Index

A
- Abrasion resistance, 119
- Additives, 359, 360, 362, 364, 369
- Aesthetics, 119
- Afterglow, 340
- Alumina trihydrate, 332
- Aluminium hydroxide (ATH), 118, 332
- Asbestos, 222, 481
- Aspect ratio, 197, 199
- ATH. See Aluminium hydroxide (ATH)

B
- Battery separators, 303
- Bio-fillers, 316
- Biopolymers, 167
- Boehmite, 334
- Building and construction, 343
- Bulk molding compound (BMC), 122
- Bunsen burner test, 347

C
- Calcined clays, 162, 169–171
- Calcium carbonate, 457
 - crystal modifications of, 150
 - GCC, 156
 - PCC, 156–158
- Carbon black, 130, 132, 133, 139–142, 447
 - adhesion, 133
 - definition, 376
 - dispersion, 392
 - dual-phase blacks, 267–269
 - elastomer properties, 137
 - elastomers, reinforcement of, 279–288
 - electrical and thermal conductivity, 278, 382–384
 - filler-grade carbon blacks, 278
 - formation, principles of, 265–266
 - furnace black process, 266–267
 - global markets for, 264
 - graphitization procedure, 136
 - manufacturing process, 384–386
 - material characteristics, 379–382
 - microstructure, 270–271
 - morphological properties, 269–270
 - for pigmentation, 288
 - polymer composites, 386–396
 - porosity, 271–273
 - primary particle size, 135, 271–273
 - production, 264, 266, 273, 276
 - vs. silica, 143
 - size and shape, 273–276
 - solid contaminants, 278
 - structure, 273–276, 379, 380
 - surface-modified blacks, 269
 - surface properties, 277–278
 - unconventional sources, 269
 - use of, 263
 - UV protection, 288–290
- Carbon nano-tubes, 481
- Cellulose, 322
- Char, 348
- China clay, 162
- Clay
 - aspect ratio, 166
 - calcined, 162, 169–171
 - China, 162
 - definition, 162
 - flash calcined, 171
 - hard and soft, 167
 - secondary, 167
 - Clay mineral, 162
 - Coatings, 307, 310
 - Color pigment, 264
 - Color, talc, 197
Composite, polymer, 19
Composition dependence, of properties
 conductivity, 86
 rheology, 80
 stiffness, 80
 tensile property, 83
 yield strain, 82
Compound processing, 392–394
Conductive polymer composites
 carbon black-filled, 386
 uses, 377
Cone calorimetry, 347–350
Coupling agents, 133, 140, 143, 319, 323
Cristobalite, 427, 431, 433, 435

D
Decomposition temperature, 336
Deformation and failure, 76–77
Dental compounds, 242–243
Devulcanisation, 458–459
Differential scanning calorimetry, 335
Differential thermal analysis, 336
Dispersing agent, 120
Dispersion, 100, 108
Dual-phase blacks, 267–269

E
Elastomer filler, 23–24
 carbon black and, 279–288
 dispersion, 132–136
 dynamic properties of, 137–138, 285
 elastomer adhesion, 133–134, 136
 elastomer performance, 134
 filler structure, 136–137
 non-reinforcing, 128
 permanent structure, 132
 reinforcement mechanisms, 128, 285–288
 role of, 130
 semi-reinforcing, 128
 shape and structure, 131
 silica vs. carbon black, 143
 silicone elastomers, 144
 size and specific surface area, 131
 tire applications, 138–139
 transient structure, 132
Electrical conductivity, 387, 390, 420
Electric cables, 343
Electrostatic discharge (ESD)
 protection, 378

Endothermic decomposition, 334
Epoxy resins, 123, 218
Ethylene-vinyl acetate, 341
Exotherm control, 115
Extender pigments, 174

F
Fatty acid, 31, 33, 35
 coating in composites, 37–39
 saturated, 36–37
Feldspar, 429, 435
 applications, 236
 availability, 234
 definition, 232
 mineralogy, 233–234
 properties, 235
Fillers, 4
 composite sustainability, 442–443
 in polymer composite, 19–25
 particulate, 6–19
 recycling, 448–449
 silane treatment, susceptible
 types, 41
 surfaces, 31, 42
 treatment, 32
Film
 agricultural, 239–240, 433–436
 polyolefin, 233, 237, 426, 428, 433
 production process, 427
Flame retardancy, 118–119
Flash calcined clays, 171
Foams, 343
Fumed silica, 130, 144
Furnace black, 266–267, 278

G
Gas barrier, 421–422
Glass
 borosilicate, 450
 commercial, 450
 fibre, 450
 types, 449
Granulation, 458
Graphene, 477
Graphite, 476–477
 crystallinity, 408–410
 definition, 402
 manufacturing process, 403–407
 particle size, 410–411
 purity, 408
surface properties, 411
texture, 410
uses, 403
Greenhouse thermal management, 239–240, 434, 437
Ground calcium carbonate (GCC), 156
elastomers, 155–156
environmental impact and sustainability, 158–159
polymer applications of, 153–154
production, 152–153
properties, 153
thermoplastics, 154–155
thermosets, 155

H
Halloysite, 482
Halogens, 331
Heat
capacity, 338
conductivity, 356, 358, 359, 361, 365, 368, 372
distortion temperature, 198
management, 367
release rate, 347
Huntite, 332
Hydromagnesite, 332

I
Ignition, 330
Incandescence, 340
Infra-red adsorption, 174
Interfacial interactions, 55
interphase formation, 67–69
type and strength, 65–67
wetting, 70–71
Internal mixer, 105
Iron oxide, 247, 252

K
Kaolin, 162
Kaolinite, 162
Ko-kneader, 106–107

L
Lamellarity talc, 197, 198, 200
Lead glass, 450–451
Lewis and Bronsted acid sites, 167
Lignin, 323, 445
Limiting oxygen index, 344
Lubrication, 414–416

M
Magnesium carbonate, 332
Magnesium hydroxide, 332
Magnete, 246
chemistry, 247
electrical properties, 250
induction heating, 249
magnetic properties, 249–250
microwave properties, 252–254
properties, 247
safety, 247
surface chemistry, 247
thermal properties, 250–252
Metakaolin, 162, 170, 172
Mica
applications, 179
composition and properties, 180
definition, 178
muscovite, 183–185
phlogopite, 179–183
surface treatment, 188–193
Microporous polymer, 303
Microscale combustion calorimetry, 350
Microwave properties, of minerals, 252–254
Minerals, 7, 9, 16, 21, 360
Mixing, with filled polymers
high-intensity melt, 105–107
mechanism of, 99–100
mixture characterization, 104
premixing, 104
Modifer, surface
methods of using, 31–33
types, 35–37
Muscovite, 183–185

N
Nano-cellulose, 479–481
Nano-clays, 472–475
Nano-composites, 465
Nano-fibres, 479–482
Nano-fillers, 466, 468
Nano-particles, 465–466
Nano-plates, 470–472
Nano-starch, 478–479
Nepheline syenite, 233, 234, 236, 239, 430, 434–435
Nesquehonite, 333
Oil absorption, 120
Organo-silanes, 168, 173
 applications, 42
 with filler surfaces, 42
Organo-titanates (titanates), 46–47
Oxygen depletion calorimetry, 349

P

Particle shape, 12–14
Particle size, 9–11, 198, 200, 201
Particulate-filled polymers
 aggregation, 61–63
 anisotropic particles orientation, 63
 attrition, 61
 composition, 55
 consumption, 53
 interfacial interactions, 55
 (see also Interfacial interactions)
 micromechanical deformations, 76–78
 particle shape, 58
 particle size distribution, 56–57
 properties, 78–86
 segregation, 61
 specific surface area, 57
 structure, 55, 59
 surface free energy, 57
 surface modification, 71–76
 uses, 53
Particulate fillers
 epoxy resins, 123
 phenolic resins, 123
 polymethylmethacrylate, 123
 polyurethanes, 123
 properties in thermoset polymers
 abrasion resistance, 119
 aesthetics, 119
 cost saving, 115
 exotherm control and shrinkage reduction, 115
 flame retardancy, 118–119
 pre-cure mix, rheology, 120–121
 stiffness (modulus), 115–117
 thermal conductivity, 117–118
 thermal expansion, 117
 toughness, 119–120
 transparency, 121
 unsaturated polyester resins, 121–123
Percolation
 models, 396–398
 threshold, 389–392
Permeability, 200
Phenolic resins, 123, 221–226
Phlogopite, 179–183
Platelet, 178, 179, 188, 193
Polyamide (PA), 185, 216–218
Polymers
 composite, 19
 fillers and, 18
 GCC, 153–154
 intrinsically conducting p, 420
 PCC, 158
 polymer based papers, 303
 self-lubricating, 414
 thermal conductivity, 416–420
 types, 4, 7
Poly(methylmethacrylate) (PMMA), 123
Polypropylene (PP), 182, 184, 211–216
Polyurethanes, 123
Precipitated calcium carbonates (PCC)
 advantages, 156
 carbonation, 157
 double decomposition, 156
 environmental impact and sustainability, 158–159
 in polymers, 158
Precipitated silica, 138–143
 description, 295
 production, 295–296
 properties, 297–299
 safety, 299
 sustainability, 299
Processing window, 336
Proteins, 324
PUR R-RIM systems, 218
Purity, of talc, 197
Pyrolysis, 447, 455
 applications, 456–457
 properties, 455–456
Radiation, 348
Radiation shielding, 254, 255
Recycling, 123, 201, 441–442
 filler, 448–449
Reinforcement, 128, 130, 134, 144, 179, 211, 218, 279–288, 300, 310
Rheology, 101, 120
Rheology control agents, 304, 310–311
Rice hulls, 324–325
Rubber
 silicone, 306
 styrene-butadiene, 295
S
Secondary clays, 167
Sheet molding compound (SMC), 122
Shrinkage, 115
Silanes, 298
Silica
 fume, 308–309
 fumed, 304–308
 gels, 309–310
 precipitated, 295–304
Smoke, 340
Specialty filler, 246, 254
Starch, 321–322, 444
Stearic acid, 33, 35, 37
Stiffness (modulus), 115, 117
Surface modification, 71
 coupling, 73–74
 functionalized polymers, 74–75
 nonreactive treatment, 71–73
 soft interlayer, 75
Surface modifier
 methods, 31–33
 types, 35–37
Surface treatment, 188–193
 talc, 198, 200
Sustainability, 123, 350, 441–448

T
Talc
 definition, 196
 extraction and processing, 196
 grades, 197–198
 occurrence, 196
 polymer uses, 198–200
 properties, 197
 recycling in polyolefins, 459
 recycling issues, 201
Test methods, 343–346
Thermal expansion, 117
Thermogravimetry, 335
Thermoplastics, 19–23, 198, 201, 279
Thermoset plastics, 112
Thermosets, 24–25
Thixotropy, 310
Time to ignition, 347
Tires, 127, 137–143
Toughness, 119
Toxicity, 331
TPU, 193
Twin-screw extruder, 107

U
UL 94, 347
Ultracarb, 338
Unsaturated polyester resins (UPR), 121–123
UV stabilizer, 289

W
Wollastonite
 availability, 206
 definition, 205
 in epoxy resin, 218
 in fluoroelastomers, 226–229
 mineralogy, 205
 particle-size distribution, 208–209
 in phenolic resin, 221–226
 in polyamide, 216–218
 in polypropylene, 211–216
 properties, 207–208
 in PUR R-RIM, 218
Wood flour, 445–446
 applications, 318–320
 production, 317–318
Z
Zirco-aluminate, 47