.S. Food and Drug Administration (FDA), 396
U.S. Regulatory Policies
industry reduction of *Lm*
 federally-inspected RTE meat and poultry products, 405
 food contact surfaces, 404
 Interim Final Rule, 403, 404
 PHIS, 403
 post-lethality-exposed RTE meat and poultry products, 402
 product testing, 403
 products and incidence of foodborne listeriosis, 405
 risk-based federal inspection program, 404
 risk-based verification sampling program, 404
 statistical algorithm, 403
 surveillance programs, 405
 2003 Interim Final Rule, 403
 USDA-FSIS, 402, 403
 mitigating risk at retail, 406–408

Ultrahigh pressure processing (UHPP), 313
Univariate analysis, 427
Uropathogenic *E. coli* (UPEC), 255
US Food and Drug Administration (FDA), 427
US FoodNet data, 424
US Renal System Data Report, 424
USDA-FSIS, 395–406, 408–412
verification testing programs, 398
UspA (universal stress protein A) family of stress response genes, 315
V
Vacuum packaging, 317
Vegetables, 483
Viable but nonculturable state (VBNC), 312
Vibrio, 459
RpoE, 272–273
RpoS, 263–265
Vibrio cholerae, 472, 479, 482
Virulence, agriculture industry, 306
antibiotics, 306
attenuated strains, 71, 72
Cantaloupe outbreak, 2011, 75
Caramel apple outbreak, 2014, 74, 75
chocolate milk febrile gastroenteritis outbreak, 1994, 73
developing control strategies, 307
development of agriculture, 305
environmental conditions and external treatment
biopreservatives, 316–317
cross protection, 318–319
desiccation, 312–313
food packaging, 317–318
irradiation, 311–312
osmotic stress, 312–313
pH, 315–316
pressure, 313–315
temperature, 309–311
food commodities, 306
hurdle technology, 306
industrial revolution, 305
in microbes (see Microbial virulence)
morbidity and mortality, 306
North Carolina outbreak, 2000, 75
related genomic sequences
CRISPR elements, 64
ICEs, 64
internalins, 64
LIPI-3, 64
LIPI-4, 64
prophages, 64
WTA, 65, 66
related sequence polymorphisms
iap, 68
inlB mutations, 68
LIPI-1, 67
PMSC, 66, 67
risk assessment, 66
Turkey deli meats outbreak, 2002 and Karoun cheese outbreak, 2014, 73, 74
Virulence factors
barriers, 535
and dose, 533
environmental hazards, 535
experimental evidence, 535
foodborne pathogens, 534
host immune response, 535
hypothetical relationships, 533
inactivation, 534
mutated gene, 534
phenotype, 534
symptoms and duration, 534
Virulence genes
baseline food testing, 22
Fluidigm system, 19
within pathogen’s genome, 4
PCR, 25
profiles, 22
STEC serogroups, 20
stx and eae, 20
Virulence profiling, 339–340
Virulotyping, 18, 25
antibiotics, 26
bioinformatics analysis, 4
defined, 27
description, 4
EHEC (see Enterohemorrhagic E. coli (EHEC))
fluoroquinolone administration, 27
medical diagnostics and food safety testing, 4
multivariate analysis, 26
O-antigens, 26
Peer-Reviewed Scientific Journal Publications, 4–18
S. enterica (see Salmonella enterica)
“SOS response”, 26
specific STEC O-groups, 26
specific virulence genes, 4
USDA-FSIS, 18
Vitamin D deficiencies, 437
W
Wall teichoic acid (WTA), 65, 66
wgMLST, 338
Whole genome sequencing (WGS)
AMR, 339
applications, 334
benefits, food industry, 343
CDC, 68
economic burdens of foodborne illnesses, 335
“epidemic clones” and outbreak-associated strains, 68–70
in food testing, 346
and full-length genetic code, 334
GenomeTrakr, 335
Whole genome sequencing (WGS) (cont.)
genomic data, 334
global deployment, 345
global outreach, 345
ISO, 345
isolate level, 334
metagenomic data, 334
nucleotide substitutions, 340–343
open-source genome sequence databases, 346
pathogen traceability and persistence, 335
phylogenetic methods, 335
phylogenetics, 336–338
problematic strains detection, 70, 71
profile signature variants, 72
public health organizations, 346
Salmonella, 340, 346
STECs, 339, 346
The Wellcome Trust, 345
timely and innovative solutions, 335
validation, 346
virulence profiling, 339
virulence-attenuated strains, 71, 72
WHO, 345
World Health Organization (WHO), 345, 428
Wound botulism, 576
WTA. See Wall teichoic acid (WTA)

Y
Yersinia
RpoE, 271–272
RpoS, 262–263
Yersinia enterocolitica, 459
PSP response, 278

Z
“Zero tolerance” policy, 396–397, 410, 411