Index

A
Abyssal circulation, 348
Acidification Potential (AP), 404
Acoustic Positioning System (APOS), 340
Activation Laboratories (Actlabs), 88
Advangeo® prediction software, 191
Afanasiy-Nikitin Seamount (ANS), 134
Agricultural application, 352
avocados, 427–429
biogas operation, 426
citron, 429, 430
coffee seedlings, 429
components, 432
controls and tailings pots, 427
factors, 426
growth factor, 428
growth ratios, tested plant species, 432
hibiscus, 429, 430
Koa trees, 431
macronutrients, 426
manganese, 432
manganese tailings, 433
metals absorption, 427
mining rate, 432
night jasmine, 431
nutrient elements, 426
papaya, 430
pH levels, 426
red ginger, 428
requirements, 426
semicommercial species, 428
soil mix, 426
species, 427
tailings, 426, 432
tape and calipers, 427
Air conditioning systems, 351–352
Ammoniacal leaching process, 379
Angria Bank Test site, 338, 339
Areas beyond national jurisdiction (ABNJ), 445, 446, 454, 465, 509, 518–520
Areas of particular environmental interest (APEI), 456, 457
Artificial neural network (ANN), 190, 191, 194–195, 207
Authigenic and diagenetic phosphorites, 168
Authigenic phosphorite, 180, 183
Autonomous operating vehicles, 160
B
Back-propagation-of-error approach, 195
Basalt-hosted deposits, 149
Bathymetric data, 151
Bathymetry, 170, 191, 193
Benguela Current Commission (BCC), 521
Benthic impact experiments (BIEs), 292–294
sediment properties and outcomes, 490
disturber, 489
commercial mining, 489, 492
deep-sea sediment layer, 491
DISCOL experiment, 489
weight and volume of sediment discharge, 491
Bhabha Atomic Research Centre (BARC), 377
Bimodal grain-size frequency, 175
Biodiversity beyond national jurisdiction (BBNJ), 454
Birnessite, 73
Bottom-lying polymetallic nodules, 315
C Calcite compensation depth (CCD), 77
Carbonate compensation depth (CCD), 48, 49
Carbonate plankton relics, 80
Carbonate-fluorapatite (CFA) deposition, 101
Central Pacific ferromanganese crust compositions, 92–93
Chatham Rise phosphorite, 168–178
Chatham Rise project, 182
Chatham Rise Rock Phosphate Limited (CRP), 176, 178
Chronostratigraphy, 82
Closed-Circuit Televisions (CCTVs), 333
Closed-cycle ocean thermal energy conversion (CC-OTEC), 351, 352
Coatings, 437–438
Cobalt-rich ferromanganese crust (CRC), 466
Atlantic and Indian Oceans, 68
CRC, 92
crust mining, 66
deposits, 66
diagenetic processes, 71
element correlations and variations, 122
epigenetic influence, 84
Fe-content, 93
fine-grained drilling samples, 101
geochemical and mineralogical bonding, 66
geochemical feature, 99
geochemical pore water environment, 84
growth generations, 73
hydrated cations, 77
hydrated oxide layers, 65
hydrogenetic growth, 77
hydrogenetic process, 71
inferred resources, 126
internal microtexture, 71
intraoceanic flow system, 71
LA-ICP-MS data, 124
LA-ICP-MS results, 101
land-based reserves, 131
metal-rich crusts, 68
metals, 90, 129
microbial mediations, 77
microcrystals, 84
microscopical studies, 82
mineralogy, 73
Niob and Gallium, 104–105
Northwest and Central Pacific Ocean, 136
O₂-minimum zone, 71
oxidic mineral resources, 66
oxygen-minimum zone, 83
Pt concentration, 99, 102
seafloor image, 68
SEM image, 78
vernadite-phase, 73
Cobalt-rich manganese crusts, 259, 260, 275, 277, 293
Cobalt-rich manganese nodules, 34
Coccolithophorides, 78
Coccoliths, 78
Coefficient of variation (CoV), 190, 216
Co-free diluting mineral compounds, 94
Colloidal-chemical model, 75
Concrete application, 433–435
Construction fill application, 435–436
Convention on Biological Diversity (CBD), 517
Convention on the Law of the Sea, 510
Conventional geostatistical methods, 190
Cook Islands Exclusive Economic Zone, 55
Cradle-to-Gate Environmental Burdens
metal production and GHG emissions, 405–406
several metals, 406–407
Cross validation curve, 201
Cumulative energy demand (CED), 404
Cumulative mean slope angle curve, 125
Cuprion process, 368, 369, 381
Cut-off value, 202

D Data Acquisition and Control System (DACS), 324, 325, 333–335
Data-driven approaches, 194
Data-video telemetry system, 336
Deep Ocean Mining Environment Study (DOMES), 16, 292, 449, 487
Deep Ocean Resources Development Co., Ltd. (DORD), 468
Deep ocean water (DOW), 355–357
allergic dermatitis, 353
applications, 351–353
consumable capacity, 349–351
float concept, 353–354
function and multiple systems
material input, 355
means and apparatus, 356
operations, 357
production output, 355–356
nutrient concentration, 348
price cost and profit estimation, 359, 360
resource productions, 345
Index

thermohaline circulation, 346
three-dimensional capacity, 346
viable bacterial count, 348–350
water temperature, 347–348
Deep sea bed ferromanganese nodules, 396
Deep Sea Drilling Project (DSDP), 144
Deep Sea Ventures (DSV), 370, 410
Deep seabed mining ecosystem-based management
academics and non-academics, 524
antarctic waters, 513
building with nature, 514
Convention of Biological Diversity Aichi Target, 516
Convention on Biodiversity, 513
deep-sea environments, 507
ecosystem approach, 511–513
forward-thinking international impetus, 508–511
global ocean governance, 523
good environmental status, 515
and governance, 514–515, 523
indispensable pillars, 516
inter-institutional process, 517–519
International Seabed Authority, 513
international waters, 515
IUCN, 513
knowledge and expertise, 521–522
large marine-protected areas, 519–520
marine-protected areas, 524
MSFD, 515
in North East Atlantic, 513
ocean literacy, 522–523
optimistic, 508
polymetallic nodules, 507
pro-active policy, 508
regional approach, 520–521
Sustainable Development Goal, 523
UN Convention on the Law of the Sea, 513
UNCLOS, 523
Deep South Pacific Ocean (DISCOL), 292, 293
Deep-sea mineral, 484
Deep-sea mineral resource development, 465–467
Deep-sea mining, 489–492
activities, 485
area of, 11–12
at-sea processing, 493
BIEs (see Benthic impact experiments (BIEs))
collector device, 492
components, 496
contractors, 503
deep ocean mining environment study, 487
depsea minerals, 483
DISCOL by Germany, 487–488
economic issues, 8–11
EMP, 502, 503
environmental effects, 484–487
environmental impact, 485
environmental management plan, 493–494, 503
environmental monitoring office, 501–502
growth-driven economy, 503
history, 3–5
human-induced hazards, 500–501
IMO, 495
impact of environment, 14
INDEX, 489
international conventions, 496
IOM-BIE Joint Organisation, 488
ISA, 495
Japan Deep-Sea Impact Experiment, 488
mine-site, 11–12
mining system development, 12–13
natural hazards, 501
NOAA-BIE, 488
pilot mining tests, 16
policy issues, 17
preservation reference zone, 499, 500
’safe’ mining system, 499
seafloor impacts, 485–486
surface discharge, 492–493
technology and waste management, 13–14
UNCLOS, 494
upper-water column impacts, 487
water column, 486–487, 503
WMO, 495
Deep-sea mining technologies, 321–341
acoustic positioning systems, 314–315
artificial nodules
acoustic positioning system, 337–338
at Angria bank, 338
Dynamic Positioning System, 336–337
in situ soil tester, 341
launching and retrieval system, 338–341
mining machine, 331–333
ship-side system, 333, 334
subsea artificial nodule laying system, 331
telemetry system, 335–336
underwater mining machine, 333
biological productivity, 306
CIOB, 308
flexible riser concept, 311, 318
frontier area, ocean engineering, 305
Deep-sea mining technologies (cont.)
HMS Challenger, 306
hydraulic devices, 314
India, 308
Indian mining site, 309
Institut für Konstruktion (IKS), 310
manganese nodule, 306, 307
NIOT, 310
PMN program, 308
polymetallic nodules, 306, 308, 309
present-day technology, 310–313
seabed with nodule collector, 317
seafloor massive sulfides, 307
seafloor nodules, 306
shallow waters
 artificial nodule laying system, 321
 artificial nodules development, 327–328
 control and operations, 328–329
electrical power distribution system, 324
hydraulic power pack, 322
mechanical systems, 322
sea trials at 520-m water depth, 329–331
servo valve pack, 322
software, 327
subsea system, 321
telemetry, 324–327
thrusters, 324
vane feeder, 323
subsystem studies, 314
testing facilities and indigenous deep-sea devices, 319–321
the United Nations Law of the Sea, 306
underwater crushing systems, 317–318
underwater mining system, 313
underwater nodule imaging system, 315–317
Deep-Sea Sediment Resuspension System (DSSRS), 488
Desalination processes, 353
Diagenetic phosphorite forms, 168
Diagenetic precipitation, 42
Direct Impact Experiment on Seamount (DIETS), 293
Direct/indirect land use change, 404
DISTurbance and Re-COLonisation (DISCOL) experiment, 487
Drilling Mud, 438
Drilling systems, 160
Dynamic Global Positioning system (DGPS), 336
Dynamic Position System (DPS), 313

E
East Pacific Rise (EPR), 144
Eco-efficiency, 403
Ecologically or Biologically Significant Areas (EBSAs), 454–456, 517, 518
Electrodialysis, 353
Electron microprobe analyses (EMP), 35
Environmental Aspects Identification (ENVID), 453
Environmental impact assessments, 182, 445–448, 457–458, 467–470, 493, 494
benthic organisms, 450–451
BIE-type experiences, 449
deep-sea mineral resources, 459
ABNJ, 445
current technical progress, 448
effective taxonomic technologies, 458
evaluation method, 457
international trends, 458
JAMSTEC, 457
JOGMEC, 457
practical environmental monitoring system, 458
ocean governance in CBD, 454–455
in United Nations, 454
Environmental Management, 402–405
Environmental Management Office (EMO), 501, 502
Environmental Management Plan (EMP), 493, 494
Eutrophication Potential (EP), 404
Exclusive Economic Zone (EEZ), 27, 136

F
Ferromanganese crust, 66, 88
deposits, 124–129
samples, 89, 99
Ferromanganese laminae, 73
Ferromanganese nodules, 34
Ferromanganese pavements, 69
Field Installable Terminal Assembly (FITA), 334
First-Generation Mine site (FGM), 223
Flow sheet impact analysis, 414–418
Forest-like chimney accumulations, 150
Fragile calcareous platelets, 80
French Research Institute for Exploitation of the Sea (IFREMER), 447, 458
Freshwater production, 353

G
Garson’s algorithm, 201
Gaussian probability distribution, 266
Geodiversity, 148
Geological sampling tools, 160
Geostatistics (Kriging), 196
Geotechnical characteristics, 264–289
BIEs, 292–293
dee-sea minerals
abrasion of nodules, 287–288
crusts and substrates, 275–278
depths of sub-sampling, 280
drag, 281–285
dynamic characteristics, 268–272
in situ measurement, 272
manganese nodules, 264–266
powderization of sediments, 288–289
resources, 293
seafloor massive sulfides, 272–275
seafloor plume, 285–287
sediment sampling, 266, 278–279
separating force, 285
size distribution, 279
static characteristics, 266–268
dee-sea mining system, 289–292
design of mining system, 260–263
environmental impact studies, 292–293
manganese nodules, 259
seafloor massive sulfides and cobalt-rich manganese crusts, 259
GH81-4 Cruise, 265
Glacial periods, 173
Global Environment Facility (GEF), 521
Global warming potential (GWP), 404
Globigerina, 86
Good Environmental Status (GES), 515
Greenhouse gas (GHG) emissions, 399

H
HCl-MgCl2 leaching, 386
High precision acoustic positioning (HiPAP) system, 337
High pressure acid leaching process, 372, 373
High resolution geochemistry, 102
High voltage enclosure (HVE), 334
High-resolution geochemical (HRG) investigations, 102
High-resolution transmission electron microscopy (HRTEM), 24
Human resources, 472, 473
Hydraulic pick-up device, 262
Hydraulic power unit (HPU), 314, 324, 328
Hydro acoustic positioning system, 314
Hydrocarbon-related ferromanganese nodule, 34
Hydrogenetic accretion, 76–82
Hydrogenetic ore generation, 77
Hydrogenetic precipitation, 39–42, 77
Hydrometallurgical Process, 380
Hydrothermal minerals forming, 158
Hydrothermal Mn oxides, 29
Hydrothermal precipitates, 50–51, 155
Hydrothermal sulfide deposits, 155
Hydrothermal systems, 147, 159
Hyperbaric chamber, 315

I
ICP-MS method, 107
Identification, 471
Indian Deep-sea Environment Experiment (INDEX), 489
Indian Ocean, nodule characteristics, 235
Indian Ocean Nodule Field (IONF), 56
Industrial control process connect modules (ICPcon’s), 325
Integrated mining system (IMS), 313
International Convention for the Prevention of Pollution from Ships (MARPOL), 495, 500
International marine minerals society, 17
International Maritime Bureau (IMB), 501
International Network for Scientific Investigation of Deep-sea Ecosystems (INDEEP), 468
International Nickel Company (INCO) process, 370–372
International Seabed Authority (ISA), 17, 446, 452, 455, 457, 458, 495, 518
InterOceanMetal Joint Organization (IOM), 449
InterOceanMetal Joint Orgnisation, 4
ISA technical study, 214

J
Japan deep-sea impact ExperimenT (JET), 488
Japan Oil, Gas and Metals National Corporation (JOGMEC), 468
Japan’s R&D program, 293
JORC classification, 207

K
Kennecott Copper Corporation (KCC), 410
Kinorhyncha, 472
Knowledge-driven approaches, 194
Korea Institute of Geology and Mining (KIGAM), 377, 381–384
Korea Institute of Ocean Science and Technology (KIOST), 466

L
LabVIEW® real-time graphical programming software module, 327
LabVIEW™ software, 328
Land-based conventional production systems, 346
Large Marine Ecosystems (LMEs), 521
Large-diameter gravity corer (LC), 266, 278
Large-scale marine-protected areas (LSMPA), 519, 520
Laser ablation technique (LA-ICP-MS), 76
Launching and Retrieval System (LARS), 313, 329
Leave-one-out-cross-validation (LOOCV), 201
Life cycle chain (LCA), 403
Logging-while-drilling technique, 160
Low Voltage Enclosure (LVE), 334

M
Macroscopically visible transition zones, 89–90
Managing Impacts of Deep-sea Resource Exploitation (MIDAS), 467
Manganese (Mn) nodules, 202–205
backscatter, 193–194
bathymetry, 191–193
cross validation, 208
data processing, 196–198
data sources, 190
hydro-acoustic data, 189, 209
input layers, 198
mineral resources, 205, 207, 208
model development and calibration, 198
resource estimation
ANN model, 202–204
Kriging model, 204–205
spherical variogram model, 202
Manganese (polymetallic) nodules, Indian and Pacific Oceans

area of nodule field, 220–223
CCZ, 213
in CIOB, 214
in CIOB vs. CCZ, 219–220
data, 214–216
distribution characteristics, CIOB and CCZ, 226
estimation variance values, 224–225
metal grades, 226
nodule abundance, 217–219
nodule field, 227
var(ε)-area relationship, 222–223
variabilities, 216–217
variance computations, CIOB and CCZ, 223–225
Manganese nodule, 259, 260, 264, 265, 272, 287, 288, 293
Manganese recovery from residue, 412–413
Manganese recovery impact, 416–417
Manned submersibles, 161
Marine ferromanganese crust, 129
Marine material circulation, 349
Marine phosphorites, 166
Marine protected areas (MPA), 454
Marine spatial planning (MSP), 518
Marine Strategy Framework Directive (MSFD), 515
Marine-protected areas (MPAs), 518
Medical and health care, 353
Messenger RNA (mRNA), 478
Metagenomic analysis, 476–478
Metal Mining Agency of Japan (MMAJ), 488
Metallurgical processes for nodules, 368–373
cuprion process, 368–369
DSV process, 370
high pressure acid leaching process, 372–373
INCO process, 370–372
MHO process, 370
 Métallurgie Hoboken-Overpelt (MHO) Process, 370, 396
Metatranscriptomic analysis, 478
Micronutrients, 426
Mid-Atlantic ridge (MAR), 132, 145
Millennium Ecosystem Assessment (MEA), 511
Mineability, 128
Mineral resources, 205, 207
Mineralogical composition, 36–39
Miniature Autonomous Plume Recorders (MAPRs) instruments, 159
Mining concept, 181–182
Mining system, 260, 263
Ministry of Earth Sciences (MoES), 308, 312
Molecular biological approach, 473–478
Molybdenum, 96–97
Mottled texture, 73
Multibeam acoustic imagery (backscatter), 193, 194
Multi-Layer-Perceptron, 196
Multi-wire/chain catenary mooring system, 359
5 MW (gross) type DOW complex float, 357, 358

N
Namibia marine phosphate, 181
Namibia’s economy, 182
Nano-scale process, 82
National Institute of Ocean Technology (NIOT), 310–312, 315, 318, 319
National Institute of Oceanography (NIO), 309
National Oceanic and Atmospheric Administration (NOAA), 292, 293
Natural Energy Laboratory of Hawaii Authority (NELHA), 352
Nautilus minerals, 214
Neogene sedimentary evolution, 174
Network topology, 195
NH₃-SO₂ Process, 377–378
Ni, Cu, and Co recovery impact, 412, 417–418
Nitrification, 43
Nodule Alloy in Stainless Steel, 385
Nodules processing, 368–373
developments in metallurgical processing, 377–384
four metal recovery by aqueous reduction in acidic media, 373–374
metallurgical processing, 368
cuprion process, 368–369
DSV process, 370
high pressure acid leaching process, 372–373
INCO process, 370–372
MHO process, 370
R and D Efforts, 373–377
three metal recovery by aqueous reduction in ammoniacal medium, 374–377
North Atlantic Deep Water (NADW), 349

O
Ocean-literate, 522
Ocean Management Incorporated/Inco Group, 446
Ocean Minerals Company/Lockheed Group, 446
Ocean Mining Associates (OMA), 16, 446, 487
Ocean mining Inc. (OMI), 16
Ocean thermal energy conversion (OTEC), 351
Oceanographic setting, 171, 172
On-board drilling system, 160
Onshore and offshore phosphorites, 183
Open-cycle system (OC-OTEC), 351
Operational taxonomic units (OTU), 477
OSPAR commission, 520
OSPAR regional convention, 513
Oxic bottom water, 166
Oxygen-minimum zone (OMZ), 76
Ozone Depletion Potential (ODP), 404
Pacific Ocean, nodule characteristics, 234
Palladium, 97–104
Particulate organic carbon (POC), 190
Partnerships in Environmental Management for the Seas of East Asia (PEMSEA), 521
Perm-Triassic basement, 168
Peru Basin, 55
Phosphatization, 83, 85, 88, 172
Phosphorite, 165–168
Phosphorite nodules, 177
Phosphorite-bearing sediments, 183
Phosphorite-rich segment, 183
Photochemical Ozone Creation Potential (POCP), 404
Phyllomanganates, 36, 38
Planktonic carbonate particles, 82
Platinum, 97–104
Polymetallic manganese nodules
backscatter electron, 39
bacteria, 50
birnessite, 36
chemical composition, 29
deep-sea sediment, 24
diagenetic nodules, 29
diagenetic precipitation, 42
dry bulk density, 28
ferromanganese precipitates, 57
global occurrence, 52
growth structures, 27
hexagonal phyllomanganate, 50
hydrogenetic and diagenetic growth, 25
hydrogenetic layers, 28
hydrogenetic or diagenetic layer, 27
hydrogenetic precipitation, 39
hydrothermal fluids, 50
marine environment, 42
micro-layers, 25
mineralogical analysis, 37
Polymetallic manganese nodules (cont.)
mineralogical composition, 56
Mn flux rates, 44
Mn/Fe ratios, 46
sizes and shapes, 26
Polymetallic Nodules (PMN)on deep-sea
mining, 244–247, 308
area of contact/year, 241
at distribution characteristics, 230
depletion, 253
different substrates, 237–239,
248–249
dry and wet nodules, 243–244
environmental impact, 250–251
estimation
area (size) of mine-site, 245
area of contact, 245
metallurgical processing, 247
mineable area, 244–245
ore production, 245–247
volume and weight of disturbed
sediment, 247
metal production, 240, 244
metal value, 241
mining rate (dry/wet), 240, 252
nodule abundance, 232–233, 236–237
nodule characteristics, 233–240, 248
nodule coverage, 236
nodule size, 233–236
optimization, 249
ore production and area of mine-site, 242,
249–250
rock exposures, 238–239
rocks/crust outcrops in nodule fields, 252
seafloor and camera lens
angle, 231
seafloor photography, 231
sediment cover, 238
size/area of mine-site, 241
topographic settings, 239–240
topography, 249
total mineable area, 241
volume of sediment at seafloor, 242
waste disposal, 250–251
water laden sediment, 242
in world market, 229
Wt. of disturbed sediment, 242
Wt. of unwanted material, 242
Production support vessels (PSV), 448
Programmatic Environmental Impact Study
(PEIS), 449
Pseudomonas putida, 50
Pyrohydrometallurgical process, 379, 381

R
Rare earth element and yttrium contents
(REY), 34
Rare earth elements (REEs), 107
bivariate correlations, 120
carbonate complexes, 109
CCD and ACD, 114
comparative data set, 110
comparative distribution patterns, 111
concentrations, 108, 110
descriptive statistics, 115
distribution, 111
exponential regression curves, 115
Mn- and the Fe-group system, 115
names and chemical symbols, 109
patterns, 110
Recycle rates, 408–409
Regional Fisheries Management organizations
(RFMOs), 521, 523
Relative prediction error (RPE), 204
Remote Operating Vehicles (ROV), 160
Resin Casting-Solid Surface, 436
Reverse osmosis (RO), 353
Ribosomal RNA (rRNA), 474
Rising and Lifting System (RALS), 448
Root mean squared error (RMSE), 198
Rubber, 437

S
SAEC-cFP network, 326
Safety of Life at Sea (SOLAS), 495, 500
Sandpiper prospect, 181
Scripps Oceanographic Institute, 145
Sea nodules processing, 396
observations on efforts, 409–414
and sustainability issues, 409
Seabed system, 160
Seafloor massive sulfide (SMS), 259, 260,
262, 272, 275–277, 291, 293,
466, 508
age, 156
basaltic hosted hydrothermal fields, 153
discovery and study, 144
distribution of hydrothermal systems, 146
high-temperature, 144
hydrothermal vents, 143, 145
mid-ocean ridges, 147
minerals forming, 155
MOR system, 147
morphology, 150
recycling model, 158
VMS, 143
Seafloor Production Tools (SPTs), 448
Seamounts and guyots, 124
Seas minerals, 366
Sierra Leone Rise (SLR), 133
Slow-spreading ridges, 149
Smelting of Sea Nodules, 413
Soil temperature control, 352
SONAR image, 329
Species identification, 474–476
Stand-Alone Embedded Controller (SAEC), 325, 327
Strategic Innovation Promotion Program (SIP), 468
Submarine phosphorites, 167
Subsea Slurry Lift Pump (SSLP), 448
Subsidiary Bodies for Scientific, Technical and Technological Advice (SBSTTA), 452, 456
Subtropical convergence, 171, 172
Sulphide-oxidizing bacteria, 168
Super Short Baseline (SSBL) mode, 337, 338
Sustainability, 397–398
 factors affecting, 398
 and process development, 398–402
Sustainable development
 applications, 439
 environmental constraints, 423
 manganese nodule or crust, 424, 425
 manganese tailings, 424
 natural drainage system, 424
 natural systems, 424
 ocean mining industry, 423
 physical and chemical properties, 425
 seafloor polymetallic sulfides, 425
 tailings disposal, 424
 tailings management, 424
 tonnage applications, 425
Switch Mode Power Supply (SMPS), 334
Terrestrial sulfide Ni-Cu ores, 306
Tiles, 436–437
Tonga Offshore Mining Ltd. (TOML), 446
Trans-Atlantic Geotraverse project, 145
Tungsten, 96–97

U
UN Convention on the Law of the Sea (UNCLOS), 446, 454, 494, 509, 519
Underwater mining machine, 332
UN General Assembly (UNGA), 509, 520
The United Nations Informal Consultative Process on Ocean Affairs and the Law of the Sea (UNICPOLOS), 454, 457
The US National Oceanic and Atmospheric Administration (NOAA), 521
Upscaled Flow Sheet, 411–413
Urban mining, 399

V
Varimax factor analysis, 122
Volcanic arc systems, 146
Volcanogenic massive sulfide (VMS) deposits, 143

W
Water temperature, 347
Weibull probability distribution, 265
World Meteorological Organization (WMO), 495
World population, 346

X
X-ray diffraction pattern, 38

Y
Younger crust generation, 83