Index

A

Abrasive water jet machining (AWJM)
- abrasive types, 68
- advanced/modern machining, 68
- cutting effectiveness, 68
- in industrial production, 69
- operating cost, 68–69
- working principle, 68

Advanced cutting process monitoring machine, 4

Aerosol
- of cutting fluid, 35
- MQL, 58
- MWF, 33
- in NDM, 12–16

AISI 304, 37
AISI 1040, 38, 40
AISI 1060, 37
AISI 4140, 36, 38–40
AISI 4340, 48–50, 56–58, 61, 63, 64
AISI 52100, 38
AISI 316L, 37

Analysis of variance (ANOVA), 38–39, 48, 51, 59

AWJM. See Abrasive water jet machining (AWJM)

B

Biodegradable cutting fluids. See Vegetable-based cutting fluids

Built-up edge (BUE), 32

C

Chemical vapor deposition diamond (CVD), 4
Cocamidopropylbetaine (CAPB), 40, 42
Cryogenic medium, 57
Cryo-tank process, 71–72
Cutting fluids
- aerosol concentration, 33
- application, 32
- bacterial genus, 33
- hazardous compounds, 33

in MQL
- advantages, 34–35
- application, 34
- concept, 34, 43
- cutting temperature, 35–36
- efficacy of, 35, 36
- flow rate, 34, 35
- grinding performance, 35
- neat oils/synthetic fluids application, 35
- supply directions, 35
- toxicity, 33
- vegetable-based, 43

Cutting tool, 9–10, 31
- cost, 11
- improvement in, 3–4
- for NDM, 18–19
- temperature, 38

Cylindrical grooving
- on AISI 4340, 48
- experimental results
 - for specific energy, 49–50
 - total energy consumed, 49–50
- input parameters, 48–49
- optimization
 - example, 56
 - by fuzzy modeling, 52–56
Index

output parameters, 49

D
Defuzzification, 55–56
Die casting, 20
Downstream abrasive blasting process, 71–72
Dry ice blasting, 69, 76
Dry ice jet technique, 74, 76
Dry machining, 11–12

F
Finite-element-based fluid dynamics analysis (FIDAP) software, 74
Finite element method (FEM), 6–8
Flank wear, 38, 48–52, 54, 56, 58–61, 63, 64
Friction heat, 31, 32
Defuzzification, 55
Fuzzy CLIPS, 55
Fuzzy modeling, 52–56, 60–64

G
Global Reporting Initiative (GRI), 25
Grinding, 4, 35, 41

H
Heat generation, 31–32
High-penetration drilling system, 23–25

I
Ice-air blasting, 69, 76
Ice jet machining technology
applications, 69, 76
benefits, 74, 76
capabilities, 73
development of, 76
ice water slurry jet machining, 69–71
mechanism, 72–73
past work on, 74–76
performance characteristics, 69
schematic representation of, 70–71
types, 69
WIB, 71–72
working principle, 69–72
Ice water jet technique, 74, 76
Ice water slurry jet machining, 69–71, 76
Industrial machining operation
cutting fluids (see Cutting fluids)
heat generation, 31–32
material removal process, 31
International Agency for Research on Cancer (IARC), 33
International Union for Conservation of Nature (IUCN), 2

J
Jet of liquid nitrogen (LN2), 57
Joule–Thomson effect, 58

L
Life cycle assessment (LCA), 25

M
Machining operation, sustainability assessment improvements, 3–4
machining system component of, 9
performance, 9–10
schematic representation, 9
manufacturing companies, 3
MWF
costs, 11
dry machining, 11–12
MWFSAC guidelines, 10
near-dry machining (see Near-dry machining (NDM))
reduced/eliminating, 10
near-net-shape blanks
cored holes, 20–25
volume reduction of work material, 19–20
profit, 3
virtual machining
FEM model of metal cutting, 6–8
master program, 5
tool management program, 5
Machining processes
characteristics, 47
cryogenic and hybrid cooling methods
experimental results, 59–60
experimental work, 57–59
optimization process, 60–64
cylindrical grooving
on AISI 4340, 48
experimental results, 49–51
input parameters, 48–49
optimization, 52–56
output parameters, 49
Machining system
component of, 9
performance, 9–10
schematic representation, 9
MasterCAM software, 5, 6
Material removal process, 31
Metalworking Fluid Standards Advisory Committee (MWFSAC), 10
Metalworking fluids (MWF). See also Cutting fluids
high-pressure tool, 3–4
parameters, 10
sustainability of machining operation
 costs, 11
dry machining, 11–12
MWFSAC guidelines, 10
near-dry machining (see Near-dry machining (NDM))
reduced/eliminating, 10
Minimum quantity lubrication (MQL), 33
 cutting fluids
 advantages, 34–35
 application, 34
 concept, 34, 43
 cutting temperature, 35–36
 efficacy of, 35, 36
 flow rate, 34, 35
 grinding performance, 35
 neat oils/synthetic fluids application, 35
 supply directions, 35
 cutting of AISI 4340, 57
 sustainability of machining operation (see Near-dry machining (NDM))

N
Nanoparticles, 36, 40, 43
National Institute for Occupational Safety and Health (NIOSH), 33
Near-dry machining (NDM). See also Minimum quantity lubrication (MQL)
 blank designs for, 17
 cutting tools for, 18–19
 image of, 13
 implementation practice, 13
 machines, 17–18
 NDM 1.1 principles, 14
 NDM 2.1
 advantages, 15
 aerosol preparation, 15, 16
 direction control valve, 15, 16
 spindle rotation, 15–17
 sales presentation, 13
 Spra-Kool Midget unit, 14–15
Near-net-shape blanks
cored holes
 die casting, 20
 drilling process, 21–25
 problems in, 20–21
 volume reduction of work material, 19–20
New Jersey Institute of Technology, 69
Nickel–chromium–molybdenum steel, 48

O
Occupational Safety and Health Administration (OSHA), 10

P
Peening/jetting of ice particles, 73
Plastic deformation, 31
Polycrystalline cubic boron nitride (PCBN), 4
Polycrystalline diamond (PCD), 4
Pseudomonas, 33

S
Sesame oil, 38, 40
Sodium petroleum sulfonate (SPS), 32
Soy-based cutting fluid, 38–40
Spra-Kool Midget unit, 14–15
Sustainability
 definition, 1–2
 of machining operation
 improvements, 3–4
 machining system, 9–10
 manufacturing companies, 3
 MWF, 10–19
 near-net-shape blanks, 19–25
 profit, 3
 virtual machining, 5–8
metrics
 GRI model, 25
 index, 26
 LCA, 25
 manufacturing industry characteristics, 26
 rating system, 26–27
 purpose of, 2
 three dimensions, 2
Sustainability index, 26
Sustainability rating system, 26–27

T
Thermal damage, 32
3 Es (economic development, social equity, and environment), 2
Ti–6Al–4V titanium alloy
 vs. AISI 4340, 58
 experimental results, 64
 fuzzy model-based optimization system, 61, 63
heat-treatable alloy, 57
Tool Management Solutions (TMS), 5
Tool wear, 35–40, 56, 59, 74
 t-test, 38–39
Two-channel system, 18

V
Vegetable-based cutting fluids, 43
 ANOVA and Student t-test in AISI 4140, 38–39
 canola oil, 38
CAPB, 40, 42–43
jatropha oil, 38
karanja and neem oil, 37–38
vs. mineral oils, 37–38
palm oil, 37
sesame and coconut oil, 38
soy-based cutting fluid, 38
sunflower-based fluid, 37, 38
vegetable oils
 AISI 4340 steel under, 37
 approaches, 37
 -based MQL, 40–41
biodegradable, 36
lubrication, 36
microadditives/nanoadditives, 40
neat oils and water miscible oils, 37
properties of, 36–37
Virtual machining, 5–8

W
Water miscible oils, 32
Wet-ice blasting (WIB), 69, 71–72
Wider use of high-precision tool holders, 4