Index

A
Acellular nerve allograft, 157
Acetylcholine receptors, 234
Acinar cells, 234
Activated stem cells, 181
Adenocorticotrophic hormone (ACTH), 234
Adenoid cystic carcinoma, 306
Adipose stromal cells (ASC), 217
Adipose tissue stem cells (ASC), 294
ADMET and immunogenicity
pluripotency, 61
tumorigenicity, 61
Adult stem cells (aSC), 36
Advanced glycation end-products (AGES), 210
Advanced Therapy Medicinal Products
(ATMP), 56
Advanced therapy MPs (ATMPs), 22
Age–related Macular Disease (AMD), 213
Air-blood gas-exchange unit, 320
Air-lifting technique, 196
Airway replacement, 304, 307, 308
Allogeneic tissue grafts, 63
Allograft transplantation, 307
Alveolarization, 320
Alzheimer disease (AD)
Aβ-degrading proteases, 94
acetylcholinesterase inhibitors, 94
amyloid precursor protein (APP), 94
BDNF, 95
ChAT, 95
fibroblasts, 95
frontal cortex and hippocampus, 94
kainic acid (KA), 95
memory and cognitive function, 94
neural stem cell (NSC), 95
neurons and synapses, 94
NGF, 94
NGF protein, 95
proteinases, 94
stem cell-based cell therapy, 96
Aminoglycoside antibiotics, 270
Aminoglycoside injury, 273
Aminophylline, 215
Amphibians, 6
lizard tail, 6
Amyotrophic lateral sclerosis (ALS), 41
cell transplantation studies, 92
GDNF, 92
iPSCs, 92
Lou Gehric disease, 91
motoneurons, 93
mouse ESC-derived motor neurons, 91
neurotrophic factors, 91
spinal cord, 93
stem cell transplantation, 93
stem cell-derived motor neurons, 92
systemic transplantation, NSCs, 92
VEGF, 92
Anagyroi, 4
Ancillary materials (AMs), 58
Androgens, 237, 239, 240
Angiogenesis, 207, 292, 296, 332
Areolar fibrous tissue, 270
Aristotelian thesis, 6
Artificial scaffold, 314
Artificial tracheal scaffold, 314
Assisted reproduction technologies
(ART), 42, 43
Astrocyte activation, 152
Astrocyte proliferation, 273

© Springer International Publishing Switzerland 2016
G. Steinhoff (ed.), Regenerative Medicine - from Protocol to Patient,
DOI 10.1007/978-3-319-28293-0
Astrocytes, 206, 272
Astroglial reaction, 272
ATMPs. See Advanced therapy MPs (ATMPs)
Auditory brainstem implant (ABI), 252
Auditory brainstem responses (ABRs), 274
Auditory Progenitor/Stem Cells, 255
Auriculosaurus, 13
Autograft transplantation, 192
Autoimmune diseases, 206
Autoimmune retinopathy, 206
Autologous nerve grafting (autograft), 156
Axon regeneration, 166
Axonotmesis (Class II), 153
Axons, 122

B
Basic fibroblast growth factor (bFGF), 257, 292
Basolateral membrane trafficking, 234
BDNF. See Brain-derived neurotrophic factor (BDNF)
Bevacizumab, 215
Bioengineering airway transplants, 314
Bioengineering tracheal procedures, 313
Blood- Retinal Barrier (BRB), 210
Bone defects, 289, 292
Bone grafting, 290, 292
Bone marrow, 328
Bone marrow derived stem cell (BMSC), 217
Bone marrow MSCs, 312
Bone marrow osteoprogenitors, 293
Bone mesenchymal cells (BMSC), 293
Bone morphogenetic proteins (BMPs), 129
Bone resorption, 285, 286
Bone tissue engineering (BTE), 293–295
Botulinum toxin, 190
Bovine spongiform encephalitis (BSE), 58
Brain-derived neurotrophic factor (BDNF), 90, 95, 149, 218, 253
Bronchio-alveolar stem cells (BASCs), 340
Bronchopulmonary dysplasia (BPD), 320, 322–324
disruption of ECFC homeostasis, 337
disruption of MSC homeostasis, 336
ECFCs for, 342–343
experimental, 338–339
incidence and definition, 321–325
outcomes, 324
pathogenesis
 alveolar and vascular development, 322–324
 contributory factors, 324
 prophylactic treatment, 340
 rescue treatment, 340–341

C
Cadherins, 120
Cardiotoxicity screening, 68–69
Carotenoid pigment, 213
Carpal tunnel syndrome, 148, 164
Cartilaginous rings, 304
CAT. See Committee for Advanced Therapies (CAT)
Cell Candidates for Transplantation, 253–258
 embryonic stem cells, 253
 neural stem cells, 254
Cell delivery, 265–270
Cell encapsulation, 270
Cell generation and isolation, 258–262
Cell Homeostasis in Neonatal Lung Diseases, 336–338
Cell purification, 263–265
Cell theory, 7
Cell therapy, 150, 159–161, 163, 169
Cell Transplantation in Inner ear, 270–271
Cellular replacement, 252
Cellular therapy products (CTPs), 59
Center for Biologics Evaluation & Research (CBER), 54
Center for Drug Evaluation & Research (CDER), 54
Central nervous system (CNS), 150
cell replacement therapy and gene transfer, 84
 chemical bromodeoxyuridine (BrdU), 85
 embryonic and adult human brain, 85
 embryonic rat mesencephalic cells, 84
 ESCs and iPS cells, 85
 fetal brain cells, 84
 fetal brain tissue transplantation, 84
 gene therapy, 86
 human neurological diseases, 86
 immortalized NSCs, 85
 neural development and cell replacement therapy, 85
 neurological diseases, 84
 stem cell-based cell, 86
 stem cells, 85
ChAT. See Choline acetyltransferase (ChAT)
Chemistry, Manufacturing, and Control (CMC), 57
Chicken chorioallantoic membrane (CAM), 310
Choline acetyltransferase (ChAT), 95
Chondrocytes, 309–311, 313
Chondrogenesis, 309
Chondroitin sulfate proteoglycans (CSPGs), 132
Chondroitinase ABC (chABC), 132
Choroidal vascular system, 206
Chromatolysis, 149
Chronic electrical stimulation (CES), 254
Chronic traumatic encephalopathy (CTE), 140
Ciliary epithelia-derived stem cells, 215
Ciliary neurotrophic factor (CNTF), 162
Circulating angiogenic cells (CACs), 333
CLET. See Cultivated limbal epithelial transplantation (CLET)
Clinical Trial Authorisation (CTA), 56
Cluster of differentiation (CD) antigens, 263
CNS regeneration
 after trauma, 130
 axons and dendrites, 116
 biological therapies, 125
 biomaterials, 124
 cell transplantation, 133–135
 cells therapy, 125–126
 classification, 121
 CNS axons, 117
 composition and organization, 117
 cortical gene expression, 133
 dorsal root ganglia, 117
 enriched environment, 123
 factors, 118
 functional regeneration, 116
 gene therapy approaches, 126
 impede regeneration, 122
 influence regeneration, 117
 nanotechnology, 124
 neurite outgrowth studies, 119
 neurobiology, 116
 neuroplasticity, 116
 neuroprotection and neuroregeneration, 122–123
 pharmaceutical approaches, 128
 pharmaceuticals, 127–130
 and plasticity, 116, 120–121, 131
 postmitotic neurons, 117
 therapeutics, 128–129
 treatment and rehabilitation, 116
CNS trauma, 128
Cochlea, 248–257, 259, 261, 263, 265–267, 269–274
Cochlear blood supply, 268
Cochlear compound action potential (CAP) threshold, 271
Cochlear implant, 251–252
Cochlear lateral wall (CLW), 268
Cochlear nerve trunk, 257, 258, 266, 268, 269
Cochlear nucleus (CN), 252
Cochleostomy, 266, 270
Code of Federal Regulations (CFR), 55
Cohnheim hypothesis, 7
Collagen, 162
COMET. See Cultivated oral mucosal epithelial transplantation (COMET)
Committee for Advanced Therapies (CAT), 22
Conditioned Media (CdM), 344–346
ECFC, 346
MSC, 344
Congenital diaphragmatic hernia (CDH), 320, 325–327
 current therapies, 327, 328
 ECFCs for, 343
 experimental, 339–340
 incidence and definition, 325–326
 lung hypoplasia and arrested pulmonary vascular development, 326
 MSCs for, 341, 342
 outcomes, 327
 perturbation of ECFC homeostasis, 337–338
 perturbation of MSC homeostasis, 337
 pathophysiology, 326–327
Congenital tracheal stenosis, 306
Connectival fornix, 230
Connective tissue staining, 310
Connexin-43 (Cx43), 211
Corioamnionitis, 324
Cornea, 180, 181
Corneal epithelia, 181
Corneal epithelial wounding, 180
Corneal epithelium, 185
Corneal impression cytology, 193
Corneal stroma, 185
Cultivated limbal epithelial transplantation (CLET), 188, 193–196
Cultivated oral mucosal epithelial transplantation (COMET), 197
Cultured limbal epithelial transplantation (CLET), 184, 194–195
Current good tissue practice (CGTP), 58
Cyclic guanosine-monophosphate (cGMP), 127
Cyclin-dependent kinase inhibitor (CDKI), 250
Cytoskeleton, 259
D
Deafness, 248, 251, 260, 261, 270,
271, 273, 274
Decellularized tracheal matrix, 310
Deep anterior lamellar keratoplasty
(DALK), 191
Degradable aliphatic polyester scaffolds, 296
Dental pulp stem cells (DPSCs), 217
Dental pulp tissue, 294
Dentin, 294
Department of Health and Human
Services (DHHS), 54
Detergent-enzymatic method, 309
Dexamethasone, 325
Diabetic Retinopathy, 206–212, 216
classification, 208
hyperglycemia and oxidative stress
role, 210–211
inflammation and angiogenesis role,
208–210
lipid mediators role, 211, 212
retinal barrier integrity role, 211
endothelial abnormality, 210
therapeutic management, 215
Diacyl glycerol (DAG), 234
Dihydrotestosterone (DHT), 239
Distorted product otoacoustic emissions
(DPOAEs), 271, 274
Division of Cellular and Gene Therapies,
(DCGT), 54
Division of Clinical Evaluation and
Pharmacology/Toxicology
(DCEPT), 54
Dorsal rhizotomy, 150, 151
Dorsal root ganglion (DRG), 150, 254
DPOAE. See Distortion product otoacoustic
emissions (DPOAEs)
Dry eye syndrome
aqueous deficient, 237
causative/contributing factors, 235
etiology, 235–236
lacrimal gland forms, 234
Ductal cells, 233, 237
Dulbecco’s Modified Eagles Medium
(DMEM), 187

E
Early treatment of retinopathy of prematurity
(ETROP), 214
Ectopic blastocyst injections, 10
Ectopic spiral ganglion, 261
Electrical fields (EFs) in CNS, 123, 124
Electrotherapy, 164–165
EMA. See European Medicines
Agency (EMA)
Embryogenesis, 250
Embryology, 6, 7
Embryonic stem cells (ESCs), 159, 197, 253
Embryonic tooth germ cells, 296
Enamel matrix proteins (EMD), 289
Endogenous stem cells, 215
Endolymph, 267
Endosseous cylindrical implant systems, 286
Endosseous implantation, 287
Endothelial colony forming cells (ECFCs),
217, 333
mechanism of action, 335, 336
resident lung, 334–335
source of, 334
Endothelial progenitor cells (EPCs), 332–336
End-to-side neurotization, 156
Epideiology of Diabetes Interventions and
Complications (EDIC) study, 210
Epidermal growth factor (EGF), 254
Epigenesis, 2, 6
Epithelial lineage marker expression, 192
Epithelial-mesenchymal interaction, 232
Epithelium, 180
EPO. See Erythropoietin (EPO)
Erythropoietin (EPO), 213, 312
Ethical consensus, 39
Etiopathogenesis, 236, 238
EU Stem Cell Regulatory Organizations, 56
European Medicines Agency (EMA), 22
European Tissue Engineering Society
(ETES), 13
Evaporative dry eye, 235
Exogenous stem cells, 215
Exosomes, 332
Extra-corporeal membrane oxygenation
(ECMO), 327
Extra-embryonic tissues, 329

F
Feeder cells, 186
Fetoscopic endoluminal tracheal occlusion
(FETO), 327
Fibroblast feeder cell layer, 196
Fibroblast growth factor (FGF),
162, 260, 309
Fibroblast growth factor 8 (FGF8), 86
Fibro-elastic tissue, 304
Fibronectin, Collagen, and Laminin
(FCL), 197
Flow cytometry, 263
Fluorescein angiography, 208
Fluorescent Automated Cell Sorting (FACS), 263
Food and Drug Administration (FDA), 54

G
G-CSF. See Granulocyte colony-stimulating factor (G-CSF)
GDNF. See Glial cell line-derived growth factor (GDNF)
Gene editing, 46–47
Gene therapy, 150, 162–163, 169
Germ cells, 10
Glial cell line-derived growth factor, 92
Glial cell line-derived neurotrophic factor (GDNF), 218, 253
Glial cells, 119
Glial derived neurotrophic factor (GDNF), 149
Glial scar, 118
Glial Transitionary Zone, 272
GMP. See Good manufacturing practice (GMP)
Good manufacturing practices (GMP), 30, 259
Graft versus host disease (GVHD), 63
Granulocyte colony-stimulating factor (G-CSF), 312
Green fluorescent protein (GFP), 253
Growth cone, 149
GTP cyclohydrolase-1 (GTPCH-1) gene, 87
Guided tissue regeneration (GTR), 287
Guinea pig model, 270

H
Haematology, 264
Haematopoetic stem cells, 264
Hair cell progenitor populations, 265
Hair cell replacement, 268
Hair-follicle stem cells, 161
hAM. See Human amniotic membrane (hAM)
Hayflick limit, 7
HCE. See Human Corneal Epithelial (HCE)
Hearing, 248
Hearing impairment, 248
Hematopoetic stem cells (HSCs), 53, 126, 216
Hepatotoxicity screening, 73–74
hESC-derived otic neuroprogenitors (hONPs), 269
High proliferative potential ECFCs (HPP-ECFCs), 334
Highly proliferative lung resident endothelial cells (HP-PAECs), 337
Hippocampal tissue, 254
Homunculus, 6
Hospital exemption clinical trials, 26–27
individual patient treatment, 27–28
Human airway, 305
Human amniotic membrane (hAM), 184, 187
Human corneal epithelial (HCE), 188
Human Corneal Epithelium Medium (HCEM), 188
Human dignity, 38–40, 47
Human embryonic stem cells (hESCs), 258
Human endothelial progenitor cells, 217
Human Fetal Auditory Stem Cells, 259–260
Human fetal cochlea, 259
Human foetal auditory stem cells (hFASCs), 255
Humoral autoantibodies, 119
Huntington disease (HD)
brain transplantation, 89
brain-derived neurotrophic factor (BDNF), 89
cell replacement therapy, 89
excitotoxic animal models, 89
fetal human brain tissue, 89
kainic acid (KA), 89
neural cell transplantation, 90
neurons and glia, 89
neuroprotection, 90
neutrophil, 89
3-nitropropionic acid (3-NP), 90
3-NP toxin, 90
3-NP-HD animal models, 90
quinolinic acid (QA), 89
stem cell-based therapy, 90
transplantation of NSCs, 89
Hybridoma technologies, 264
Hydrogel matrix, 270
Hydroxymethylcellulose, 238
Hyperbaric oxygen (HBO) therapy, 123
Hyperglycemia, 207, 210
Hyperglycemia Diabetic Retinopathy model, 217
Hyperoxia, 212, 340
Hyperoxia-vasoconstriction, 207
Hypertensive Retinopathy, 206
Hypoxia, 212

I
Immunogenicity, 62–65
Individual HLA alleles, 63
Induced pluripotent stem cells (iPSC), 36, 53, 197, 217, 256–257
Inner hair cells (IHCs), 248
Instant blood mediated inflammatory reaction (IBMIR), 60
Insulin-transferrin-sodium selenite (ITSS), 257
Internal auditory meatus (IAM), 269
intraoperative, 311
In vitro cultures, 311
In-vitro culturing, lacrimal gland acinar cells, 239
In vivo tissue engineering, 311
In vivo tracheal strategy, 312–314

K
Keratoconjunctivitis sicca (KCS), 238, 240

L
Lacrimal functional unit (LFU), 230, 234
Lacrimal gland acinar cells, 239
Lacrimal gland dysfunction, 235, 238
Lacrimal gland regeneration
aqueous deficient dry eye, 237
dry eye syndrome, 234–236
embryology and development, 230–232
etiopathology, 240
histology, anatomy and physiology, 233–234
human lacrimal gland in-vitro studies, 240–241
in-vitro cultures, 238–239
KCS, 238
mouse models, 239
neurturin deficient mice, 240
progress, 242
rabbit model of KCS, 240
regeneration, 241–242
tear film, 230
types, 230
Laser capture microdissection, 193
LASER therapy, 165, 168
Late-outgrowth EPCs, 335
Lateral semicircular canal (LSCC), 266
L-dihydroxyphenyl alanine (L-DOPA), 86
L-DOPA. See L-dihydroxyphenyl alanine (L-DOPA)
Limbal epithelial cells (LEC), 180
Limbal epithelial stem cells (LESC), 181
Limbal epithelial transplantation, 185
Limbal stem cell (LSC), 180–182
Limbal stem cell deficiency (LSCD), 180, 183, 184
bilateral, 198
etiology, 183
Limbus, 180, 181
Low intense aerobic exercise, 165
Low proliferative potential ECFCs (HPP-ECFCs), 334
Lung development, 320
canalicual phase, 320
embryonic phase, 320
pseudoglandular stage, 320
saccular stage, 320
Lung development stages, 321
Lung hypoplasia, 320, 326
Lung Resident MSCs (L-MSCs), 329–330
Lutein, 213

M
Marrow stromal cells (MSCs), 309
Massachusetts Institute of Technology (MIT), 12
Matrix metalloproteinasines (MMP9), 236
Medicinal products (MPs), 21, 22
Meibomian gland dysfunction, 235
Mesenchymal cells (MSCs), 126
Mesenchymal stem cells (MSCs), 53, 59–61, 100, 159, 169, 197, 253, 255, 256, 293, 313, 331
Mesenchymal stem/stromal cells (MSCS), 328
immunomodulatory properties, 332
lung resident MSCs, 329
mechanism of action, 330
origin, 328
paracrine effect, 331, 332
source, 328, 329
Mesenchyme-derived fibroblast layer, 337
Microsurgical techniques, 154–158
Mitochondrial DNA (mtDNA), 37
Monoclonal antibodies (MAbs), 136
Mononeuropathy, 148
Mononuclear cells (MNCs), 333
Monsanto swine case, 14
Motoneurons, 152
MPs. See Medicinal products (MPs)
MSCs. See Mesenchymal stem cells (MSCs)
Multiple sclerosis (MS)
experimental animal models, 97
F3.Olig2 human NSCs, 98
OLG progenitor cells, 97
retroviral vector encoding myc oncogene, 97
spinal motoneurons, 98
stem cell transplantation, 98
transplantation of human OLGs, 97
Oligodendrocyte-myelin glycoprotein (OMgp), 118
Oligodendrocytes, 272
Oral cavity
dental research, 284
digestive process, 284
mastication, 284
nutritional intake, 284
oral esthetics, 285
periodontal health, 285
tissue types, 284
Oral stem cells
bone marrow, 293
growth factors, 292
PDL cells, 294
PDSC, 294
strategies, 293
STRO-1, 293
tissue engineering, 293
Organ replacement therapy, 41–42
Organ transplantation history, 6
Osseointegration of dental implant, 285
Otic progenitors, 262
Otic Stem Cell Full Media (OSCFM), 259
Outer hair cells (OHCs), 248, 274
Oxygen-induced retinopathy (OIR), 212

P
Palisades of Vogt, 181, 186
Palliative treatment, 306
Paracrine effects, 296–297
Parkinson’s disease (PD), 87
DA neurons, 86, 87
dopamine neurons (DA), 86
fetal tissue transplantation, 86
gene transfer technology, 87
GTPCH-1 gene, 87
human fetal ventral mesencephalic tissues, 86
iPS cells, 88
L-DOPA, 86
stem cell-based cell therapy, 88
Pathophysiology, 326–327
Penetrating keratoplasty (PKP), 184, 191, 196
Perilymphatic transplantation, 266
Periodontal disease, 287, 289
Periodontal ligament (PDL), 294
Periodontal regeneration, 287
Periodontitis, 287
Periodontium, 287
Peripheral blood cell mobilization, 313
Peripheral blood mononuclear cells (PBMNCs), 218
Peripheral nerve injuries, 148–150, 152
Peripheral nerve regeneration,
158–164, 167, 168
Peripheral nervous system (PNS), 154–169
regenerative therapies
autologous graft, 166
cell therapy, 159, 160
cell therapy and gene therapy, 169
clinical relevance, 166
electrical stimulation, 167
gene therapy, 162, 163
LASER therapy, 168
microsurgical techniques, 154–158
molecules delivery, 161, 162
nerve guides and allografts, 167
physical therapies, 163–166
Peripheral neuropathies, 148
Pharmaceutical intervention, 311
Pharmaceutical quality, 33
identity and stability, 57–58
IND submission, 56
purity and ancillary materials, 58
Pharmacokinetics and Pharmacodistribution (PK/PD), 61–62
Photodynamic therapy with verteporfin (PDT-V), 215
Physical exercise, 165
Physical therapies, 163–166
electrotherapy, 164
exercise, 165, 166
LASER therapy, 165
Placebo treatment, 168
Placental fluids, 329
Pluripotency genes, 260
Pluripotent cells, 265
Pluripotent stem cell derived gametes (PSCDG), 37
Pluripotent stem cells (PSCs), 159, 197, 257–258, 260, 262
Polyethylene glycol (PEG), 135
Polyneuropathy, 148
Post-menstrual age (PMA), 322
Postnatal tooth germ cells, 296
Potency, 32, 59
PPAR agonists, 130
Preclinical development defined, 53
guidance for industry, 55
Primary tracheal tumors, 306
Progenitor cells, 311
Proliferative diabetic retinopathy, 208
Proposition No71, 16
Protein kinase C (PKC), 210
Public Health Safety Act (PHSA), 55
Pulmonary artery endothelial cells (PAEC), 346
Pulp-derived mesenchymal stem cells (PDSC), 294
Purtscher’s retinopathy, 206

R
Radiation retinopathy, 206
Radiation therapy, 237
Randomized controlled trials (RCTs), 325
Ranibizumab, 214
Reactive oxygen species (ROS), 207, 210
Reconstruction of large bone defects, 290
Regenerative dentistry, 295–296
Regenerative medicine (RM), 1, 16, 126, 304
in ancient world, 2–6
artificial gametes, 42–43
in early research, 6, 7, 9, 11, 12
era of, 13–17
embryo research and hESC, 39–41
ethical and legal framework, 38–39
ethical consensus, 39
gene editing, 46–47
human dignity and rights, 47
individual, 44
legal, 45–46
non-maleficence and beneficence, 47
organ replacement/neurological therapies, 41–42
point of departure, 35–37
societal, 44
Regenerative Tracheal Strategy, 307–312
Regulatory requirements, 22, 32
Repetitive transcranial magnetic stimulation (rTMS), 123
Reprotoxicity screening, 70–71
Retina, 206, 212
Retinal diseases
 current therapies, 214–215
Retinal ganglion cell (RGC), 217
retinal pigment epithelial (RPE) stem cells, 215
Retinal stem cells, 218
Retinal vascular system, 206–207
Retinoic acid, 130
Retinoid signaling pathway, 326
Retinopathy, 206
autoimmune retinopathy (see Autoimmune retinopathy)
diabetic retinopathy (see Diabetic retinopathy)
hypertensive retinopathy (see Hypertensive retinopathy)

Purtscher’s retinopathy (see Purtscher’s retinopathy)
radiation retinopathy (see Radiation retinopathy)
regenerative cell therapies, 215–218
retinopathy of prematurity (see Retinopathy of prematurity)
solar retinopathy (see Solar retinopathy)
stem cell field, 215
Retinopathy of prematurity, 206, 207, 212–214
growth factors role, 213
inflammation role, 213
oxidative stress role, 212, 213
pathogenesis, 214
Rho-kinase (ROCK), 133
Rockefeller Research Institute, 7
Rosenthal’s canal, 249, 253–255, 257, 266, 267, 269, 270, 275
Rosenthal’s canal approach, 269–270

S
Scaffolds, 304, 308, 309
Scala tympani (ST), 249, 252, 253, 255, 266–270
Scala vestibuli (SV), 249
Schwann cell basal lamina tubes, 156
Schwann cells, 149, 159–161, 163, 272
SCT. See Somatic cell therapy medicinal product (SCT)
SDH. See Succinate dehydrogenase (SDH)
Secretory acinar cells, 233
Seddon’s classification, 153
Segmental osteodistraction, 291
Sensorineural hearing loss (SNHL), 248, 272, 273
Sensory cells, 248, 256
Sensory neurons, 249, 258, 268
Serum supernatant, 188
Severe dento-alveolar trauma, 292
Simple Limbal Epithelial Transplantation (SLET), 196
Sjogren syndrome dry eye, 240
Sjogren’s, autoantigens, 237
SJS. See Stevens-Johnson syndrome (SJS)
Skin-derived stem cells, 160
SLET. See Simple limbal epithelial transplantation (SLET)
SNHL. See Sensorineural hearing loss (SNHL)
Solar retinopathy, 206
Somatic cell therapy medicinal product (SCT), 25
Somatosensory, 151
<table>
<thead>
<tr>
<th>Index</th>
</tr>
</thead>
<tbody>
<tr>
<td>Somatotopy, 151</td>
</tr>
<tr>
<td>Spinal cord injury (SCI), 116</td>
</tr>
<tr>
<td>antagonism of inhibitors, 131–133</td>
</tr>
<tr>
<td>artemin, 136</td>
</tr>
<tr>
<td>combined approaches, 138</td>
</tr>
<tr>
<td>fampridine, 136</td>
</tr>
<tr>
<td>functional recovery, 131</td>
</tr>
<tr>
<td>physical methods, 137–138</td>
</tr>
<tr>
<td>RNAi, 137</td>
</tr>
<tr>
<td>strategies, 132</td>
</tr>
<tr>
<td>transplantation, 134</td>
</tr>
<tr>
<td>Spiral ganglion neurons (SGNs), 248</td>
</tr>
<tr>
<td>Spontaneous activity, 150</td>
</tr>
<tr>
<td>Squamous cell carcinomas, 306</td>
</tr>
<tr>
<td>Stem cell research, 40–42</td>
</tr>
<tr>
<td>Stem cell therapy</td>
</tr>
<tr>
<td>2008 Market Surveillance Regulation, 26</td>
</tr>
<tr>
<td>ATMP products, 33</td>
</tr>
<tr>
<td>blood products, 24</td>
</tr>
<tr>
<td>cell sources, 29</td>
</tr>
<tr>
<td>cell-based product, 24</td>
</tr>
<tr>
<td>certification, 31</td>
</tr>
<tr>
<td>complex biological, 32</td>
</tr>
<tr>
<td>Directive 2004/23/EC, 23</td>
</tr>
<tr>
<td>hospitals exemption, 26</td>
</tr>
<tr>
<td>manufacturing, 30</td>
</tr>
<tr>
<td>Medicines Directive, 24–26</td>
</tr>
<tr>
<td>mode of action (MoA), 24</td>
</tr>
<tr>
<td>MPs, 21, 22</td>
</tr>
<tr>
<td>place a product on the market, 33</td>
</tr>
<tr>
<td>post-marketing, 31–32</td>
</tr>
<tr>
<td>pre-clinical development, 29</td>
</tr>
<tr>
<td>regenerative medicine, 33</td>
</tr>
<tr>
<td>regulatory exclusivity, 32</td>
</tr>
<tr>
<td>reimbursement, 32</td>
</tr>
<tr>
<td>risk analysis, 29</td>
</tr>
<tr>
<td>small molecule, 32</td>
</tr>
<tr>
<td>substantial manipulation, 23</td>
</tr>
<tr>
<td>Tissue Directive, 23</td>
</tr>
<tr>
<td>tissue/cells, 24</td>
</tr>
<tr>
<td>Stem cell transplantation, 252</td>
</tr>
<tr>
<td>Stem cells, 129, 237, 242</td>
</tr>
<tr>
<td>embryonal carcinoma (EC), 10</td>
</tr>
<tr>
<td>embryonic (ES), 11</td>
</tr>
<tr>
<td>mesenchymal, 11</td>
</tr>
<tr>
<td>Stenosis, 305</td>
</tr>
<tr>
<td>Stevens-Johnson syndrome (SJS), 188</td>
</tr>
<tr>
<td>Storage, 314</td>
</tr>
<tr>
<td>Streptozotocin (STZ), 208, 217</td>
</tr>
<tr>
<td>Stria vascularis, 271</td>
</tr>
<tr>
<td>Stroke</td>
</tr>
<tr>
<td>animal models, 99</td>
</tr>
<tr>
<td>ESC- and iPSC-derived cells, 99</td>
</tr>
<tr>
<td>focal ischemia and cerebral hemorrhage, 99</td>
</tr>
<tr>
<td>immortalized cell lines, 103</td>
</tr>
<tr>
<td>ischemia and intracerebral hemorrhage (ICH), 99</td>
</tr>
<tr>
<td>ischemic stroke, 99</td>
</tr>
<tr>
<td>MSCs, 100</td>
</tr>
<tr>
<td>neurons/glial cells, 103</td>
</tr>
<tr>
<td>NPCs, 99</td>
</tr>
<tr>
<td>NSC-derived neurons/glial cells, 102</td>
</tr>
<tr>
<td>NSCs, 99</td>
</tr>
<tr>
<td>stem cell-based cell therapy, 101–102</td>
</tr>
<tr>
<td>stem cells, 102</td>
</tr>
<tr>
<td>Stromal cell-derived inducing activity (SDIA), 256</td>
</tr>
<tr>
<td>Succinate dehydrogenase (SDH), 90</td>
</tr>
<tr>
<td>Supporting cells (Scs), 249–251, 254, 263, 267, 268, 271, 273, 275</td>
</tr>
<tr>
<td>Synchronising multiple signalling pathways, 261</td>
</tr>
<tr>
<td>synthetic construct, 314</td>
</tr>
<tr>
<td>T</td>
</tr>
<tr>
<td>Tacrolimus, 156</td>
</tr>
<tr>
<td>TCA cycle. See Tricarboxylic acid (TCA) cycle</td>
</tr>
<tr>
<td>Tear film, 230, 234, 236, 238, 240</td>
</tr>
<tr>
<td>Tear film stability, 236</td>
</tr>
<tr>
<td>Tear hyperosmolarity, 236</td>
</tr>
<tr>
<td>Teeth, 285, 286</td>
</tr>
<tr>
<td>deciduous teeth, 295</td>
</tr>
<tr>
<td>SHED, 295</td>
</tr>
<tr>
<td>Tension-free microsurgical method, 154</td>
</tr>
<tr>
<td>TEP. See Tissue engineered product (TEP)</td>
</tr>
<tr>
<td>TGF-β3, 310, 312</td>
</tr>
<tr>
<td>TH. See Tyrosine hydroxylase (TH)</td>
</tr>
<tr>
<td>Tissue engineered approach, 307</td>
</tr>
<tr>
<td>Tissue engineered product (TEP), 25</td>
</tr>
<tr>
<td>Tissue engineered technique, 308</td>
</tr>
<tr>
<td>Tissue engineering, 7, 10, 12, 13</td>
</tr>
<tr>
<td>Tissue Engineering International (TEI), 12</td>
</tr>
<tr>
<td>Tissue Engineering Society international (TESi), 13</td>
</tr>
<tr>
<td>Tracheal</td>
</tr>
<tr>
<td>allotransplantation, 307</td>
</tr>
<tr>
<td>anatomy and pathology, 304–306</td>
</tr>
<tr>
<td>damage, 304</td>
</tr>
<tr>
<td>luminal part, 305</td>
</tr>
<tr>
<td>matrix, 309</td>
</tr>
</tbody>
</table>
primary tumors, 306
replacement strategy, 306–307
stenosis, 305
substitute, 308
Tracheomalacia, 305
Transcranial direct current stimulation (tDCS), 123
Transcutaneous Electrical Nerve Stimulation (TENS), 164
Transforming growth factor-β (TGF-β), 309
Transiently amplifying cells (TAC), 182
Translabyrinthine approach, 270
Transplanted neurospheres, 266
Traumatic brain injury (TBI), 116
cell therapy, 138–139
gene therapy, 139
nanomaterial scaffolds, 139–140
Trephination, 4
Trephined Incan skulls, 4
Triamcinolone, 215
Tricarboxylic acid (TCA) cycle, 90
Tumorigenicity, 254
ESC-derived neuroprogenitor cell, 65
glioneuronal neoplasm, 65
immunocompetent human patients, 67
immunodeficient animals, 66
immunodeficient mice, 67
induction and maintenance, 66
iPSC/ESCs, 67
iPSCs, 65
pluripotency, 65
preclinical development, 66
teratoma assay, 66
Tumour necrosis factor-α (TNF-α), 312
Tyrosine hydroxylase (TH), 87
U
Umbilical cord blood stem cells (UCBSCs), 218
US Stem Cell Regulatory Organizations, 54–56
V
Vaccines, 127
Vascular disease, 206
Vascular endothelial growth factor (VEGF), 92, 162, 207, 213
Vascularization, 14
Vasculogenesis, 206, 332
VEGF. See Vascular endothelial growth factor (VEGF)
Ventral cochlear nucleus (VCN), 269
Vestibular organ, 249, 250
Voltage-gated potassium channel, 150
W
Wallerian degeneration, 149, 153
World Health Organization (WHO), 248
X
Xerophthalmia, 236
Y
Y-chromosome fluorescence in situ hybridization (Y-FISH), 254
Y-FISH technique, 267