A

- Accessible infertility care, 281
 - advocacy and networking, 290–291
- countries/pilot centres, selection of, 288
- low-cost ovarian stimulation protocols for IVF, 286
- one-stop diagnostic phase, 284–285
- patients and IVF protocol, selection of, 288–290
- service delivery, 286
 - documentation and registration, 287
 - educating public, 287
 - equipping clinics, 286
 - psychological and sociocultural follow-up, 287–288
 - running services, 287
 - training staff, 286–287
- simplified infertility treatment and non-IVF assisted reproduction, 285
- simplified IVF laboratory procedures, 285
- TWE, 282
 - application to become, 290
 - medical, 284
 - non-medical, 284
- simplified IVF procedure method, 291–293

Acridine orange (AO)-stained sperm, 300

Actin, 23–25

Adenylate cyclase, 9

Adjuvants drugs, 170

Adjuvants to boost ncIVF, 168

Advanced women’s age, 151

Age related chromosomal aneuploidies, 297–299

Aging of oocytes, 75, 76, 82

Agonist of gonadotropin-release hormone (aGnRH) injection, 274

Albumin, 188

Amphiregulin (AREG), 67

Amyotrophic lateral sclerosis (ALS), 84

Androgen receptors (ARs), 110

Androgens, 13, 110
 - androstenedione, 13
 - dehydroepiandrosterone, 13
 - 5α-dihydrotestosterone, 13–14
 - testosterone, 13

Androstenedione, 13, 107

Anesthesia for oocyte retrieval, 331

Angiotensin II, 187

Anti-estrogens, 195, 203

Anti-Mullerian hormone (AMH), 26–31, 38, 102, 110–111, 130, 148, 176, 185, 239, 262, 338

Antioxidant, 340

Antiretroviral therapy (ARVs), 282

Antral follicle count (AFC), 29, 130, 131, 150, 176, 359

Antral follicle recruitment, 42–43

Aromatase, 17–18

Aromatase inhibitors (AIs), 195, 251–253

Assisted reproductive technologies/treatment (ARTs), 50, 267, 271, 281, 282

B

Basal serum FSH, 130–131

Baseline cycle characteristics according to LH surge stage, 166

Betacellulin (BTC), 67

Birthweight in in vitro maturation pregnancies, 352

Body mass index (BMI), 196

Bone morphogenetic protein 15 (BMP15), 342

Bovine serum albumin (BSA), 309

C

Cabergoline, 180

Calcium infusion, 187

Calcium signaling, 67–68

cAMP-dependent protein kinase A, 342

Cancer, 261–264. See also Oncofertility

L-Carnitine, 83

Cetrorelix, 133

Chemotherapy, 261, 262, 263, 264

Childlessness, 291

Cholesterol side-chain cleavage enzyme, 17

Chromosomal mosaicism, 298

Classical hormones, 3

Clinical pregnancy rates (CPRs), 198, 234

Clomiphene, 170, 228
 - characteristics of, 227–228

Clomiphene citrate (CC), 99, 195, 237, 250–251, 271, 272, 285, 286
 - with FSH/HMG, 238
 - with gonadotropins, 238, 239
 - in IVF and ICSI cycles, 239
 - minimal stimulation for IVF with, 227
embryo transfer techniques, 231–232
frozen embryo transfer, protocol for, 231
natural and minimal stimulation cycle for IVF, treatment outcomes in, 234
natural cycles and clomiphene cycles, comparison of, 232–234
oocyte retrieval period, method for determining, 228–230
polycystic ovary syndrome, dealing with, 230–231
protocol for, 228
Clomiphene citrate tablet (CLOMID), 228
Clomiphene cycles, natural cycle and, 232
endometrial thickness during, 232
oocyte retrieval rates in, 232–233
Coasting, 177–178, 186
Cochrane, 197
Coenzyme Q 10, 83
Comparative genomic hybridization (CGH), 299
Controlled ovarian hyperstimulation (COH), 157, 195, 212, 227, 285, 317
COH-IVF, 118
gonadotrophins with, 113
Controlled ovarian stimulation (COS), 271 in PooResp, 249
Conventional IVF (C-IVF), 147
Corpus luteum rescue, 274
Cortisol, 112–113
Couple infertility, 267
Cryopreservation of embryos, 180
Cryostop, 164
Culture medium for embryo development, 339
Cumulative ongoing pregnancy rates (COPR), 218
Cumulative pregnancy rates, 211, 212, 212r, 215, 217
first cycle, performance in, 220
cancellation of oocyte retrieval and unsuccessful oocyte retrieval, 220–222
fertilization and embryo transfer, 222–223
in larger series of patients, 218
according to BMI, 220, 221r
according to indication for ART, 219–220, 220r
according to patient age, 218
MNC cycles, 212
analysis of dropout, 215–216
dropout rates and cumulative pregnancy rates, 214–215
after MNC-IVF and analysis of patient dropout, 213, 214r, 215f
patient characteristics and results of treatment cycles, 213–214
Cumulus–oocyte complexes (COCs), 338, 343, 344
Cycle cancellation, 178, 186
Cyclic AMP (cAMP), 9, 61–62, 342
intraoocyte levels, reduction of, 65
Cyclic GMP (cGMP), 62
intraoocyte levels, reduction of, 65–66
Cyclic nucleotides, 60–62
Cyclin-dependent kinase 1 (CDK1), 61
cyclins, 48
CYP11A1, 17
CYP17A1, 17
CYP21A2, 19
Cytochalasin B, 79
Cytoplasmic and membrane maturation, 48–49
Death, risk of, 263
Decision-making on infertility treatment, 288
Dehydroepiandrosterone (DHEA), 13, 257
Delivery rate (DR), 234r
Depression, 197
Developing countries (DCs), 281
Development of IVM treatment, 359, 360–364
for poor responders/over responders in stimulated cycles, 360
Developmental competence of oocytes, 82, 83, 84, 85
 Dichloroacetic acid, 83
Diclofenac sodium (Voltaren), 230
Diethylstilbestrol (DES), 64
5α-Dihydrotestosterone (5α-DHT), 13–14
Disjunction, 298
DNA fragmentation, 299
DNA methylation, 81
DNA methyltransferase, 81
Dopamine, 4
Dopamine agonists, 179–180, 188–189
Doppler ultrasound, 148
Double embryo transfer (DET), 198, 214
Duphaston tablets, 231
Dydrogesterone, 231, 243
Dyneins, 78
Cumulative cycle, performance in, 220
cancellation of oocyte retrieval and unsuccessful oocyte retrieval, 220–222
fertilization and embryo transfer, 222–223
in larger series of patients, 218
according to BMI, 220, 221r
according to indication for ART, 219–220, 220r
according to patient age, 218
MNC cycles, 212
analysis of dropout, 215–216
dropout rates and cumulative pregnancy rates, 214–215
after MNC-IVF and analysis of patient dropout, 213, 214r, 215f
patient characteristics and results of treatment cycles, 213–214
Cumulus–oocyte complexes (COCs), 338, 343, 344
Cycle cancellation, 178, 186
Cyclic AMP (cAMP), 9, 61–62, 342
intraoocyte levels, reduction of, 65
Cyclic GMP (cGMP), 62
intraoocyte levels, reduction of, 65–66
Cyclic nucleotides, 60–62
Cyclin-dependent kinase 1 (CDK1), 61
Cyclins, 48
CYP11A1, 17
CYP17A1, 17
CYP21A2, 19
Cytochalasin B, 79
Cytoplasmic and membrane maturation, 48–49
D
Death, risk of, 263
Decision-making on infertility treatment, 288
Dehydroepiandrosterone (DHEA), 13, 257
Delivery rate (DR), 234r
Depression, 197
Developing countries (DCs), 281
Development of IVM treatment, 359, 360–364
for poor responders/over responders in stimulated cycles, 360
Developmental competence of oocytes, 82, 83, 84, 85
 Dichloroacetic acid, 83
Diclofenac sodium (Voltaren), 230
Diethylstilbestrol (DES), 64
5α-Dihydrotestosterone (5α-DHT), 13–14
Disjunction, 298
DNA fragmentation, 299
DNA methylation, 81
DNA methyltransferase, 81
Dopamine, 4
Dopamine agonists, 179–180, 188–189
Doppler ultrasound, 148
Double embryo transfer (DET), 198, 214
Duphaston tablets, 231
Dydrogesterone, 231, 243
Dyneins, 78
E
Early Aspiration Rescue (EAR), 324
Elective single embryo transfer (eSET), 114
Embden–Meyerhof pathway, 339
Embryo cryopreservation, 180, 188
oocyte and patient work-up for, 262–264
Embryo transfer (ET), 147, 177, 196, 212, 222, 231–232, 344–345
frozen
endometrial thickness during, 232r
protocol for, 231, 231f
techniques, 231, 232
rate, 223
Embryonic genetic factors, 297
age related chromosomal aneuploidies, 297–299
parental chromosomal anomalies, 299
sperm DNA damage, 299–300
Empty follicle syndrome (EFS), 137
Enclomiphene, 237
Endogenous hormones, 227
Endometrial cancer, 203
Endometrial gene expression, 198
Endometrial genetic factors, 300
gene expression profiles, comparative studies on, 300–302
genetic polymorphisms, 300
transcriptome pattern and endometrium receptivity, 302–303
Endometrium receptivity, transcriptome pattern and, 302–303
Energy sources, 339
Epidermal growth factor (EGF) -like growth factors, 67
receptor, 67, 342, 343
Epigenetics, 81
Epiregulin (EREG), 67
ESHRE (European Society for Human Reproduction and Embryology), 283, 290
Estradiol, 64, 65, 66, 134–135, 262
Estrana, 231
Estrogen levels, 197, 198
Estrogen receptor-positive breast cancer, 203
Estrogen receptors (ERs), 238
Estrogen response elements, 48
Estrogens, 14, 43, 64
estriol, 14–15
estrone, 14
Estrone sulfate, 14
European Society of Human Reproduction and Embryology (ESHRE), 178

F
Fertilization
and embryo transfer, 223
of oocytes, 212
Fertilization of mammalian oocytes, 79–80
Fertilization rate (FR), 95, 100, 198, 216, 219, 223
Fetal bovine serum (FBS), 341
Fetal calf serum (FCS), 309
Fine-needle ultrasound-guided transvaginal oocyte collection, 263
Fluorescence in-situ hybridization (FISH), 298
Fluorescence-labeled oocyte mitochondria, 79
Follicle-oocyte complex, development of, 108
Follicle selection, 43
Follicle-stimulating hormone (FSH), 63, 111–112, 195, 257, 310, 329
Follicular development, 37, 39f
from antral to pre-ovulatory follicles, 41
antral follicle recruitment, 42–43
dominant follicle selection, 43
ovarian follicular wave dynamics, 44
pre-ovulatory follicle development, 43–44
follicle atresia, 44
changes of follicular morphology and metabolism during, 45
hormonal regulation, 45
molecular mechanisms of follicle cell apoptosis, 45–46
and oocyte growth, 46
cytoplasmic and membrane maturation, 48–49
epigenetic modification, 50
mechanism of oocyte maturation, 47
nuclear maturation, 47–48
size of oocytes and follicles, 46–47
from primordial follicles to pre-antral follicle, 38
formation of primordial follicles, 38
initial recruitment of follicles, 38–40
pre-antral follicle growth and differentiation, 40–41
Follicular fluid hormones, 102–103, 105
in folliculogenesis, 106
composition of follicular fluid, 107
in natural cycle IVF, 113
comparing follicular hormonal milieu, 115–116
detrimental impact of exogenous gonadotrophin stimulation, 113–114
FF endocrine profiles, resultant oocyte and embryo quality, 116–117
follicular fluid in natural cycles, 114–115
impact of HCG in MNC cycles, 120
natural cycle IVF, 114
pathology related follicular hormone profiles, 117
weaknesses in published literature, 117–120
ovary-derived hormones, 107
androgens, 110
anti-Müllerian hormone, 110–111
oestrogens, 108–109
progestins, 109–110
steroid hormones, 107–108
pituitary-derived hormones, 111
follicle-stimulating hormone, 111–112
growth hormone, 112
luteinizing hormone, 112
prolactin, 112
systemic hormones, 112
cortisol, 112–113
insulin, 112
renin, 113
Follicular flushing, 170–171
Follicular growth, 228
Follicular rupture, blocking of, 273–274
Follicular-stimulating hormone (FSH), 45, 49, 63–64, 241, 262
ovarian hyperstimulation syndrome, 176
priming with, 311
receptor, 9, 10
signaling, 40
Folliculogenesis, 41f, 44, 105
follicular fluid hormones in, 106
oocyte growth during, 46
Follistatin, 23–25
Frozen embryo transfer, protocol for, 231
Frozen–thawed embryo transfers, 164

G
Ganirelix, 133
Gene expression profiles, comparative studies on, 300–302
Genetic polymorphisms, 300
Genomic maturation, 47
Germ-line stem cells (GSCs), 38
Germinal vesicle (GV), 59, 338
GV stage oocytes, 75
Germinal vesicle breakdown (GVBD), 47, 48, 59, 75–76, 311, 338, 361
Glucocorticoids, 11, 12
Glycoproteins, 3, 23
anti-Müllerian hormone, 26–31
inhibin, activin, and follistatin, 23–25
Gn-releasing hormone GnRH, 113
Gonadotrophin (Gn), 105, 223, 240
with controlled ovarian hyperstimulation, 113
stimulation, 113–114
Gonadotropin dosing, individualizing, 186
Gonadotropin-releasing hormone agonists (GnRHa), 132–134, 186, 321
nasal spray, 228, 229
trigger, 135–136
Gonadotropins (Gn), 3, 8, 45, 131, 195, 228, 250, 341–342
construction of, 8
dose of, 134
gonadotropin receptors, 8–10
localization of, 10
regulation of gonadotropin secretion, 10
Graafian follicle, 105
Granulosa cells (GCs), 105
Growth differentiation factor 9 (GDF9), 342
Growth factors, 342
Growth hormone (GH), 45, 112
Guanylyl cyclase, 62, 63, 66

H
Hormone replacement therapy (HRT), 258
Human chorionic gonadotropin (hCG), 113, 242, 310, 329, 360
dose of, for triggering, 177
impact of, in MNC cycles, 120
priming with, 311–312
triggering, 135, 159–160
Human follicular fluid (HFF), 341
Human menopausal gonadotropin (hMG), 97, 195, 272
Human pituitary fluid (HPF), 341
Human serum albumin (HSA), 341
Hydroxyethyl starch (HES), 179
21-Hydroxylase, 18–19
19-Hydroxylase activity, 107
17α-Hydroxylase/17,20-lyase, 17
11β-Hydroxylases, 18
3α- and 20α-Hydroxysteroid dehydrogenase activities, 22
3β-Hydroxysteroid dehydrogenase/Δ5-4 isomerases, 19–20
11β-Hydroxysteroid dehydrogenases, 20–21
17β-Hydroxysteroid dehydrogenases, 21–22
17α-Hydroxyprogrenolone, 13
17-Hydroxyprogesterone (17-OHP), 115
17α-Hydroxyprogesterone, 13
Hydroxymethylation (5-hmC), 81
Hydroxysteroid dehydrogenases (HSDs) and reductases, 19
Hyperbaric oxygen therapy (HBOT), 272
Hyper-response, 240
Hyperstimulation
controlled ovarian hyperstimulation, 317
ovarian hyperstimulation syndrome, 317–319, 321, 322r, 323r

I
Immature oocyte, 338f
in vitro fertilization of, 344
in vitro maturation of, 339
antioxidant, 340
energy sources, 339
gonadotropins, 341–342
growth factors, 342
nitrogen sources, 340
proteins, 340–341
steroids, 342
vitamins, 340
retrieval, 338
Immunooassay (IA), 115
Implantation, 297
Indomet(h)acin, 204, 212, 223, 242
Infertility, 158, 159, 267
Inhibin, 23–25, 43
Inosine monophosphate dehydrogenase (IMPDH), 65
Insulin, 112
Insulin-like growth factor (IGF-1), 110
International Clearinghouse for Birth Defects Surveillance and Research (ICBDSR), 353, 355–356
International Society of Mild Approach Assisted Reproduction (ISMAAR), 148, 195
Intracytoplasmic sperm injection (ICSI), 97–98
238, 310
Intrauterine insemination (IUI), 282, 285, 286
Intravaginal culture (IVC), 267
prototype, 268
Intravenous albumin versus hydroxyethyl starch, 179
In vitro fertilization (IVF), 129, 227, 249, 267, 282, 286
and embryo transfer (IVF-ET), 75
of immature oocytes, 344
oocyte donation and, 257
In vitro maturation (IVM), 76, 101–102, 187–188, 203, 263, 319–324
In vitro-matured immature oocytes, embryo development from, 344
Intracytoplasmic morphologically selected sperm injection (IMSI), 300
INVO (intravaginal culture of oocyte) principle, 268
ICSI, 277–278
IVF, 275
laboratory protocol, 275
mild ovarian stimulation and, 271
principle, 268, 269f
INVO procedure, 267, 270–271
mild ovarian stimulation protocols used on, 272–273
INVOcell development, early steps on, 267–268
inner chamber, 269–270
outer rigid shell, 270
retention system, 270
ISMAAR (International Society for Mild Approaches to Assisted Reproduction), 290–291
IVM oocyte retrieval (IVM-OR), 329, 332f
anesthesia for, 331
appropriate timing for, 330
complications of, 334
method of, 330
procedure of, 331–334
IVM treatment, 309
clinical outcomes, 312
development of, 312–314
methodology of, 310
priming with FSH, 311
priming with HCG, 311–312
obstetric outcome of, 351
growth and neurologic development, 356–357
IVM and IVF infants, major birth defects rates, 354
IVM and spontaneous conceptions, major birth defects rates, 354–356
major birth defects, 353–354
risk of preterm delivery and birthweight in IVM pregnancies, 352

K
Kato Ladies Clinic (KLC) in Tokyo, 163
Kif5b and Kif11b, 78
Kinesins, 78
Kispeptin, 4, 6–8
Kispeptin–neurokinin B–dynorphin (KNDy), 6, 7f, 8
KMYC, natural cycle IVF protocol at, 163–165
Krebs-Ringer medium, 310

L
Laboratory aspect of IVM treatment, 337
embryo development from in vitro-matured immature oocytes, 344
embryo transfer, 344–345
immature oocyte retrieval, 338
immature oocytes, in vitro maturation of, 339
antioxidant, 340
energy sources, 339
gonadotropins, 341–342
growth factors, 342
nitrogen sources, 340
proteins, 340–341
steroids, 342
vitamins, 340
in vitro fertilization of immature oocytes, 344
Lactate, 339
Letrozole, 196, 203, 230, 251–253
Leukemia-inhibitory factor (LIF), 301
Livebirth rates (LBRs), 198, 200
Long agonist protocol, 133
Low-cost ovarian stimulation protocols for IVF, 286
Lupron injection, 274
Luteal phase support, 275
Luteal support, 138–139
choice of, 177
for IVM treatment, 345
Luteinizing hormone (LH), 42, 59, 65, 99, 111, 112, 113, 195, 227, 228, 229, 232, 262
LH receptor, 9
LH surge, 98, 132, 133, 135, 138
supplementation, 131
Lysophosphatidic acid (LPA), 343

M
Major birth defects (MBDs), 351
Male factor infertility (MFI), 109
Maturation promoting factor (MPF) activity, 342
Meiosis arrest female 1 (MARF1), 61
Meiotic arrest, 59
Meiotic resumption, 65
LH, 65
reduction of
intraoocyte cAMP levels, 65
intraoocyte cGMP levels, 65–66
NPPC/NPR2 function, 66
Menopausal symptoms, 197
Menstrual cycle, 3
follicular development and atresia during, 51f
Metaphase-I stage (M-I), 338
Metformin, 189
Microfilament-associated mitochondrial traffic in neurons, 79
Mild controlled ovarian stimulation (mCOS), 250
Mild ovarian stimulation, for IVF (M-IVF), 114, 195
advantages of, 196–201
complexity, 197
endometrial receptivity, 198
fertility preservation, for cancer patients, 203
flexible scheduling for the clinic, 202
future prospect, 204
good quality oocyte/embryo, 198
high quality laboratory, need for, 202
limitations of, 201
cryo-preservation, embryos for, 202
potential cycle cancellation, 201–202
Mild ovarian stimulation protocols used on INVO procedure, 272–273
Mild stimulation IVF (MS-IVF), 147–148, 200
Mild stimulation protocols, 237
advantages of, 246
clophimene citrate, 237–238
indication for, 238–240
hyper-response, 238–240, 240f
polycystic ovary syndrome (PCOS), 240
IVF cycle management, 242–243
new features, 244–246
poor response, anticipated, 240–242
diabetes, 240–242
injection duration, 241
low score of oocytes, 242
pre-ovulation, 242
target number of oocyte, 241
treatment cycle, 242
preliminary data, 243–244
Millennium Developments Goal 5 (MDG5), 282
Mineralocorticoids, 11, 12f
Minimally invasive IVF, 267
clinical results, 275
INVO ICSI, 277–278
INVO IVF, 275
corporus luteum rescue, 274
follicular rupture, blocking of, 273–274
hyperbaric oxygen therapy (HBOT), 272
INVO laboratory protocol, 275
INVO principle, 268, 269f
INVO procedures, 270–271
INVOcell development, early steps on, 267–268
INVOcell device components, 269
inner chamber, 269–270
outer rigid shell, 270
retention system, 270
luteal phase support, 275
mild ovarian stimulation
and INVO, 271
protocols used on INVO procedure, 272–273
natural cycle, modified, 271
oocyte retrieval, 274
ovulation, triggering of, 274
preconceptional preparation, 272
vitrification, 275
Minimal ovarian stimulation, 160, 162, 163. See also Mild ovarian stimulation, for IVF (M-IVF)
Mitochondrial diseases, 76
Mitochondrial DNA (mtDNA), 81, 85
transcription of, 81
Mitochondria of oocyte, 75
aging-associated dysfunction of, 75, 82
ATP synthesis in, 80
cytoskeleton, 78
developmental competence, 82
energy metabolism, 79–80
future perspective, 82–85
genetic and epigenetic control of, 81–82
intracellular traffic, 78
mechanism of mitochondrial traffic, 78–79
size and shape, 76–77
structural property of mitochondria, 76–78
Mitogen-activated protein kinase (MAPK), 48
Ras-mediated activation of, 9
Modified IVF, 97, 98, 100, 102
Modified natural cycle (MNC) IVF, 114, 148, 162, 211
drawback of, 223
implantation rates, 223
number of patients undergoing, 212f
treatment cycle
cumulative pregnancy rates per patient, 212
increase in, 213
patient characteristics, 213, 213f
results of, 213, 214f
Modified natural cycles with addition of GnRH antagonist, 149f
Modified natural with hCG, 149f
Mosaism, 298

N
Nasal spray, 228, 229
Natriuretic peptides, 62
Natural and minimal stimulation cycle for IVF, treatment outcomes in, 234
Natural cycle IVF (NC-IVF), 95–97, 114, 147–148, 149f, 258
analysis of follicular fluid, 102–103
challenges of, 158f
clophimene citrate, 99
comparing follicular hormonal milieu between
COH-IVF cycle and, 115–116
costs, 102
follicular fluid in, 114–115
GnRH antagonists, 98–99
impact of HCG in, 120
indications of, 150
advanced women’s age, 151
contra indications to ovarian stimulation, 151–152
patient’s choice, 152
previous conventional stimulation cycles with poor quality embryos, 151
previous poor responders, 151
women at significant risk of OHSS, 152
women with (POR, 150–151
in vitro maturation, 101–102
low responders, 97–98
mild stimulation, 100–101
NSAID, 99
pathology related follicular hormone profiles in, 117
timing of oocyte retrieval, 102
types of, 148–150
Natural cycle IVF/ICSI, 95, 96
Natural cycle IVF/IVM, 352
Natural cycle IVFM, 312–314
Natural cycle IVF with spontaneous LH surge, 157
adjuvants drugs, 170
adjuvants to boost ncIVF, 168
eyeal development of ncIVF protocols, 159
efficiency, 161–162
follicular flushing, 170–171
versus hCG triggering, 159–160
insights from large Japanese cohort study, 166–168
LH surge-based scheduling, 163
mild IVF approaches in Japan, 162–168
modified natural cycle IVF protocol, 160–161
natural cycle IVF protocol at KMYC, 163–165
NSAID use to prevent ovulation, 168–170
pioneering work at beginning of IVF era, 158–159
revival of natural cycle and mild IVF, 157–158
Natural cycles
and clomiphene cycles, comparison of, 232–234
follicular fluid in, 114–115
Natural IVF protocols, 149
Neuronal NOS (nNOS), 62
Nitric oxide (NO), 62
Nitric oxide synthases (NOS), 62
Nitrogen sources, 340
Nondisjunction, 298
Non-IVF assisted reproduction, 285
Non-steroidal anti-inflammatory drugs (NSAID), 99, 102, 230, 273
to prevent ovulation, 168–170
Norgestrel/ethinyl estradiol, 231
NPPA, 62
NPPB, 63
NPPC, 62–63
/NPR2 function, reduction of, 66
Nuclear DNA (nDNA) methyltransferase 1, 81, 82
Nuclear maturation, 47–48
Nuclear transfer, 83

O
Oestradiol-17ß, 107
Oestrogen receptors (ER), 108
Oestrogens, 108–109
Oncofertility, 261
diagnosis, 261
initial consultation, 261–262
long-term follow-up, 264
ovarian tissue cryopreservation, 264
patient work-up for oocyte and embryo cryopreservation, 262–264
post-procedure management, 264
One-stop diagnostic phase, 284–285
Ongoing pregnancy rate (OPR), 198, 218f
Oocyte–cumulus cell interactions, 49
Oocyte-derived paracrine factors (ODPFs), 64–65
Oocyte developmental competence, 37
Oocyte donation and IVF, 257
Oocyte growth, 46
cytoplasmic and membrane maturation, 48–49
epigenetic modification, 50
mechanism of oocyte maturation, 47
nuclear maturation, 47–48
size of oocytes and follicles, 46–47
Oocyte maturation, 135, 136, 137
Oocyte maturation inhibitor (OMI), 59–60
Oocyte meiotic prophase arrest and resumption, regulation of, 59
calcium signaling, 67–68
cyclic nucleotides, 60
cyclic AMP, 61–62
cyclic GMP, 62
EGF-like growth factors, 67
estrogen, 64
FSH, 63–64
meiotic arrest, 59
meiotic resumption, 65
LH, 65
reduction of intraoocyte cAMP levels, 65
reduction of intraoocyte cGMP levels, 65–66
reduction of NPPC/NPR2 function, 66
NPPC, 62–63
ODPFs, 64–65
oocyte maturation inhibitor, 59–60
Oocyte membrane maturation, 342
Oocyte retrieval period, determining, 228–230
Oocyte retrieval scheduling according to spontaneous LH surge, 164r, 165f
Oocyte retrievals, 220, 224, 274
cancellation of, 223
unsuccessful, 221r, 223
Oocytes, target number of, 241
Opioids, 4
Oral contraceptive pill (OCP), 134–135
Ovarian cycles, factors regulating, 3
glycoproteins, 23
anti-Müllerian hormone, 26–31
inhibin, activin, and follistatin, 23–25
gonadotropin-releasing hormone, 3
mechanism of regulation of secretion, 4
rhythmic secretion of, 3–4
secretion regulated by kisspeptin, 4–8
gonadotropins, 8
construction of, 8
gonadotropin receptors, 8–10
localization of gonadotropin receptors, 10
regulation of gonadotropin secretion, 10
steroid hormones, 10
sex steroid hormones, 11–23
Ovarian cyst formation, 197
Ovarian endocrinology. See Ovarian cycles, factors regulating
Ovarian follicular wave dynamics, 44
Ovarian hyperstimulation syndrome (OHSS), 113, 130,
131, 138, 147, 157, 175, 185, 196, 230, 240,
262, 264, 290, 317–319, 321, 322r, 323r, 329, 360
advantages and disadvantages of treatments to avoid
or mitigate, 322–323r
albumin, 188
calcium infusion, 187
coasting/cycle cancellation, 186
dopamine agonists, 188–189
embryo cryopreservation, 188
GnRH antagonist, 189
identifying patients at risk, 185–186
individualizing gonadotropin dosing, 186
in vitro maturation, 187–188
metformin, 189
ovulation triggers, 186–187
preventative measures, 176
administration of dopamine agonist, 179–180
choice of luteal support, 177
coasting, 177–178
cryopreservation of all embryos, 180
cycle cancellation, 178
dose of hCG for triggering, 177
follicle aspiration prior to hCG administration, 178
GnRH agonist triggering in GnRH antagonist cycle,
178–179
GnRH agonist versus antagonist, 176–177
intravenous albumin versus hydroxyethyl starch, 179
metformin co-treatment, 177
starting dose and type of FSH, 176
risk factors for, 175
ovarian response parameters, 176
pretreatment patient characteristics, 175–176
treatments to avoid or mitigate, 321, 322r
use of GnRH agonists, 323–324r
women at significant risk of, 152
Ovarian reserve, 105
Ovarian reserve assessment, 130
anti-Mullerian hormone, 130
antral follicle count, 130
basal serum FSH, 130–131
Ovarian reserve test, 130
Ovarian stimulation (OS), 223, 351
for cancer patients, 263
and intravaginal culture of oocyte, 271
metformin co-treatment during, 177
Ovarian stimulation protocols, 129, 138f
assessment of ovarian reserve, 129
anti-Mullerian hormone, 130
antral follicle count, 130
basal serum FSH, 130–131
luteal phase support, 138–139
optimizing ovarian stimulation by individualizing
protocol, 131
choice of gonadotropin preparation, urine, or
recombinant FSH, 131
cycle scheduling for IVF treatment with oral con-
traceptive pills/estradiol, 134–135
dose of gonadotropins, 134
GnRH agonist/antagonist, 132–134
LH supplementation, 131
treatment monitoring, 135
trigger of ovulation, 135
GnRH agonist trigger, 135–136
HCG trigger, 135
lag time from ovulation trigger to oocyte aspiration,
137
predicting successful induction of ovulation with
HCG or GnRH agonist, 137–138
timing of HCG or GnRH agonist administration,
136–137
Ovarian tissue cryopreservation, 264
Ovary-derived hormones, 107
androgens, 110
anti-Mullerian hormone, 110–111
oestrogens, 108–109
progestins, 109–110
steroid hormones, 107–108
Ovulation, 196, 223, 229
prevention of, 230
timing of, 229f
triggering, 186–187, 212, 274
Oxaloacetate, 339
Oxidative stress, 45, 82
P
P450 reductase (POR), 17
P450scc Encoded by CYP11A1, 17
Paracrine factors, oocyte-derived, 64–65
Parental chromosomal anomalies, 299
Pelvis, ultrasound of, 262
Perifollicular blood flow, Doppler ultrasound for, 149f
Peritutisal space (PVS), 338
Pituitary-derived hormones, 111
follicle-stimulating hormone, 111–112
growth hormone, 112
luteinizing hormone, 112
prolactin, 112
Pituitary gland, 227
Planovar, 231
Polycystic ovarian syndrome (PCOS), 108–109, 110, 134,
152, 185, 230–231, 240, 310, 329, 352, 359, 360
Polycystic ovaries (PCO), 176
Polymorphisms, genetic, 300
Polyvinylpyrrolidone (PVP), 341
Poor ovarian reserve (POR), 150–151
Poor ovarian responders (PooResp), 249
classical strategy of COS in, 249
mild stimulation strategy for
aromatase inhibitors, 251–253
clomiphene citrate, 250–251
Porcine NPPB (pNPPB), 63
Pre-antral follicle growth and differentiation, 40–41
Preconceptional preparation, 272
Pregnancy, 345, 360, 361
Pregnancy rate, 95, 97, 100, 102, 230
Premature ovarian failure (POF), 257
Premature ovulation, 95, 98, 99, 201
Progestogens, 11
Pregnane backbone (C21 pregnane), 11
Preimplantation genetic screening (PGS), 298
Progestins, 109–110
Progesterone, 107, 109, 262
Progestrone receptors, 302
Progestogens, 109–110
Preimplantation genetic screening (PGS), 298
Preovulation, 242
Preovulatory follicle development, 43–44
Preterm delivery and birthweight in in vitro maturation pregnancies, 352
Primary ovarian insufficiency (POI), 257
Primordial follicles
development of, 105, 106/
formation of, 38
Primordial germ cells (PGCs), 37
Progesterone, 107, 109, 262
Progestrone receptors, 302
Progestogens, 109–110
Progestogens, 11
17α-hydroxyprogrenolone, 13
17α-hydroxyprogesterone, 13
pregnenolone, 12
progesterone, 12
Prolactin, 4, 112
Pronuclei (PN), 77
Propofol (Diprivan), 331
Prostaglandin E2 (PGE2), 273
Protein kinase A (PKA), 9, 61
Protein kinase C (PKC) pathway, 68
Proteins, 340–341
Pulmonary embolism, 197
Pyrurate, 339
R
Radiotherapy, 261, 262, 264
Randomized controlled trials (RCTs), 196
Reactive oxygen species (ROS), 340
Recombinant FSH (r-FSH), 131
Recombinant LH (r-LH), 131
Recurrent implantation failure, genetic aspect of, 297
embryonic genetic factors, 297
age related chromosomal aneuploidies, 297–299
parental chromosomal anomalies, 299
sperm DNA damage, 299–300
endometrial genetic factors, 300
comparative studies on gene expression profiles, 300–302
Genetic polymorphisms, 300
transcriptome pattern and endometrium receptivity, 302–303
Reductases, 19
5α-Reductases, 22–23
Δ4-3 Reductases, 22
Renin, 113, 187
Rescue IVM and IVF with early aspiration rescue, 324–325
Resource-poor countries, 285
Resting follicles, 38
S
S-adenosylmethionine (SAM), 81
Selective estrogen receptor modulator (SERMs), 196
Severe OHSS. See Ovarian hyperstimulation syndrome (OHSS)
Short agonist protocol, 133
Simplified infertility treatment, 285
Simplified IVF laboratory procedures, 285
Single embryo transfer (SET), 197, 214
SLC2A4, 80
Small-for-gestational-age (SGA) babies, 351
Society for Assisted Reproduction Technology (SART), 199
Clinical Outcome Reporting System (SART-CORS) database, 96
Sodium pyruvate, 339
Sperm chromatin structure assay (SCSA), 300
Sperm DNA damage, 299–300
Sphingosine 1-phosphate (S1P), 61
Sphingosylphosphorylcholine (SPC), 61
Spontaneous LH-surge, 95, 98, 99, 102
versus hCG triggering, 159–160
StAR-related lipid transfer (START) domain proteins, 16–17
Steroid hormones, 3, 10, 107–108
aromatase, 17–18
cholesterol side-chain cleavage enzyme, 17
21-hydroxylase, 18–19
17β-hydroxylase/17,20-lyase, 17
11β-hydroxylases, 18
3α- and 20α-hydroxysteroid dehydrogenase activities, 22
3β-hydroxysteroid dehydrogenase/Δ5-4 isomerases, 19–20
11β-hydroxysteroid dehydrogenases, 20–21
17β-hydroxysteroid dehydrogenases, 21–22
hydroxysteroid dehydrogenases and reductases, 19
key molecules in biosynthesis and catabolism of, 15–16/
5α-reductases, 22–23
Δ4-3 reductases, 22
sex steroid hormones, 11
androgens, 13–14
estrogens, 14–15
progesterones, 11–13
START domain proteins, 16–17
steroidogenic acute regulatory protein
(StAR/StARD1; encoded STARD1), 15–16
steroid sulfatase, 23
sulfotransferases, 23
UDP-glucuronosyl transferases, 23
Steroid sulfatase, 23
Steroidogenic acute regulatory protein, 15–16
Steroids, 342
Subfertility, 216
Sulfotransferases, 23
Supernumerary oocytes, 275
Superoxide dismutase (SOD), 82
Systemic hormones, 112
cortisol, 112–113
insulin, 112
renin, 113

T
Tamoxifen, 196, 203
Testosterone, 13, 110
Thawing cycles, 243
The Walking Egg (TWE). See also Walking Egg
non-profit organization
application to become, 290
simplified IVF procedure method, 291–293
Transcriptome pattern and endometrium receptivity,
302–303
Transforming growth factor beta (TGFβ), 23, 342
Transvaginal ultrasound, 212
Tumor necrosis factor-related apoptosis inducing ligand
(TRAIL), 45
Two-cell theory, 10, 10f
Two-cell, two-Gn model, 108, 109f
Type-3 phosphodiesterase (PDE3), 342
Tyrosine-kinase EGF receptor, 67
U
UDP-glucuronosyl transferases, 23
V
Vascular endothelial growth factor (VEGF), 175, 179,
185, 187, 318, 322t
Vitamins, 340
Vitrification, 275
Voltaren, 230
W
Walking Egg non-profit organization, 282
research and innovation, 283
medical, 284
non-medical, 284
Whole genome amplification (WGA), 299
Window of implantation (WOI), 302
World Health Organization (WHO), 283, 290
X
Xenopus, 342
Z
Zuclomiphen(e), 99, 228, 237, 238