### Symbols

- 1T cell, 265
- 3D Xpoint memory, 302
- 3D stacked silicon, 104
- 3 T cell, 316
- 6-σ design, 260

### A

- ABB, 388
- ABCD process, 245
- abstraction level, 330
- accelerating voltage, 121
- acceptor, 8
- access time, 252, 257
- accumulation
  - ~ capacitor, 9
  - ~ layer, 31
  - ~ process, 9
- ACTIVE
  - ~ mask, 128
  - ~ mask programmed ROM cell, 282
- active area, 131, 205
- activity
  - ~ factor, 384
  - ~ reduction, 409
- adaptive
  - ~ body bias, 388
  - ~ skew control, 440
  - ~ voltage scaling, 388, 400
- address buffer, 255
- Advanced OCV, 467
- AE, 286
- AID PSM, 104
- air gaps, 154, 390
- Al cap, 534
- ALD, 99, 114, 268, 546
- ALEt, 119
- algorithmic level, 329
- alignment markers, 84, 141
- allocation, 342
- alpha particles, 454
- α-particle radiation, 281
- alternating phase-shift mask, 91
- altPSM, 91
- aluminium, 4, 577
- aluminium cap, 534
- aluminium-gate process, 131
- amorphous silicon, 129
- AND
  - ~ function, 171
  - ~ matrix, 358
- anisotropic etch, 117, 473
- annealing, 80
  - ~ process, 121
- antenna effect, 119, 126, 487
- Anti-Irradiation Damage PSM, 104
- anti-punch-through, 469
  - ~ implant, 136
- Anti-Reflective Coating, 138
- AOCV, 467
- APCVD, 113
- application-specific
  - ~ IC, 238
  - ~ integrated circuit, 321
  - ~ standard product, 322, 323
- APS, 232
- APT, 469
- APT
  - ~ implant, 136
- ARC, 138
- area efficiency, 286
- ASIC, 238, 321, 352
  - ~ turn-around time, 322, 324
- aspect ratio, 163, 175
- assist circuits, 264
- associative memory, 253
- ASSP, 322, 323
asynchronous
~ circuits, 414
  ~ design, 414, 415
ATE, 499
Atom, xxv
atomic layer
  ~ deposition, 114, 268
  ~ etching, 119
ATPG, 502, 510
Attenuated Phase Shift Mask, 90
Automatic Test Equipment, 499
automatic test pattern generator, 502
AVS, 388, 400
AVr, 465

B
back-bias, 386
  ~ controlled Vr, 386
  ~ effect, 21, 174, 387
back-end design, 344
back-gate effect, 21, 22
backscattered electrons, 563
ball grid array, 531
basic
  ~ CMOS process, 131
  ~ Complementary MOS process, 131
  ~ MOS technologies, 128
  ~ silicon-gate nMOS process, 128
bath tub curve, 541
battery, 382
  ~ RAM, 304
  ~ energy, 382
  ~ memory effect, 383
BCCD, 227
  ~ surface-state immunity, 230
BCD
  ~ counter, 413
  ~ process, 244
behavioural simulation, 344
BEOL, 139
best-case corner, 260
BGA, 531
BICMOS
  ~ NAND gate, 237
  ~ characteristics, 235
  ~ circuit performance, 237
  ~ digital circuits, 233
  ~ performance, 238
  ~ technology, 233
bipolar
  ~ gain factor, 235
  ~ noise, 235
Bipolar-CMOS-DMOS process, 244
bird’s beak, 109
  ~ suppression, 109
BIST, 506
BISTAR, 507
bit line, 254
  ~ select, 254
bit-parallel operation, 335
bit-slice layout, 356
block, 361
βn, 178
BOA, 534
body
  ~ bias, 387
  ~ effect, 21, 79, 546
  ~ factor, 22
bond-over-active, 154, 534
bootstrap-capacitance, 167
bootstrapped load, 167
Boundary Scan Test, 509
BOX layer, 80
βp, 180
BPSG, 113
BRAM, 304
breakdown
  ~ mechanism, 545
  ~ voltage, 240
bridging faults, 505
BST, 268, 509
bubbles, 93
buffer circuits, 180
Built-in Self Test, 506
built-in self-test and repair, 507
bulk silicon, 75
buried well, 386, 457
buried-channel CCD, 227
buried-oxide layer, 80
burn-in test, 269
burst mode, 257
bus latency, 578
C
C4, 528
cache register, 291
CAD tools, 322
CAM, 249, 253
capacitances, 34
capacitor-under-bitline, 270
carrier mobility, 129
  ~ reduction, 47
Cascode Voltage Swing Logic, 200
CBRAM, 308
critical
~ delay, 436
~ dimension, 86, 95, 98
~ dimension uniformity, 98
~ module, 340
cross-over capacitance, 199
cross-talk, 199, 442
crystal
~ growth, 74
~ ingot, 76
crystal-oriented particles, 76
CSP, 521, 523, 534
CTF, 293
CTG, 296
CUB, 270
current density, 2, 116
current-controlled oscillator, 438
custom IC, 323
customer returns, 496
customisation, 322, 361
cut mask, 99
CVD, 112
CVSL, 200
CVSL logic gate, 200
cycle
~ stealing, 438
~ time, 252
Czochralski, 74, 77

D
D-type flip-flop, 193, 229, 363
damascene process flow, 114
damascene ~ back-end flow, 577
damascene ~ patterning, 139
dark current, 230
data
~ bus, 329
~ input buffer, 255
~ output buffer, 255
~ path, 332
~ retention time, 249, 288
database, 83, 488
DDR, 277
decision tree, 338
decoupling capacitor, 449
depth
~ n-well, 386, 486
~ ultra violet, 95
defect density, 514
delay fault, 501, 505
delay-locked loop, 441
\( \Delta I_{ddq} \) test, 505
deployment
~ layer, 9
~ layer thickness, 53
~ load, 168
~ process, 9
~ transistor, 28
deposition, 112, 567
depth of focus, 86, 89
design
~ documentation, 488
~ efficiency, 573
~ for anything, 519
~ for debug, 555, 569
~ for failure analysis, 569
~ for lithography, 94
~ for manufacturability, 205
~ for manufacturability, 153
~ for testability, 510
~ hierarchy, 488
~ organisation, 488
~ productivity, 308
~ resources, 573
~ rules, 205
~ style, 588
~ verification, 344
design productivity gap, 586
design rule manual, 204
design-rule-check program, 355
designing a CMOS inverter, 178
destructive read-out, 265, 305
DFL, 94
DFM, 153, 205, 344, 518
~ rules, 517
DFT, 510
DIX, 519
DIBL, 54, 62
dicing, 526
dielectric relaxation time, 31
Differential Split Level Logic, 200
diffusion, 120
~ coefficient, 120
digital
~ CMOS circuits, 187
~ ICs, 323
~ potentiometer, 346
direct slice writing, 323
direct-writing techniques, 106
discharge characteristic, 178
dishing, 126
dislocations, 76
disturbances in the production environment, 511
Index

DLL, 441
DMOS transistor, 239
DOF, 86, 89
DOMINO-CMOS, 195
donor, 8
dope profile, 121
Double Data Rate, 277
Double Pass-Transistor Logic, 406
double-diffused MOS transistor, 239
double-flavoured polysilicon, 112, 133, 176
double-gate transistor, 146
double-patterning techniques, 95
DPL, 406
DPT, 95
drain, 4
  ~ extension, 130, 137
  ~ series resistance, 474
Drain-Induced Barrier Lowering effect, 62
DRAM, 62, 251, 264
  ~ architectures, 272
  ~ crown capacitor, 270
  ~ pillar cell, 271
DRC, 355
DRC-rules, 517
drive
  ~ current, 49
  ~ strength, 216
driver transistor, 163
  ~ characteristic, 163
DRM, 204
DRO, 265, 305
DSL, 148, 200
DSW, 323
dual polysilicon, 133
dual-$V_T$ concept, 575
dual-damascene, 139
dual-dope polysilicon, 176
dual-edge triggered flip-flops, 419
dual-port memory, 280
dual-stress liner, 148
dummy
  ~ metal, 126
  ~ polysilicon, 214
DUV, 95
DVFS, 400, 402
dynamic
  ~ CMOS, 195
  ~ CMOS circuits, 195
  ~ CMOS latch, 197
  ~ CMOS shift register, 197
  ~ D-type flip-flop, 197
  ~ RAM, 251, 264
  ~ flip-flop, 197
  ~ memory, 251
~ power consumption, 384
~ power dissipation, 181
~ shift register cell, 197
~ voltage and frequency scaling, 400, 402
~ voltage drop, 448
E
  e-beam, 106
    ~ lithography, 103
e-sort, 497
  E/D technology, 168
  early failure rate, 542
  EBL, 103
  EBPG, 83
  ECC, 280, 292, 295, 457
  EDA, 346
  EDO, 275
  EDO DRAM, 276
eDRAM, 264
  EEPLD, 326
effective
  ~ channel length, 51
  ~ transistor channel length, 130
electric
  ~ field, 10
  ~ potential, 10
electrical endurance test, 542
  electromagnetic
    ~ compatibility, 453
    ~ pulse, 453
  electromigration, 116, 469
electron, xxv
    ~ mobility, 2, 175
    ~ valves, 1
electron-beam, 106
  Electron-Beam Pattern Generator, 83
electronic design automation, 346
electronic disks, 292
electrostatic
  ~ charge, 512
  ~ discharge, 480, 539
  ~ potential difference, 11
elevated S/D, 143
  embedded
    ~ FPGA, 588
    ~ SRAM, 262
    ~ arrays, 371
    ~ logic, 310
    ~ memory, 249, 309
    ~ software, 343
  embedded non-volatile memory, 311
  EMC, 453
  EMP, 453
emulation, 341, 344
endurance, 288, 296
energy
- characteristic, 288
energy-delay product, 392
enhancement transistor, 28
EOT, 111
epi layer, 76
epitaxial
- film, 112
- wafer, 76, 479
EPLD, 326
EPROM, 286
equivalence checking, 345
equivalent oxide thickness, 111
erosion, 126
error detection and correction codes, 295
equivalent oxide thickness code, 280
ESD, 79, 480, 539
eSRAM, 262
ET-SOI, 151
etching, 117
EUV, 101
exclusive OR, 190
EXOR gate, 190, 418, 421
Extended Data Out, 275
- DRAM, 276
externally-induced voltage alteration, 561
extreme data rate RDRAM, 279
Extreme-UV lithography, 101
Extremely-Thin SOI, 151

F
FA, 548
fab-lite, 156, 378
fabless, 156, 378
faceted S/D, 149
failure analysis, 548
Fast Page Mode, 275
- DRAM, 276
fat zero, 230
FD-SOI, 81
FeDRAM, 306
FeFET, 306
FeNAND, 306
FEOL, 139
Fermi level, 8
ferroelectric
- DRAM, 306

~ FET, 306
~ NAND, 306
~ RAM, 304
FIB, 567
field oxide isolation, 361
Field Programmable Device, 365
field-effect principle, 1
field-programmable device, 326
Field-Programmable Gate Array, 324
FIFO, 251, 252
fill factor, 232
filler cells, 372
fin aspect ratio, 219
FinFET, 147
FinFET layout, 218
FinFET SRAM, 264
firm cores, 325
first time right silicon, 429
first-silicon debug, 548
flash, 296
- memory, 289
flat-band
- condition, 11
- voltage, 11
flip-chip bonding, 528
flip-flop, 192
floating gate, 286
floor planning, 344, 350
Focused Ion Beam, 567
formal verification, 345
forward-bias effect, 24
FOUP mini environment, 512
four-transistor SRAM cell, 257
Fowler-Nordheim tunnelling, 288
FPGA, 324, 365, 588
FPM, 275
FPM DRAM, 276
FRAM, 304
full adder, 171, 336
full-CMOS SRAM cell, 258
full-custom IC, 323
full-featured EEPROM, 287
fully-regular library, 95
fully-silicidied, 112
functional level, 333
FUSI, 112
- gate, 141

G
GAA FinFET, 152
gain factor, 45
Gajski-Kuhn Chart, 328
GALS, 446, 578
Index

gate, 4
  ~ array, 361
  ~ delay, 501
  ~ depletion, 112, 141, 575
  ~ forest, 361
  ~ inversion, 141
  ~ oxidation, 128
  ~ oxide, 109
  ~ oxide tunnelling, 575
gate-all-around transistor, 152
gate-drain overlap capacitance, 131
gate-first process, 143
gate-induced drain leakage, 65
gate-isolation technique, 363
gate-last process, 144
gate-oxide
  ~ leakage, 63
  ~ leakage current, 389
  ~ thickness, 110
gate-replacement process, 298
gate-source overlap capacitance, 131
gated clock, 420, 436
GDSII, 377
genral-purpose process, 111
gemetric layout
  ~ description language, 377
  ~ representation, 377
GIDL, 65
GLDL, 377
glitches, 418
global variations, 460
globally asynchronous and locally synchronous, 578
globally synchronous, locally asynchronous, 446
 glue logic, 331
 golden device, 505
graded-drain transistor, 472
Gray code counter, 413
ground bounce, 448
 guard ring, 479, 486

H
half pitch, 86
halo, 54
handcrafted layout, 355
handshake circuits, 417
hard cores, 325
hardware
  ~ accelerator, 344
  ~ description language, 324, 336
hardware/software codesign, 341
HCD, 475
HCL, 472
HDD, 137
HDGA, 361
HDL, 324, 336
HDP, 118
hemispherical grain, 267
hetero-epitaxy, 112
heterogeneous system, 331
  ~ on a chip, 438, 573
hierarchical
  ~ design approach, 374
  ~ layout, 374
high-density gate array, 361
  ~ layout, 195
High-Density Plasma, 118
high-energy cosmic particles, 454
high-level synthesis, 342, 343
high-performance process, 392
high-voltage CMOS, 241
Highly-Doped Drain, 137
hillocks, 469
HLS, 342, 343
hold-time violation, 435
hole mobility, 175
holes, 7
 homo-epitaxy, 112
homogeneous system, 332
hot carrier, 66
hot electron, 286
hot-carrier
  ~ degradation, 475
  ~ injection, 66, 137, 472
hot-electron effect, 289
HP process, 111, 392
HSG, 267
human-body model, 481
humidity
  ~ sensitivity, 542
  ~ test, 542
HV-CMOS, 241

I
IC, vii
  ~ characterisation, 511
  ~ customisation, 327
  ~ database, 83
  ~ design path, 329
  ~ design rule check, 83
  ~ early failure rate, 542
  ~ electrical check, 83
  ~ engineering, 511
  ~ floor plan, 340
  ~ functional check, 83
IC (cont.)
  ~ infant mortality, 542
  ~ intrinsic failure rate, 542
  ~ layout, 83, 329
  ~ lifetime, 116
  ~ package corrosion, 542
  ~ package robustness, 542
  ~ quality, 539
  ~ reliability, 541
  ~ reliability tests, 542
  ~ wearout, 542

$I_{ddq}$ testing, 503
ILD, 114, 153, 533, 576
image sensor, 231
immersion lithography, 92, 95
impact ionisation, 66, 471
implantation duration, 121
improved DRAM access time, 274
In-System Programmability, 365
inductance, 446
inert
  ~ gas, 542
  ~ liquid, 542
infant mortality, 542
ingot, 74
input protection, 79
integrated circuit, vi
Intellectual Property, 324, 343
inter-die variations, 460
inter-level dielectric, 114, 153, 533
interconnect sheet resistance, 577
interlevel metal, 576
intermediate focus point, 101
Internet of Things (IoT), 403
interstitial dope atoms, 121
interstitials, 76
intra-die variations, 460
intrinsic
  ~ failure rate, 542
  ~ silicon, 8
inverse narrow-width effect, 56
inversion layer, 14
inversion-layer transistor, 3
inverter, 162
  ~ DC behaviour, 163
  ~ chain, 184
INWE, 56
ion, xxvi
  ~ acceleration, 121
  ~ implantation, 120
  ~ implanter, 121
ionisation energy, 8
IP, 324, 343, 438
$IR$-drop, 434

islands of synchronicity, 446
isotropic, 117
ISP, 365
ISPP, 295
iterative multiplier, 334
ITRS, 573

J
joule heating, 471
junction spiking, 123

K
$K$-factor, 22, 23, 174
known-good-die, 538

L
LADA, 562
laser
  ~ dicing, 526
  ~ signal injection microscopy, 557
laser-assisted device alteration, 562
laser-beam, 106
Laser-Beam Pattern Generator, 83
laser-fusing, 313
laser-produced-plasma, 101
latch, 192
latch-up, 79, 235, 478, 539, 547
  ~ sensitivity, 539
  ~ thyristor, 539
lateral
  ~ diffusion, 130
  ~ electric field, 47
law for conservation of charge, 18, 32
layout
  ~ description, 440
  ~ implementation, 376
  ~ implementation form, 355
  ~ level, 330, 340
  ~ process, 204
LBPG, 83
LDD, 472
LDD transistor, 474
LDO, 401
leakage, 66
  ~ current, 62, 197, 386
  ~ power, 387
  ~ power consumption, 384
Lean Integration with Pass-Transistor, 407
LEAP, 407
LEF, 218
LELE, 95
LER, 98, 149, 460, 464
level shifter, 202, 401
library, 215
~ cell, 205
~ cell height, 216
LIFO, 252
light-emission microscopy, 554
light-induced voltage alteration, 562
lightly doped drain, 472
LIL, 218
line-edge roughness, 98, 149, 460, 464
linear region, 15, 16
lithium-air batteries, 383
litho-friendly design, 94, 214, 460
lithography, 83
LIVA, 562
load
~ elements, 162, 163
~ lines, 163
~ transistor, 165
loadless SRAM cell, 258
local interconnect layer, 218
Local Oxidation of Silicon, 109
local variations, 460
LOCOS, 128
~ oxide, 132
~ process, 109
logic simulation, 345
logic-gate level, 336
long-channel devices, 389
look-up table, 365, 366
LOP, 392
~ CMOS, 216
~ process, 111
low standby-power process, 392
low-dropout regulator, 401
low-end IC market, 321
low-energy cosmic neutrons, 454
low-operating power, 392
~ process, 111
low-power
~ CMOS, 381
~ library, 404
low-standby power process, 111
low-voltage design, 398
LPCVD, 113
LPP, 101
LSIM, 557
LSTP, 67
~ CMOS, 216
~ process, 111, 392
LUT, 365, 366
M
machine model, 482
macro, 361
~ cell, 323
magnetic tunnel junction, 306
Magneto-resistive RAM, 306
majority charge carrier, 9
Manhattan skyline effect, 375
mapping, 342
mask, 74
~ ROM, 282
mask-less lithography, 106
mask-programmable
~ ROM, 282, 359
~ gate array, 361
masks, 205
mass action law, 4
master cell, 361
matching, 465
~ coefficient, 465
~ of transistors, 575
maximum storage time, 230
MCM, 291, 537
mean free path, 154
meet-in-the-middle strategy, 375
mega cell, 323
memory
~ address, 251
~ array, 249
~ bank, 278
~ banks, 255
~ cell, 249
~ controller, 277
~ matrix, 249
~ word, 251
MEOL, 139
merged memory logic, 310
metal gate, 142
metal grain granularity, 463
METAL mask, 130
Metal-Oxide-Semiconductor (MOS) capacitor, 9
MGG, 463
micro defects, 76
microcode instruction, 359
microcontrol unit, 332
microprocessor core, 343
military specifications, 3
milling, 567
minority carrier, 15
mismatch, 460
MISR, 507, 544
mixed signal CMOS process, 243
ML2, 106
MLC, 291
MLL, 106
MLR, 105
MML, 310
mobility, 27, 45
module generator, 374
Molecule, xxvi
molybdenum, 4
~ gate, 131
monocrystalline silicon, 129
more than Moore, 539
MOS, 1
~ capacitance, 30, 33
~ formulae, 18
~ transistor, 5
~ transistor leakage mechanisms, 59
~ transistor weak inversion operating region, 60
MPGA, 361
MPU, 321
MPW, 105
MRAM, 306
MTCMOS, 389
MTJ, 306
MTP, 311
MUGFET, 150
multi-chip module, 537
multi-DUT probe cards, 498
multi-gate FET, 150
multi-layer reticle, 105
Multi-Level Cell, 291
multi-level flash memory, 291
multi-patterning, 96
multi-port memory, 280
multi-project wafers, 105
multi-time programmable memory, 311
Multiple Input Signature Register, 544
multiple threshold CMOS, 388
Murphy’s law, 79

N
n-channel MOS transistor, 26
n-tub CMOS process, 131
n-type silicon, 3
n-well CMOS process, 131, 162
NAND logic D-type flip-flop, 194
nano-imprint lithography, 103
nano-wire FET, 152
narrow-channel effect, 55, 56
NBTI, 475
near-field scanning optical microscopy, 561
Negative Bias Temperature Instability, 475
negative resist, 108
netlist, 322, 336, 349
Neutron, xxv
next-generation lithography, 102
NGL, 102
NIL, 103
nitrided gate oxide, 112
nMOS
~ inverter, 162
~ process, 128
~ transistor, 4, 173
~ transistor gain factor, 178
~ transistor threshold voltage, 174
nMOS-mostly, 195
~ circuit, 162
nMOST, 4
noise
~ immunity, 201
~ margin, 162, 186
non-overlapping, 194
~ clocks, 197
non-rechargeable batteries, 382
non-recurring engineering costs, 353
non-saturated enhancement load, 165
non-volatile
~ RAM, 304
~ memory, 249
normally-off transistor, 28
normally-on transistor, 28
NRE costs, 353
NSOM, 561
number representation, 410
NVRAM, 304

O
OAI, 89
OBIC, 562
OBIRCH, 561
OCV, 467
off-axis illumination, 89
on-chip variation, 467
one-time-programmable
~ EPROM, 287
~ memory, 286
ONO, 266
OPC, 93
optical proximity correction, 93
optical-beam
~ induced current, 562
~ induced resistive change, 561
OR-function, 171
OR-matrix, 358
Index

OTP, 286
~ EPROM, 287
OUM, 306
output
~ buffer, 203
~ conductance, 25
~ enable, 255
~ impedance, 21
~ protection, 79
overlay problem, 270
Ovonic Unified Memory, 306
oxidation, 107, 109
oxide spacer, 473
oxide-nitride-oxide, 266

P
p-channel MOS transistor, 26
P-CMOS, 216
p-type substrate, 4
P&R, 349
package-on-a-package, 538
packaging, 520
page, 275, 290
PAL, 359
parallel
~ connection of transistors, 171, 188
~ multiplier, 335
parallelism, 395
parametric
~ fault, 503
~ yield loss, 513
parasitic
~ MOS transistor, 28
~ capacitances, 79
~ extraction, 218
~ thyristor, 235
partial product, 334
pass transistor, 189
pass-gate logic, 405
pass-transistor logic, 190, 405
passivation layer, 130
path delay, 501
PCM, 306, 516
PD-SOI, 81
PDK, 346
PECVD, 113
pellicle, 84
PEM, 553, 554
penetration depth, 121
periodic system of elements, 7
Perovskite crystals, 305
phase shift mask, 86
Phase-Change Memory, 306
phase-locked loop, 438
phase-shift mask, 90
photolithography, 83
photon-emission microscopy, 553, 554
photoresist layer, 107
physical design aspects, 573
PICA, 556
picosecond imaging circuit analysis, 556
pinch-off
~ point, 17
~ region, 52
pinhole, 545
pinned photodiode, 233
pipelining, 395
PLA, 358, 359
place and route, 349, 375
placement and routing, 375
planar
~ DRAM cell, 266
~ IC technology, 29
~ silicon technology, 3
planarisation, 124
plasma, 113
~ etching, 118
platform ASIC, 373
PLD, 326, 365
PLL, 438
pMOS transistor, 173
~ gain factor, 180
~ threshold voltage, 174
pocket implants, 54
point defects, 76
Poisson’s law, 10
poly fuse, 313
POLY mask, 128
polycide process, 138
polycrystalline silicon, 73, 129
~ layer, 4
polygon pusher, 355
polymide layer, 281
polysilicon, 73, 129
~ gate, 130
~ interconnect, 130
PoP, 538
positive photoresist, 107
positive resist, 108
positively-charged ion, 7
potential first silicon problem, 543
power
~ binning, 402
~ dissipation, 180, 200
~ integrity, 450
~ reduction techniques, 385, 389, 393
power (cont.)
~ switch, 388
~ transistor, 239
power MOSFET, 227, 239
~ applications, 241
~ transistor, 239
power-delay product, 26, 391
power-down mode, 420
power-grid integrity, 450
PPD, 233
ppm, 497
PRAM, 306
pre-deposition, 120
primary battery cells, 382
probe card, 544
probing, 552
process
~ control module, 516
~ corner, 468
~ cross section, 214
~ parameter variation, 69
process design kit, 346
product term, 358
production tests, 496
programmable
~ array logic, 359
~ logic array, 358
~ logic device, 326
~ read-only memory, 285
Programmable Logic Devices, 365
PROM, 285
propagation
~ delay, 442, 444, 576, 578
~ time, 436
protection circuit, 202
Proton, xxv
prototyping, 363
proximity effects, 460
pseudo-nMOS
~ circuit, 178, 189
~ logic, 394
pseudo-static RAM, 251
PSM, 86, 90
punch-through, 54, 136, 469
PVT, 58, 70, 218

Q
quadruple patterning, 96

R
R-load SRAM cell, 257
race, 194
radiation hardness, 293
raised S/D, 143
RAM, 249, 253
Rambus DRAM, 275
Rambus™, 279
random
~ access, 251
~ dopant fluctuation, 150
~ dopant fluctuations, 462
~ variations, 460
~ workfunction variations, 463
~ yield loss, 513
random-access memory, 249, 253
rapid thermal anneal, 121, 143
ratioed logic, 164
RCAT, 265
RDF, 150, 462
RDR, 144
RDRAM, 275, 279
reactive ion etching, 118
Read-Only Memory, 249, 282
read-retry, 295
recessed source/drain, 145
recessed-channel array transistor, 265
rechargeable batteries, 382
recombination, 32
~ time, 47
reconfigurable computing, 588
Reduced Latency DRAM, 278
reduced voltage swing, 399
redundancy, 312
refresh
~ amplifier, 265
~ operation, 265
register-transfer
~ language, 334, 344
~ level, 329
reliability
~ stress conditions, 542
~ tests, 497
repeaters, 577
replacement gate, 144
replicator circuit, 401
ReRAM, 308
resistance, 446
resistive
~ RAM, 308
~ load, 169
resistive-interconnect localisation, 562
Resolution Enhancement Techniques, 86, 87
restrictive design rules, 144
RET, 86, 87
reticle, 83
reticle-alignment sequence, 141
retrograde implant, 123
retrograde profile, 121
retrograde-well, 135
reuse, 326, 343, 363, 438, 573
reverse short-channel effect, 54
reverse-bias junction leakage, 64
RIE, 118
RIL, 562
RLDRAM, 278
roadmap, 573
ROM, 249, 282
~ layout, 356
~ logic function, 356
routing channel, 361
row
~ decoder, 254
~ refresh, 265
RRAM, 308
RSCE, 54
RTA, 121, 143
RTL, 327, 334, 344
~ description, 334
RWF, 463

S
sacrificial pad oxide, 128
SACVD, 113
SADP, 96
salicide, 138
SAQP, 99
saturated enhancement load, 164
saturation
~ current, 17
~ region, 15, 16
~ velocity, 49
scaling
~ effects, 573
~ limitations, 584
~ properties, 136
scan
~ chain, 502
~ test, 361, 363, 502
scannable flip-flop, 502
scanning
~ electron-beam microscopy, 563
~ optical beam, 557
~ optical-beam, 548
SCCD, 227
scheduling, 342
scratch-protection layer, 130, 542
scribe lane, 516, 525
SDL, 562
SDRAM, 275, 277
sea-of-gates, 361
sea-of-transistors, 363, 468
seal ring, 523
secondary
~ battery cells, 382
~ electrons, 563
Seebeck effect imaging (SEI), 562
SEG, 143, 148
SEL, 457
selective cobalt deposition, 115
selective epitaxial growth, 143, 148
self-aligned
~ double patterning, 96
~ drain, 73, 130
~ quadruple patterning, 99
~ salicide, 138
~ source, 73, 130
~ source/drain implantation, 133
self-aligned via, 153
self-discharge rate, 383
self-heating, 81, 487
self-inductance, 447
self-test, 361
self-timed circuits, 415
SEM, 563
semi-custom IC, 327
semiconductor
~ doping, 7
~ material, vii
sense amplifier, 255, 265
separation by implantation of oxygen, 79
SER, 387
serial
~ ROM, 285
~ memory, 249, 252
series connection of transistors, 171, 188
set-up time violation, 435
SEU, 454
SGRAM, 279
shadow RAM, 285, 304
Shallow-Trench Isolation, 109, 133
sheet resistance, 130, 169
shift register, 197
shift-and-add operation, 334
Shmoo plot, 549
short-channel effect, 53
short-circuit
~ current, 180, 203
~ free output buffer, 203
~ power consumption, 384
~ power dissipation, 181
SIA, 573
sign-magnitude notation, 410
signal
~ integrity, 441
~ processor, 329
~ propagation, 576, 578
Signal Integrity Self-Test, 459
signature, 544
SIL, 557
silicidation, 123
silicide, 212
silicides, 137
silicon
~ atom, 5
~ crystal, 5
~ dioxide, 2
silicon-insulator-silicon, 268
silicon-on-insulator, 79
silicon-on-sapphire, 79
SIMOX, 79
simulation, 344
simultaneously switching outputs, 453
single event
~ latch-up, 457
~ upset, 454
single-edge triggered, 419
single-phase, 201
~ clocking, 431
single-port memory, 280
SiO₂, 2
SiON, 112
SiP, 537
SiP, 353
SIS, 268
SIST, 459
six-transistor SRAM cell, 258
slack borrowing, 438
sleep mode, 420
SLI, 365
slurry, 124
SMD, 534
SMIF
~ environment, 512
~ pod, 512
SNM, 259
SNOM, 561
SoC, 308, 321, 341, 353, 536, 573
~ design platform, 322
soft
~ core, 325
~ defect localisation, 562
~ error, 281, 454
soft-error rate, 387
SOG, 124
SOI, 79, 151
SOI-CMOS, 79
solid immersion lens, 557
solid-state drives, 292
SOM, 548, 557
SONOS, 293
SoP, 539
SOS-CMOS process, 79
source, 4
~ series resistance, 474
source-synchronous timing, 438
source/drain capacitance, 79
spacer, 473
~ lithography, 97
specification, 488, 547
speed and area, 201
spin transfer torque, 306
Spin-On-Glass, 124
spurious transitions, 418
sputter etching, 118
SRAF, 93
SRAM, 251, 253
~ memory cell, 257
SRAM applications, 264
SRB, 144
SRPL, 406
SSD, 292
SSO, 453
SSO driver, 204
SSTA, 345, 465, 467
STA, 345, 465, 467
stacked capacitance cell, 266
stand-alone memory, 249
standard
~ IC, 353
~ cell, 215, 360
~ commodities, 327
~ logic IC, 327
~ product, 327
standard-cell, 360
~ height, 405
~ layout, 360
~ library, 360
standby
~ current, 61, 388
~ mode, 304, 386
~ power, 67
static
~ CMOS circuits, 187
~ CMOS flip-flop, 192
~ CMOS inverter characteristic, 177
~ RAM, 251, 253
~ RAM cells, 257
~ column access, 274
~ memory, 251
Index

~ noise margin, 259
~ power consumption, 384
~ voltage drop, 448
~ IR-drop, 448
Static Timing Analysis, 345, 465, 467
Statistical Static Timing Analysis, 467
statistical static timing analysis, 345, 465
STC, 266
steady-state current, 503
step coverage, 116
step-and-repeat, 84
step-and-scan, 84
STI, 109, 133
~ stress, 460, 466
stick diagram, 208
storage gate, 228, 229
strain-relaxed buffer, 144
strained silicon, 144
stress memorisation, 149
strong inversion, 14
structural
~ fault, 503
~ test, 501
structured ASIC, 373
STT, 306
stuck-at fault, 503
subresolution assist feature, 93
substrate, 74
~ bounce, 451
~ dop, 5
subthreshold
~ behaviour, 60, 62
~ current, 62, 386
~ leakage current, 60, 385, 575
~ logic, 187, 403
~ region, 60
~ slope, 60, 82, 504
supply
~ bounce, 448
~ noise, 448
surface
~ scattering, 47
~ states, 229
surface-channel CCD, 227
surface-mount device, 534
Swing Restored Pass-Transistor Logic, 406
switching activity, 409, 447
symbolic layout, 376
synchronous
~ CMOS circuits, 192
~ DRAMs, 275, 277
Synchronous Graphics RAM, 279
synthesis, 344
~ tools, 341
system
~ design aspects, 573
~ in a package, 353
~ level, 329, 331
~ on a chip, 321, 353
~ on chip, 341, 344
~ on silicon, 343
system-in-a-package, 353, 537
system-on-a-chip, 353, 536
system-on-a-package, 539
systematic yield loss, 513
systems on silicon, 365

T
tap-less cells, 212, 217
tape-out, 83
tapering factor, 184
tapped cells, 212, 217
tD-product, 26
TDP, vii
temperature
~ expansion coefficient, 542
~ sensitivity, 542
~ variation cycle, 542
temperature-cycle test, 542
tensile strain, 145
TEOS, 113
test vectors, 544
thermal
~ behaviour, 531
~ design power, vii
~ energy, 7
~ generation, 32
~ oxide, 109
thermally-induced voltage alteration, 561
thick oxide, 109, 128
three-beam imaging, 86
three-dimensional DRAM cell, 266
threshold
~ adjustment implantation, 5
~ loss, 165, 190
threshold voltage, 14, 23, 174, 546
~ adjustment implantation, 128
~ loss, 190
~ roll-off, 53
~ temperature dependence, 57
through-silicon via, 119
tie-off cell, 449
tiles, 126
time stealing, 438
Time-Resolved Photo Emission, 548
time-resolved photon-emission microscopy, 556
Index

timing
  ~ closure, 437
  ~ margins, 436
  ~ problems, 431
  ~ verification, 511
  ~ violations, 435
titanium nitride, 138
TIVA, 561
TLC, 292
tonic layer deposition, 546
top-down design process, 329
transconductance, 25
transfer
  ~ efficiency, 229
  ~ gate, 228, 229
transistor
  ~ level, 337
  ~ lifetime, 110
  ~ matching, 465, 575
  ~ scaling effects, 575
transistor gain factor, 20, 171
  ~ temperature dependence, 57
transition
  ~ delay fault, 502
  ~ region, 16
transmission gate, 189, 192
transparency, 194, 198
trench capacitance cell, 266
tri-gate device, 150
tri-state buffer, 203
triode region, 15
triple patterning, 96
triple-level cell, 292
triple-well, 486
  ~ concept, 575
  ~ device, 386
  ~ technology, 386, 452
triple-well technology, 457
TSV, 119
TTL
  ~ compatible, 202
  ~ input buffer, 202
TTL-CMOS input buffer, 202
tunnelling, 112
turn-around time, 284, 324, 363
two’s complement notation, 410
two-beam imaging, 86

U
ultra-low power application, 403
Ultra-Thin Body, 151
uncommitted array, 363
under-etch, 117, 511
usable gates, 327
user-specific integrated circuit, 322
USIC, 322
UTBB-SOI, 151
Utilisation factor, 327

V
V-NAND, 298
V-NAND flash, 296
valence
  ~ band, 5
  ~ electron, 5
variability-aware design, 583
VCO, 438
VDMOS, 240
velocity saturation, 47
Verilog, 343
  ~ code, 344
vertical
  ~ NAND, 298
  ~ NAND flash, 296
  ~ double-diffused MOS, 240
  ~ electric field, 47
  ~ pillar transistors, 269
very low voltage test, 505
VHDL, 343
  ~ code, 344
video
  ~ RAM, 252
  ~ memories, 252
video RAM, 278
virtual
  ~ component, 325
  ~ drain, 17, 51
Virtual Socket Interface Alliance, 325
virtually static RAM, 251
VLV test, 505
voids, 469
volatile memory, 249
voltage
  ~ drop, 448
  ~ peaks, 203
  ~ regulator, 399
voltage-controlled oscillator, 438
VPT, 269
VRAM, 252, 278
VSI Alliance, 325

W
WAF, 292
wafer, 74
  ~ diameter, 511
~ map, 515
~ probing, 511
wafer-level packaging, 521
Wallace tree multiplier, 335, 418
waveform measurements, 511
wear-levelling, 292, 295
wearout, 542
well biasing, 388
well-bias, 388
well-proximity, 466
~ effect, 460
well-tap, 212
~ cells, 217
well-tap cell, 478
wet-etching method, 117
wire
~ bonding, 526
~ self-heating, 471
~ spreading, 519
WLCSP, 523
WLP, 521
word line, 254
work function, 11, 22, 142
worst-case
~ corner, 260
~ delay path, 327, 340
WPE, 460, 466
Write Amplification Factor, 292
write and verify programming, 295
write enable, 255

X
x-decoder, 254
X-ray lithography, 102
XDR RDRAM, 279
XIVA, 561
XRL, 102

Y
y-decoder, 254
yellow room, 512
yield, 511
~ control, 516
yield degradation
~ UV light, 512
~ chemical impurities, 512
~ dust particles, 512
~ electrostatic charge, 512
~ humidity, 511
~ temperature fluctuations, 511
~ vibrations, 511

Z
Z-RAM, 280
Zero Capacitor DRAM, 280
zero-temperature-coefficient, 57
ZTC, 57