Appendix A: Matrix Identities

(a) Woodbury’s Matrix Identity

\[
(A + uv^T)^{-1} = A^{-1} - \frac{[A^{-1}u][v^T A^{-1}]}{1 + v^T A^{-1}u}
\]
(A.1)

(b) Matrix Inverse Identity

\[(A + BCD)^{-1} = A^{-1} - A^{-1}B(DA^{-1}B + C^{-1})^{-1}DA^{-1}
\]
(A.2)

(c) Matrix-Vector Inverse Identity

\[
\begin{bmatrix}
U^T U & U^Td \\
d^T U & d^Td
\end{bmatrix}^{-1} = \begin{bmatrix}
(U^T U)^{-1} + \beta U^# dd^T(U^#)^T & -\beta U^# d \\
-\beta d^T(U^#)^T & \beta
\end{bmatrix},
\]
(A.3)

where

\[U^# = (U^T U)^{-1}U\]

and

\[\beta = \left\{d^T \left[I - U(U^T U)^{-1}U^T\right]d\right\}^{-1} = \left\{d^T [P^u] d\right\}^{-1}.
\]

(d) Matrix-Inverse Identity

\[\beta = \left\{d^T \left[I - U(U^T U)^{-1}U^T\right]d\right\}^{-1} = \left\{d^T [P^u] d\right\}^{-1},
\]
(A.4)

where \(I = [C - B^T A^{-1}B]^{-1}\).
Glossary

A
AD Anomaly detection, Chap. 6
ALMM Adaptive linear mixing model, Chap. 9
ALSMA Adaptive linear spectral mixture analysis, Chap. 9
ANC Abundance nonnegativity constraint, Chap. 9
ARHBP Adaptive recursive hyperspectral band processing, Chap. 9
ASC Abundance sum-to-one constraint, Chap. 9
ATGP Automatic target generation process, Chap. 4
AVIRIS Airborne visible/infrared imaging spectrometer, Chap. 1

C
CBR-AD Causal band K-RXD, Chap. 14
CBR-AD Causal band R-RXD, Chap. 14
CBRCM Causal band correlation matrix, Chaps. 13 and 14
CEM Constrained energy minimization, Chap. 5
CK-AD Causal K-AD, Chap. 14
CLCRM Causal line correlation matrix, Chap. 5
CR-AD Causal R-AD, Chap. 6
CSCRM Causal sample correlation matrix, Chap. 5
CSCVM Causal sample covariance matrix, Chaps. 5 and 6

D
DSV Determinant-based simplex volume, Chap. 2
Dist-SGA Distance-based simple growing algorithm
DSGA Determinant-based SGA, Chaps. 2, 11, and 12
DR Dimensionality reduction

E
EFA Endmember finding algorithm
EIDA Endmember identification algorithm
F
FCLS Fully constrained least-squares method, Chap. 9
FPGA Field Programmable Gate Array

G
GSGA Geometric simplex growing algorithm, Chaps. 12 and 18
GSVA Growing simplex volume analysis, Chaps. 12 and 18
GSV Geometric simplex volume, Chap. 2
GSV-OP Geometric simplex volume by orthogonal projection, Chaps. 11 and 12
GSV-SH Geometric simplex volume by simplex height, Chap. 12
GSV-PD Geometric simplex volume by perpendicular distance, Chaps. 11 and 12

H
HFC Harsanyi–Farrand–Chang, Chap. 4
HOS High-order statistics
HSI Hyperspectral imaging
HYDICE HYperspectral Digital Imagery Collection Experiment, Chap. 1

I
IBSI Interband spectral information, Chap. 4
IPPI Iterative pure pixel index, Chap. 18

K
KF-OSP-GSGA Kalman filter–based orthogonal subspace projection geometric simplex growing algorithm, Chap. 12
KF-OVP-GSGA Kalman filter–based orthogonal vector projection geometric simplex growing algorithm, Chap. 12
K-AD Anomaly detection using autocovariance matrix K, Chap. 5

L
LCMV Linearly constrained minimum variance, Chap. 5
LCVF Lunar Crater Volcanic Field, Chap. 1
LSE Least-squares error
LSU Linear spectral unmixing
LSMA Linear spectral mixture analysis, Chap. 9

M
MEAC Minimum estimated abundance covariance, Chap. 10
MLE Maximum likelihood estimation, Chap. 10
MVT Minimum volume transform

N
NCLS Nonnegativity constrained least-squares method, Chaps. 4 and 9
N-FINDR N-Finder algorithm
NPD Neyman–Pearson detection/detector
NWHFC Noise-whitened Harsanyi–Farrand–Chang, Chap. 4
O
OP Orthogonal projection
OPSGA Orthogonal projection–based simple growing algorithm, Chap. 11
OSP Orthogonal subspace projection

P
P-AD Progressive anomaly detection, Chap. 6
PHBP Progressive hyperspectral band processing, Chaps. 14–20
P-CEM Progressive constrained energy minimization, Chap. 5
PKP Progressive skewer set processing, Chaps. 19 and 20
PPI Pixel purity index
PSP Progressive sample processing, Chap. 1

R
R-AD RXD using autocorrelation matrix R, Chap. 5
RHBP Recursive hyperspectral band processing, Chap. 1
RHBP-AD Recursive hyperspectral band processing of anomaly detection, Chap. 14
RHBP-ATGP Recursive hyperspectral band processing of the automatic target generation process, Chap. 15
RHBP-CEM Recursive hyperspectral band processing of constrained energy minimization, Chap. 13
RHBP-C-IPPI Recursive hyperspectral band processing of causal iterative pixel purity index, Chap. 19
RHBP-FIPPI Recursive hyperspectral band processing of fast iterative pixel purity index, Chap. 20
RHBP-GSGA Recursive hyperspectral band processing of geometric simplex growing algorithm, Chap. 18
RHBP-GSVA Recursive hyperspectral band processing of growing simplex volume analysis, Chap. 18
RHBP-LSMA Recursive hyperspectral band processing of linear spectral mixture analysis, Chap. 17
RHBP-OSP Recursive hyperspectral band processing of orthogonal subspace projection, Chap. 16
RHBP-PS-IPPI Recursive hyperspectral band processing of progressive-skewer iterative pixel purity index, Chap. 19
RHBP-SGA Recursive hyperspectral band processing of simplex growing algorithm, Chap. 18
RHSP Recursive hyperspectral sample processing, Chap. 1
RHSP-ATGP Recursive hyperspectral sample processing of the automatic target generation process, Chap. 7
RHSP-GSGA Recursive hyperspectral sample processing of geometric simplex growing algorithm, Chap. 12
RHSP-LSMA Recursive hyperspectral sample processing of linear spectral mixture analysis, Chap. 9
RHSP-MLE Recursive hyperspectral sample processing of maximum likelihood estimation, Chap. 10

RHSP-OPSGA Recursive hyperspectral sample processing of orthogonal projection–based simple growing algorithm, Chap. 11

RHSP-OSP Recursive hyperspectral sample processing of orthogonal subspace projection, Chap. 8

ROC Receive operating characteristic

RSP Recursive skewer processing, Chap. 20

RXD RX detector, Chap. 5

RT Real time

S

SAM Spectral angle mapper

SC N-FINDR SuCcessive N-FINDR

SGA Simplex growing algorithm, Chap. 2

SID Spectral information divergence

SNR Signal-to-noise ratio

SQ N-FINDR SeQuential N-FINDR

SV Simplex volume

SVGA Simplex volume growing analysis, Chaps. 11 and 12

T

TE Target embeddedness

TI Target implantation

TSVD Target-specified virtual dimensionality, Chap. 4

U

UFCLS Unsupervised fully constrained least-squares, Chap. 4

UNCLS Unsupervised nonnegativity constrained least-squares, Chap. 4

UROSP Unsupervised recursive orthogonal subspace projection, Chap. 8

V

VCA Vertex component analysis, Chap. 11

VD Virtual dimensionality, Chap. 4

VS Virtual signature, Chaps. 9 and 10
References

664 References

References

References

HYMSMTO. 1998. HYperspectral MASINT support to military operations program.

Li, H.C., and C.-I Chang. 2015a. An orthogonal projection approach to simplex growing algorithm for finding endmembers in hyperspectral imagery. In 7th Workshop on hyperspectral image and signal processing: evolution in remote sensing (WHISPERS), Tokyo, Japan, 2–5 June.

———. 2015b. Linear spectral unmixing using least squares error, orthogonal projection and simplex volume for hyperspectral Images. In 7th Workshop on hyperspectral image and signal processing: evolution in remote sensing (WHISPERS), Tokyo, Japan, 2–5 June.

———. 2016b. Real time hyperspectral anomaly detection via band-interleaved by line. In Remotely sensed data compression, communications, and processing XII, part of SPIE commercial + scientific sensing and imaging, 17–21 April.

Pesses, M.E. 1999. A least squares-filter vector hybrid approach to hyperspectral subpixel

Conference on algorithms and technologies for multispectral, hyperspectral, and ultraspectral
imagery XI, SPIE symposium on defense and security, SPIE, vol. 5806, Orlando, FL,
28 March–1 April.

———. 2006. Impact of initialization on design of endmember extraction algorithms. IEEE

———. 2007b. Specific issues about high-performance computing in remote sensing, non-literal
analysis versus image-based processing. In High-performance computing in remote sensing,

endmember extraction algorithms from hyperspectral data. IEEE Transactions on Geoscience

extraction algorithms from hyperspectral data. IEEE Geoscience and Remote Sensing Letters 3

Qian, S.-E., A.B. Hollinger, D. Williams, and D. Manak. 1996. Fast three-dimensional data
compression of hyperspectral imagery using vector quantization with spectral-feature-based

Prentice-Hall.

Ramakrishna, B. 2004. Principal components analysis (PCA)-based spectral/spatial hyperspectral
image compression. MS thesis, Department of Computer Science and Electrical Engineering,
University of Maryland, Baltimore County, Baltimore, MD.

compression in conjunction with virtual dimensionality. In Conference on algorithms and
technologies for multispectral, hyperspectral, and ultraspectral imagery XI, SPIE symposium
on defense and security, SPIE, vol. 5806, Orlando, FL, 28 March 28–1 April.

Ramey, N.I., and M. Scoumekh. 2006. Hyperspectral anomaly detection within the signal sub-

Reed, I.S., and X. Yu. 1990. Adaptive multiple-band CFAR detection of an optical pattern with

multi/hyperspectral imagery. Department of Computer Science and Electrical Engineering,
University of Maryland, Baltimore County, MD.

———. 2000. Unsupervised and generalized orthogonal subspace projection and constrained
energy minimization for target detection and classification in remotely sensed imagery.
Department of Computer Science and Electrical Engineering, University of Maryland, Balti-
more County, MD.

communication and processing X (ST146), SPIE international symposium on SPIE sensing technology + applications, Baltimore, MD, 5–9 May.

Index

A
Abundance nonnegativity constraint (ANC), 265, 320, 358
Abundance sum-to-one constraint (ASC), 265–267, 320, 358
Adaptive GSVA (AGSVA), 336–337
Adaptive linear mixing model (ALMM), 270
Adaptive recursive hyperspectral sample processing of LSMA (ARHSP-LSMA), 264
Gaussian distribution, 280
implementation, 276
linear spectral unmixing-based finding signatures, 278–279
OSP-based finding signatures, 277–278
posteriori probability distribution, 281
randomized decision rule, 281
Airborne Visible InfraRed Imaging Spectrometer (AVIRIS), 343, 578
anomaly detection, 181–185
CEM, 149–156
virtual dimensionality
LCVF scene, 18–19, 115
2OS-and HOS-based methods, 116
reflectance and radiance data, 112–114
scene, Cuprite, 15–18, 112
signal energy and strength, MOCA and ATGP, 116–118
Analytical Imaging and Geophysics (AIG), 544
Anomaly detection (AD)
AVIRIS data, 181–185
background suppression, 182–184, 192–199
BIL, 199–205
CBCRM, 423–425
CK-AD, 161
computational complexity, 169–171
b-simulated image, 171–172
Intel i5-2500 3.3 GHz CPU and 8 GB RAM, 177–178
mixed and subpanel pixels, 171–172
per pixel vector, 178–179
target embeddedness, 174–177, 180
target implanted, 172–175, 180
computing time analysis, 439–441, 446
CR-AD, 161
features, 158
GUI design, 444, 447
HYDICE image, 185–193
area under curve, 434, 435, 437–439
AVIRIS, 435, 440
detected abundance fractions, 429–431
K-AD detection map, 160–161, 436, 442, 445–446
processed bands, 429, 432–436
R-AD detection map, 161, 435, 436, 441, 443–444
scene and ground truth map, 428–429
3D plots, 429, 432
matrix inverse calculation
causal sample covariance/correlation matrix, 162–164
sample correlation matrix identity, 166
Woodbury matrix identity, 165
PHBP-AD, 422–423
real-time causal K-AD, 168–169
Anomaly detection (AD) (cont.)
- real-time causal R-AD, 167–168
- recursive equation, 631–632
- RHBP-K-AD, 426–428
- RHBP-R-AD, 425–426
- sample spectral correlation matrix, 641–642

ASC. See Abundance sum-to-one constraint (ASC)

Automatic target detection and classification algorithm (ATDCA). See Automatic target generation process (ATGP)

Automatic target generation process (ATGP), 293, 321, 359, 486
- advantages, 452
- bit plane coding, 452
- BSQ format, 452
- computing time analysis, 477–479
- GUI, 478–480
- hyperspectral target detection, 452, 476
- implementation, 454–455
- information, 632
- OPCI, 211
- 2OS-based theory, 95–97
- OSP, 643
- PHBP-ATGP, 452–453
- PPI, 453–454

real image experiments, 473
- generated target pixels, 472, 474
- ground truth map, 470, 471
- HYDICE image, 470, 471
- minimal \(n_i \), 469, 472, 474
- Neyman–Pearson detection theory, 476
- number of signatures, 475–476
- orders of panel pixels extraction, 475
- spatial and spectral resolution, 470
- 3D detection maps, 471, 472
- 3D histogram, 476

remote sensing imagery, 452

RHBP-ATGP
- advantage, 477
- end loop, 458–459
- flowchart, 459
- inner loop, 458
- \(l \) bands processing, 460
- \(M_{\text{RHBP-ATGP}} \), 460, 461
- number of processed bands, 460
- outer loop, 458
- recursive equations, 455–458
- target vector, 460–461

RHSP-ATGP
- advantages, 214–215
- binary composite hypothesis testing problem, 216
- computational complexity, 223–225
- flowchart, 213–214
- matrix inverse identity, 211–212
- MOSP, 215
- Neyman–Pearson detection theory, 216–217
- stopping rule, 221–223
- target signal sources, 212–213
- TSVD, 215–216

SGA, 452
- synthetic image data, 217–220
- target subspace, 210
- TE experiments, 462–463, 467–470
- TI experiments, 462–467
- VCA, 452

B

Band fusion (BF), 650
- Band-inter-leafed-by-pixel (BIP), 133–135, 199–205, 484, 544–545, 628, 630
- Band-interleaved-by-sample (BIS), 484, 544–545, 628, 630
- Band selection (BS), 9, 505, 530
- Band-sequence (BSQ) format, 3, 4, 128–129, 484, 544–545, 628
- Band tuning (BT), 650–651
- Bit plane coding, 484

C

Causal band correlation matrix (CBCRM)
- anomaly detection, 423–425
- definition, 401–402
- information types, 403
- inverse of, 402–403

Causal K-AD (CK-AD), 161

Causal R-AD (CR-AD), 161

Causal sample correlation matrix (CSCRM), 631, 640

CCA. See Convex cone analysis (CCA)

CCVA. See Convex cone volume analysis (CCVA)

Computer processing time analysis
- cumulative computing time, 350, 353
- OP-based algorithm, 354
- processing times, 353, 354
- VCA, 354–356

Constrained energy minimization (CEM)
- active detection, 126
advantages, 125–126, 631
AVIRIS data, 149–156
BIL format, 133–135
BSQ format, 128–129
causal process, 7
CBCRM, 401–403
computational complexity, 135–137
FIR, 126–127
GUI, 419–420
HYDICE data, 137, 140–148
detected abundance fractions, 407–411
ground truth map, 405–406
panel signatures, 406–407
ROC curves, 411–415
3D progressive plots, 407, 412–414
hyperion data
areas of interest, 414–417
computational time, 418–419
EO-1 satellite, 414
progressive performance, 419
Westinghouse Bay signature, 418
hyperspectral image, 127
implementation, 640–641
linearly constrained optimization problem, 127–128
mixed pixel issues, 628–629
near real time, 125
PHBP-CEM, 400–401
recursive formula, 403–405
RT-CEM
BIP/BIS format, 129–132
data sample/line, 129
detection maps, 129–130
subpixel detection, 399–400, 628–629
time analysis, 148–149
Convex cone analysis (CCA), 320
Convex cone volume analysis (CCVA), 320
Cuprite Mining District image data, 24–25

D
Determinant-based SGA (DSGA), 322, 361
Determinant-based SV (DSV), 33, 321, 359, 635
Discrete-time Kalman filtering
information, 49–50
KF-SCSP
advantages, 61
KF-SSE, 62–64, 68–69
KF-SSI, 64–67, 69–70
KF-SSQ, 67–68, 70–71
one-dimensional signal processing, 61
LSMA, 58–60
observation equation, 50–51
optimal Kalman gain, 53–54
orthogonality principle, 54–56
posteriori state estimates, 51–53
prediction, 56–58
priori state estimates, 51–53
state equation, 50

E
Earth Observer 1 (EO-1) satellite, 414
Endmember extraction algorithms (EEAs), 74, 262
Endmember finding algorithm (EFA), 31–32, 358, 629
ENvironment for Visualizing Images (ENVI) software system, 544

F
False alarm probability, 240
Fast iterative pixel purity index (FIPPI), 551, 597–599
Finite impulse filter (FIR), 126–127
Fully constrained least-squares (FCLS) method, 94–95

G
Gauss–Markov random process, 6
Geographical information system (GIS), 628
Geometric simplex growing algorithm (GSGA), 636
ASC and ANC, 358
ATGP, 359–360
computational complexity
Dist-SGA, 379
DSGA, 360, 379
Gram–Schmidt orthogonalization process, 380
OPSGA, 360, 379–380
recursive GSGA, 380
recursive OPSGA, 380
Cramer’s rule, 364
DSV, 359, 365
EFAs, 358
end loop, 538
equation, 534, 536–538
flowchart, 538
GSOP, 360, 366–370
GSV, 362–363
j-dimensional vector, 535
l-dimensional vector, 535
Geometric simplex growing algorithm (GSGA) (cont.)
N-FINDR, 358
number of endmembers, 378
outer loop, 537
p-dimensional abundance vector, 364
PPI, 358
real image experiments
computer processing time analysis, 392–395
HYDICE data, 381–384
radiance data, 388–392
reflectance data, 384–388
recursive hyperspectral sample processing orthogonal subspace projection-based
RHSP-GSGA, 370–373
orthogonal vector projection-based
RHSP-GSGA, 373–376
RHSP-GSGA vs. RHSP-OPSGA, 376–377
SVD, 359
Geometric simplex volume (GSV), 635–636
calculation, 321
Cayley–Menger determinant, 37
corollary, 42–43
vs. DSV, 44–46
hypertetrahedron, 34
initial condition, 40–42
orthogonal projection, 39–40
parallelepiped, 37–39
three-dimensional four-vertex simplex, 34–36	hree-dimensional parallelepiped, 35–36
three-endmember-vertex simplex, 38–39
two-dimensional three-vertex simplex, 34–36
Gram–Schmidt orthogonalization process (GSOP), 360
Graphical user interface (GUI), 586, 589, 594
anomaly detection, 444, 447
ATGP, 478–480
RHB-P-CEM, 419–420
Growing simplex volume analysis (GSVA)
band prioritization, 530
band selection, 530
N-FINDR, 530
OPSGA, recursive equations, 531–533
real image experiments
endmembers identification, 540, 541
ground truth map, 539
GSGA vs. RHBP-GSGA, 539, 540
HYDICE image, 539
progressive magnitude changes, 540, 541
recursive hyperspectral band processing
GSGA, 534–538
OPSGA, 533–535
SGA, 530
SV-based endmember finding algorithms, 530

H
Harsanyi–Farrend–Chang (HFC) method, 74–76, 81–82, 282, 283
High-order statistics (HOS)-specified target, 97–99
Hyperion data
areas of interest, 23–24, 414–417
computational time, 418–419
EO-1 satellite, 414
progressive performance, 419
Westinghouse Bay signature, 418
Hyperspectral band subset selection, 650–651
HYperspectral Digital Imagery Collection (HYDICE), 37,
140–148, 244–255, 281, 578,
613–614
abundance fractions, 284, 286
anomaly detection, 185–193
area under curve, 434, 435, 437–439
AVIRIS, 435, 440
detected abundance fractions, 429–431
K-AD detection map, 436, 442,
445–446
processed bands, 429, 432–436
R-AD detection map, 435, 436, 441,
443–444
scene and ground truth map, 428–429
3D plots, 429, 432
ATGP, UNCLS, and UFCLS, 283
background signatures, 23
CEM
detected abundance fractions, 407–411
ground truth map, 405–406
panel signatures, 406–407
ROC curves, 411–415
3D progressive plots, 407, 412–414
noise-whitened HFC, 282
panel pixels extract, 284, 285
panel scene, 281–282
real image experiments, 519
spatial locations, 21
spectral signatures, 22
target pixels extract, 284, 285
TSVD, 110–112
values of “RHSP-LSMA, 281–282
Hyperspectral single band selection, 650
Hypertetrahedron, 34
Innovation information, 5
Interband spectral information (IBSI), 78, 87–88
Iterative pixel purity index (IPPI), 647
background, 604
C-IPPI, implementation of, 550–553
FIPPI, 551, 597–599
HYDICE image, 613–614
\[n_{VD} = 9, 615–618, 620, 623 \]
\[n_{VD} = 18, 24, 615–22 \]
P-IPPI
advantage, 549, 552
growing skewer set, 553–554
implementation, 549, 551, 553
recursive hyperspectral band processing, 600–601
recursive skewer processing, 602–603
RHBP
fixed skewer set, 555–557
general algorithm, 555
varying skewer sets with bands, 557–560
TE experiments
cyan upper triangles, 609
demember candidates, 608–611
ground truth pixels, 610, 612
number of processed bands, 611, 613
spatial locations, 610, 612, 613
TI experiments, 605–608
VC-IPPI, 553

K
Kalman filter (KF), 361, 485
Kalman filter-based spectral signature estimator (KF-SSE), 62–64
Kalman filter-based spectral signature identifier (KF-SSI), 64–67, 69–70
Kalman filter-based spectral signature quantifier (KF-SSQ), 67–68, 70–71
Kalman-filter spectral characterization signal processing (KF-SCSP)
advantages, 61
KF-SSE, 62–64, 68–69
KF-SSI, 64–67, 69–70
KF-SSQ, 67–68, 70–71
one-dimensional signal processing, 61
K-based anomaly detector (K-AD), 160–161

L
Least-squares orthogonal subspace projection (LSOSP), 294, 485
UFCLS algorithm, 94–95
ULSOSP algorithm, 92–93
UNCLS algorithm, 94
Linear spectral mixture analysis (LSMA), 229–230
ANC, 265, 267–269
ARHSP-LSMA, 264
Gaussian distribution, 280
implementation, 276
linear spectral unmixing-based finding signatures, 278–279
OSP-based finding signatures, 277–278
posteriori probability distribution, 281
randomized decision rule, 281
TSVD, 279
ULSMA, 275
ASC, 265–267
band selection, 505
benefits, 507
computational complexity, 510–511
innovation information, 509
processed information, 509
recursive process, 509
EEAs, 262
FCLS algorithm, 269
HYDICE, 281
abundance fractions, 284, 286
ATGP, UNCLS, and UFCLS, 283
noise-whitened HFC, 282
panel pixels extract, 284, 285
panel scene, 281–282
target pixels extract, 284, 285
values of \(^{*}\)RHSP-LSMA, 281–282
implementation, 634
Kalman filter, 58–60
least-squares, 265, 633
LSU, 263
N-FINDR, 262
OSP, 265, 644–646
PHBP-LSMA, 506
PHBP vs. BS, 506
real image experiments, 519
ATGP-generated BKG and target pixels, 520, 522–523
computing time, 526, 527
ground truth map, 519
RHBP-NCLS and RHBP-FCLS abundance fractions, 520–523
19 R panel pixels, 523–525
spatial and spectral resolution, 520
RHBP-LSMA, 506, 507, 512–513
RHSP-LSMA, 264
ALMM, 270
single signatures, 270–273
Linear spectral mixture analysis (LSMA) (cont.)
 two signature-varying matrices, 274–275
SLSMA and ULSMA, 262
synthetic image experiments
 computing times, 517–519
 RHBP-NCLS and RHBP-FCLS-unmixed results, 515–517
 simulation, 513–514
 target embeddedness, 514–515
 target implantation, 514, 515
UCLS, 644–646
update equation, 507–509
VD, 262–263
VE and VS, 263
virtual dimensionality, 74, 506
Linear spectral unmixing (LSU), 58, 263, 505, 506
LSOSP. See Least-squares OSP (LSOSP)
Lunar Crater Volcanic Field (LCVF) scene, 115

M
Matrix identities, 653
Matrix-inverse identity, 653
Matrix-vector inverse identity, 653
Maximal orthogonal complement algorithm (MOCA), 77, 82–86, 338
Maximal orthogonal subspace projection (MOSP), 215, 338
Maximum likelihood estimation (MLE) endmember, 303
LSMA, 634
MEAC, 290
OSP, 289–290
real image experiments, 310–312
recursive prediction error equation, 634
RHSP-LS-based algorithm, 297–299
RHSP-MLE, 299–301
SNR, 290
stopping rule, 301–303
synthetic image
 MEAC, 307–308
 nVS estimates, 306
 set of 25 panels, 304–305
 target embeddedness, 305
 target implantation, 305
 VSS, 290, 304, 308–310, 635
unmixed error analysis
 FCLS, 313–316
 HFC method, 313
 sudden drops, 313, 317
 whitened data, 313
 VD, 290, 304
virtual signatures
 least-squares estimation, 291–292
 MLE-based algorithm, 295–297
 MLE error matrix, 295
 OSP-based algorithm, 293–295
Minimax-singular value decomposition (MX-SVD), 84–85
Minimum estimated abundance covariance (MEAC), 290
Minimum volume transform (MVT), 320
Multispectral imaging (MSI), 648–649

N
NBE iterative multispectral imaging (NBE-IMSI), 649
Neyman–Pearson detector (NPD), 6, 101, 216–217, 340, 476
N-finder algorithm (N-FINDR), 262, 358, 530, 646
Noise-whitened HFC (NWHFC) method, 282
Notations and terminology, 28

O
OP-based Pixel Purity Index (PPI), 358
Orthogonal projection-based SGA (OPSGA), 321, 328–329
DSV, 323
finding endmembers, 324
GSV, 325–326
recursive equations, 531–533
recursive hyperspectral band processing, 533–535
three-endmember simplex, 327
2D and 3D simplexes, 323–324
2D three-vertex simplex, 323
Orthogonal projection correlation index (OPCI), 211
Orthogonal subspace projection (OSP), 265, 452
ATGP, 486, 643–644
band-interleaved-line, 484
band-interleaved-pixel, 484
band-interleaved-sample, 484
BSQ, 484
computational complexity, 255–257
computing time analysis, 499–501
graphical user interface design, 502
history, 484
HYDICE, 244–255
implementation, 633
LSMA, 229–230
LSOSP, 485
PHBP version, 484–485
progressive image processing, 484
real image experiments, 496–499
RHBP-OSP
flow chart, 489–490
recursive equations, 486–489
RHSP-OSP
automatic stopping rule, 241–244
computational complexity, 235–236
implementation, 230
issues, 237
recursive update equations, 231–235
time-consuming process, 235
unsupervised target signal sources, 237–238
unwanted target signal sources, 238–240
signal signatures, 228–229
signal-to-noise ratio, 485
stages, 484
synthetic image experiments
simulation, 490–491
TE experiments, 494–496
TI experiments, 491–494

P

Pixel purity index (PPI), 453–454
advantage, 544
BIS/BIP vs. BSQ, 544–545
disadvantages, 546, 547
endmembers, 544, 546, 547
ENVI software system, 544
IPPI (see Iterative pixel purity index (IPPI))
MATLAB algorithm, 548
PHBP, 544–545
real image experiments
endmember candidates vs. number of processed bands, 582, 584
ground truth map, 578, 580
HYDICE panel scene, 578, 580
IPPI and RHBP-IPPI, 582, 584
panel pixels, 578, 580, 582, 583
pixels extraction, 585
PPI count vs. \(n_p \), 580–581
PPI count vs. number of bands and pixels, 586, 590–592
PPI count vs. number of processed bands and skewers, 585, 587–589
RHBP-C-IPPI process, 586, 593
RHBP
efficient and effective, 545
fixed skewer set, 545
varying skewer sets with bands, 545
skewers, 546, 547
virtual dimensionality, 547
Processed data information, 5
Progressive hyperspectral band processing (PHBP), 9–10, 484–485, 544–545
Progressive hyperspectral band processing of ATGP (PHBP-ATGP), 452–453
Progressive hyperspectral band processing of CEM (PHBP-CEM), 400–401
Progressive hyperspectral band processing of LSMA (PHBP-LSMA), 506
Progressive hyperspectral imaging (PHSI), 3–4
Progressive iterative PPI (P-IPPI)
advantage, 549, 552
growing skewer set, 553–554
implementation, 549, 551, 553
Projection vector generation algorithm (PVGA), 97–98

R

Real-time causal K-AD, 168–169
Real-time causal R-AD, 167–168
Real-time constrained energy minimization (RT-CEM)
BIP/BIS format, 129–132
data sample/line, 129
detection maps, 129–130
Receiver operating characteristic (ROC) analysis, 411–415
Recursive hyperspectral band processing, 600–601
Recursive hyperspectral band processing of LSMA (RHBP-LSMA), 506
Recursive hyperspectral sample processing of ATGP (RHSP-ATGP)
advantages, 214–215
binary composite hypothesis testing problem, 216
computational complexity, 223–225
flowchart, 213–214
matrix inverse identity, 211–212
MOSP, 215
Neyman–Pearson detection theory, 216–217
Recursive hyperspectral sample processing of ATGP (RHSP-ATGP) (cont.)
- stopping rule, 221–223
- target signal sources, 212–213
- TSVD, 215–216

Recursive hyperspectral sample processing of LSMA (RHSP-LSMA), 264
- ALMM, 270
- single signatures, 270–273
- two signature-varying matrices, 274–275

Recursive hyperspectral sample processing of OSP (RHSP-OSP)
- automatic stopping rule, 241–244
- computational complexity, 235–236
- implementation, 230
- issues, 237
- recursive update equations, 231–235
- time-consuming process, 235
- unsupervised target signal sources, 237–238
- unwanted target signal sources, 238–240

Recursive skewer processing, 602–603
Recursive update algorithm (RUA), 234–235

S
- Second-order-statistics (2OS)-based theory, 77
- ATGP-specified targets, 8, 95–97
- LSOSP
- UFCLS algorithm, 94–95
- ULSOSP algorithm, 92–93
- UNCLS algorithm, 94
- OSP-specified targets, 8
- linear detection system, 90
- pixel vector, 89
- pseudo-inverse, 89
- signal-to-noise ratio, 90–92
- UOSP algorithm, 92
- SeQuential N-FINDR (SQ N-FINDR), 320
- Shannon’s information theory, 340
- Signal-to-noise ratio (SNR), 290
- Simplex growing algorithm (SGA), 452, 530
- ATGP, 321
- CCA and CCVA, 320
- computer processing time analysis
- cumulative computing time, 350, 353
- OP-based algorithm, 354
- processing times, 353, 354
- VCA, 354–356
- DSGA, 322
- DSV calculation, 321

endmember finding algorithms, 320
GSGA, 646–647
GSVA-based algorithms
- AGSVA, 336–337
- 1-GSVA, 335–336
MVT deflates, 320
N-FINDR, 646

number of endmembers
- binary composite hypothesis testing problem, 339
- binary hypothesis testing problem, 341
- cumulative distribution function, 340
- MOSP and MOCA, 338
- Neyman–Pearson detection problems, 338, 340
- posterior probability distribution, 340
- Shannon’s information theory, 340
OPSGA, 323, 328–329, 646–647
finding endmembers, 324
GSV, 325–326
three-endmember simplex, 327
2D and 3D simplexes, 323–324
2D three-vertex simplex, 323

real image experiments
- AVIRIS image scene, 343, 345–346
- comparative plots, 350–351
- Cuprite radiance data, 346–347
- Cuprite reflectance data, 346–347
- EIDA, 345–346
- endmember pixels, 344, 347–350
- HYDICE data, 342–343
- SAM/SID of closet endmembers, 350, 353
- USGS Web site, 343
- recursive OP-simplex growing algorithm
- recursive GSV calculation, 329–331
- RHSP-OPSGA, 333–335
- RHSP-OPSGA equations, 331–333
- simplex volume analysis, 323
- Simplex volume (SV)-based endmember finding algorithms (EFAs), 530
- Simplex volume (SV) calculation, 323
- DSV, 33
- EFAs, 31–32
eigenanalysis methods, 32
GSV
- Cayley–Menger determinant, 37
corollary, 42–43
- vs. DSV, 44–46
- hypertetrahedron, 34
- initial condition, 40–42
- orthogonal projection, 39–40
- parallelotope, 37–39
three-dimensional four-vertex simplex, 34–36
three-dimensional parallelootope, 35–36
three-endmember-vertex simplex, 38–39
two-dimensional three-vertex simplex, 34–36
HYDICE, 44, 45
PCA-DSV vs. PCA-DSV, 44–46
3D space, 43–44
Singular value decomposition (SVD), 359
Spectral Angle Mapper (SAM), 87
SuCcessive N-FINDR (SC N-FINDR), 320
Supervised LSMA (SLSMA), 262

T
Target-embeddedness (TE) experiments, 27, 108–109, 174–177, 180
ATGP, 467–470
cyan upper triangles, 609
dendmember candidates, 608–610
ground truth pixels, 610, 612
LSMA, 514–515
number of processed bands, 611, 613
OSP, 494–496
PPI
endmember candidates, by RHBP-IPP, 569, 571
IPPI vs. RHBP-IPP, 572
mineral signatures, 569, 572
PPI count vs. \(n_t\), 569, 571
PPI count vs. \(n_t\) and \(n_s\) and pixels, 575–578
PPI count vs. number of processed bands and skewers, 573–575
RHBP-C-IPPI process, 578, 579
spatial locations, 610, 612, 613
Target implantation (TI) experiments, 27, 108–109, 172–175, 180, 605–608
ATGP, 464–467
LSMA, 514, 515
OSP, 491–494
PPI
endmember candidates, 562
IPPI vs. RHBP-IPPI, 563
mineral signatures, 562, 563
PPI count vs. \(n_t\), 561, 562
PPI count vs. \(n_t\) and \(n_s\), 566–569
PPI count vs. \(n_t\) and number of skewers, 564–566
RHBP-C-IPPI process, 566, 570

RHB-IPP, 560, 561
Target-specified virtual dimensionality (TSVD). See Virtual dimensionality (VD)

U
Unmixed error analysis
FCLS, 313–316
HFC method, 313
sudden drops, 313, 317
whitened data, 313
Unsupervised FCLS (UFCLS) algorithm, 94–95
Unsupervised least-squares OSP method (ULSOSP) algorithm, 92–93
Unsupervised LSMA (ULSMA), 262
Unsupervised NCLS (UNCLS) algorithm, 94
Unsupervised OSP (U OSP) algorithm, 92

V
Varying skewer set C-IPPI (VC-IPPI), 553
Vector component analysis (VCA), 452
Virtual dimensionality (VD), 262–263, 506, 547
ATGP-NPD, 77–78
AVIRIS data
LCVF scene, 115
2OS-and HOS-based methods, 116
reflectance and radiance data, 112–114
scene, Cuprite, 112
signal energy and strength, MOCA and ATGP, 116–118
EEAs, 74
eigenanalysis
Bayesian detector, 78
HFC method, 81–82, 85–86
IBSI, 78
LSE/MSE, 75–76
LSMA, 80
MOCA, 82–86
NPD, 78, 80
estimation techniques, 78, 79
HFC method, 74–76
HYDICE data, 110–112
MOCA, 76–77
Neyman–Pearson detection, 76
SSE/HySime method, 75
synthetic image, 107–109
targets of interest
HOS-specified target, 97–99
\(n_{VD}\) value, 86
Virtual dimensionality (VD) (cont.)

2OS-based theory (see Second-order-statistics (2OS)-based theory)
spatial targets, 87–88
spectral targets, 87–88
target-specified binary hypothesis testing
ATGP, 103–105
data characterization-driven, 105–17
data representation-driven, 105–107
eigenvalues/eigenvectors, 102
estimation techniques, 102
ICA-HFC, 102
k-MOCA, 101

L feature vectors, 100
Neyman–Pearson detection theory, 101
Virtual endmember (VE), 263
Virtual signature (VS), 263
least-squares estimation, 291–292
MLE-based algorithm, 295–297
MLE error matrix, 295
OSP-based algorithm, 293–295

Woodbury’s matrix identity, 653