Index

| A | Accelerated case scenario, 412, 414, 419
| | Acemoglu, D., 27
| | Adivashi Fisheries Project, 291
| | Admassie, A., 397–419
| | Afgya-Kwabre District, 393
| | Africa, 146, 156, 183, 226, 227, 230, 232, 234, 235
| | AFSP. See Agriculture and Food Security Program (AFSP)
| | Agricultural Development Led Industrialization (ADLI), 114
| | Agricultural innovation system (AIS) approach, 11
| | Agricultural Knowledge and Information System (AKIS), 117
| | Agricultural Research for Development (AR4D), 102
| | Agricultural technologies CA, 187
| | economic surplus approach, 400
| | ex-ante analysis, 400
| | GR, 399
| | households, 183
| | mechanical thresher, 185
| | small-scale biomass production, 187, 189
| | stochastic simulation, 400
| | treadle pumps, 186
| | Agriculture and Food Security Program (AFSP), 100, 110
| | Agriculture and Rural Development Partners Linkage Advisory Council (ARDPLAC), 119
| | Agriculture Development Partners Linkage Advisory Council (ADPLAC)
| | ATVETs, 122
| | awareness and effectiveness, 121
| | chronic linkage, 122
| | MLE, 121
| | modernization, 121
| | operational and strategic innovation, 123
| | predecessors, 120
| | research and extension processes, 14
| | rural development-related organizations, 120
| | stakeholder platforms, 121
| | Agro-ecological potential (AEP), 9, 10
| | Ahmed, A.U., 241–255
| | Ahmed, N., 310
| | Alston, J.M., 400, 406
| | Amabile, T.M., 67
| | Amhara Seed Enterprise (ASE), 128
| | Analytical hierarchy process (AHP), 203, 204
| | Annon-Frempong, I., 369–394
| | AR4D. See Agricultural Research for Development (AR4D)
| | ASE. See Amhara Seed Enterprise (ASE)
| | Assessment and survey methodology emerging economies, 262
| | marginal areas, 262
| | poor smallholders (SHs), 264
| | sample survey, 264

© The Author(s) 2016
F.W. Gatzweiler, J. von Braun (eds.), *Technological and Institutional Innovations for Marginalized Smallholders in Agricultural Development*,
DOI 10.1007/978-3-319-25718-1

© The Author(s) 2016
F.W. Gatzweiler, J. von Braun (eds.), *Technological and Institutional Innovations for Marginalized Smallholders in Agricultural Development*,
DOI 10.1007/978-3-319-25718-1
Asuming-Brempong, S., 369–394
Atebubu-Amantin District, 388, 393

B
Badstue, L., 183, 189, 193
Banerjee, A.V., 77
Bangladesh, 241, 242, 247, 250, 254, 258, 264, 273, 277, 278, 282
Bangladesh Fisheries Research Institute (BFRI), 301
Bangladesh Rice Research Institute (BRRI), 102, 301
Barakuk herb, 167
BARDC. See BRAC Agricultural Research Center (BARDC)
Battese, G., 379
Baumüller, H., 143–159
BCR. See Benefit cost ratio (BCR)
Behavioral characteristics
cognitive styles, 68
creativity and innovation, 67, 69
defined, 67
eccentric personality, 67
entrepreneurship, 68
Gestaltian ideas, 69
group task characteristics, 68
intersubjective elements, 70
metacognitive manifestations, 70
psychoanalytic ideas, 69
Benefit cost ratio (BCR), 295, 373, 374
Bera, A.K., 400
Berkhouta, E.D., 377
Beuchelt, T., 181–194, 225–236
BFRI. See Bangladesh Fisheries Research Institute (BFRI)
Bharadwaj, A., 65–78
Bio-economic models, 375, 378
Biofortification
Asia and Africa, 51
banana, 51
genetic engineering, 50
smallholder farmers, 51
Biomass-based value webs
annual growth, 230
bioeconomies, 235
bioethanol, 234
biological raw materials, 233
biomass potential
crop biomass, 229
cultural landscape, 228
economic growth, 228, 229
gas emissions, 229
industrial raw materials, 228
plant biomass, 228
biomass production & processing
bio-refineries, 232
cost-benefit ratio, 232
small- and medium-scale, 232
technological approaches, 231
trading segment, 231
zero waste, 231
commodity approach, 232
emerging bioeconomy, 235
approaches, 231
biological resources, 229
biomass-supplying sector, 229
fossil energy resources, 230
natural resources, 231
end-product, 235
food & agricultural system
biofuel, 226, 227
capita energy, 226
capita fuelwood production, 226
emerging economies, 226
emerging policies, 227
food prices, 226
food production, 226
fossil fuels, 227
global demand, 226
global scale, 226
land and water scarcity, 226
natural & human resources, 227
urban & rural net consumers, 226
food security, 233
forest biomass, 234
global production networks, 233
international support, 235
national/international system, 233
recycling, 235
social development, 234
BoA. See Bureaus of Agriculture (BoA)
Bouis, H.E., 51, 52
BRAC Agricultural Research Center (BARDC), 104, 105
BRAC approach
action research, 104
AFSP, 100
agricultural credit activities, 102, 108, 111
AR4D, 104
BARDC, 104
bio-fortified crop varieties, 110
BRRI, 102
CGIAR, 102
extension approach, 109
farmer innovations, 105
food security, 14, 101
GPFA, 103
hybrid maize and rice varieties, 104
location-specific technology, 110
marketing support, 109
NARS, 102
oil crops, 105
R4D, 100
seed, market share, 107
technology innovation (see Technology Innovation, BRAC)
value-chain approach, 110
Braun, E., 371
Broomgrass (Thysanolaena maxima), 206
BRRI. See Bangladesh Rice Research Institute (BRRI)
Budget injection, 90
Bureaus of Agriculture (BoA), 129

C
CA. See Conservation agriculture (CA)
Carbon, C., 71
Central Asia, 213, 214, 217, 218
Cereal Systems Initiative for South Asia (CSISA), 249, 254
Cereal-based cropping innovations
agricultural productivity and rural growth, 258
analytical techniques, 259
characteristics, 268, 269
cluster analysis, 280
marginal areas, 258, 277–279
awareness, 286–287
poor smallholders (SHs), 275, 277, 280–282
marginality, 282–285
productivity gains, 258
rural population, 258
smallholders (SHs), 258
yield gaps, 258
Cereal-based farming systems, 402
CGIAR. See Consultative Group on International Agricultural Research (CGIAR)
Chan-Kang, C., 6
Chase, R.S., 50
Cobb–Douglas production function, 379
Composite Sustainability Index (CSI), 204, 207

Comprehensive Framework for Action (CFA), 55
Conservation agriculture (CA)
components, 187
equity effects, 188
women and men, smallholder agricultural systems, 187
Constraints, 75
Consultative Group on International Agricultural Research (CGIAR), 51, 102, 242
Convention Peoples Party (CPP), 386
Conway, G., 45
CPP. See Convention Peoples Party (CPP)
CSISA. See Cereal Systems Initiative for South Asia (CSISA)

D
Dantsis, T., 202
das. See Development agents (DAs)
DATA. See Data analysis and technical assistance (DATA)
Data analysis and technical assistance (DATA), 243, 244
Data collection, 158, 171, 383–384
Data envelopment analysis (DEA), 377
Davidson, R., 381
Davies, S., 400
Davis, K., 92
DEA. See Data envelopment analysis (DEA)
Deneke, T.T., 113–124
Denich, M., 225–236
Department of Fisheries (DOF), 292, 301
Development agents (DAs), 118, 129
Dewulf, J., 202
Diao, X., 371
Disability Adjusted Life Years (DALY), 44
DOF. See Department of Fisheries (DOF)
Doner, R.F., 35
Dougherty, A., 374
DSR. See Mechanized direct seeded rice (DSR) technology
Duclos, J.Y., 381
Dunmade, I., 201

E
Economics of land degradation (ELD), 215
Elasticities, 91–92
Ellenbecker, M., 201
eMobilis, Mobile Technology Training Academy, 146

Ephraim, M., 401
ESE. See Ethiopian seed enterprise (ESE)

Ethiopia
agriculture, 113
ARARI, 115
broad-based growth, 114
dismal situation, 115
provision, 114
research and extension service
agro-ecologies, 117
farming community, 118
federal agricultural, 118
linkages, 116
R-E-F model, 117
tree species, 115

Ethiopian Agricultural Research Organization (EARO), 119

Ethiopian seed enterprise (ESE), 128, 131–133

Ethiopian seed system
agricultural markets and policy, 126
BoA and MoA, 129
breeding efforts, 137
business owners, 132
contract formation (bargaining), 133
crops, 128
demand and supply, 126
direct marketing pilots, 128
disadvantages, 131, 134
ETB per quintal, 132
formal seed system, 129, 130
free markets, 126
German Plant Breeders’ Association, 138
governmental agencies, 133
incremental institutional changes, 136
informal institutions, 138
initial analysis, constraints, 127
innovative business approaches, 126
lack of agro-dealers, 130
land and high-skilled and experienced plant breeders, 131
liberalized and centralized distribution system, 137
low technology adoption rates, 128
market information and pricing, 133
market liberalization, 137, 138
marketing pilots, 134–135
MFIs, 136
negotiations, 136
NGOs, 128
optimal seed production and distribution, 135
pre-contractual activities, 133
private seed companies, 136
public, private and international enterprises, 128, 138
self-enforcing agreements, 133
smallholders’ marketing decisions, 127
SNNP, 133
stakeholder group provided information, 127
Sub-Saharan African countries, 132
transaction costs, 126

Ex-ante assessment
hypothesis, 382
natural estimator, 382
smallholder farmers, 381
stochastic dominance test, 381
t-test, 382

F
Faerber, S.J., 71
Fafchamps, M., 50
Fan, S., 6
Farm household models (FHMs), 5, 37
373, 378

Farmer Field Fora (FFF)
ATT measurement, 170
data collection, 171
description, 164, 171–173
on farmer innovation, 174, 175
farmers, extension agents and researchers, 168
FFF, 169
household risk preferences, 169
innovation index 1 and 2, 170
innovation_binary, 170
innovation_count, 170
IPM practices, 168
kernel matching, 169
participation on farmer innovation, 169
probit estimation, propensity score 172, 174
problem-solving instrument, 164
regression, 169
RTIMP, 168

Farmer field schools (FFS), 47, 168, 169
Farmer innovation policy
applications, 165, 166, 176–179
Barakuk herb, 167
capital and formal knowledge constraints, 164
externally developed practices, 164
FFF platform, 164

Index
Index

- fish pond water, 167
- global change, 163
- MOFA, 164
- and resilience, 163
- selection committee members, 165
- Striga in millet and sorghum fields, 167
- Farmer survey
 - activities choices, 345, 346
 - farmers distribution, crop activity, 345, 346
- Farmers practice (FP), 168
- Farming systems research (FSR), 116–118, 373, 382
- Featherstone, A.M., 401
- Feed the Future (FTF), 138, 242
- FFF. See Farmer Field Fora (FFF)
- FFS. See Farmer field schools (FFS)
- FHMs. See Farm household models (FHMs)
- First Order Condition (FOC), 85
- Food and nutrition security (FNS)
 - agriculture, 56
 - awareness, 55
 - conventional technologies, 46
 - dimension, 48
 - FAO, 43
 - features of innovations, 42
 - FFS, 47
 - food buyers vs. sellers, 42
 - global food system, 41
 - HarvestPlus pathway, 52
 - IFAD, 47
 - intermediate technologies, 46
 - micronutrient malnutrition, 44
 - overnutrition, 43
 - stakeholder survey, 54
 - technological and institutional innovations, 45, 47
 - traditional technologies, 46
- Food security
 - crop calendars, 222
 - national wheat production, 222
- Food Security Center (FSC), 210
- FP. See Farmers practice (FP)
- Framework and methods
 - agricultural growth, 259
 - agricultural technology, 260
 - characteristics, 261
 - incomes, 259
 - livelihood assets, 259
 - marginality, 259
 - sharecroppers, 261
 - stakeholders, 260
- Frimpong, S., 369–394
- Fromer, J., 74, 75
- FSR. See Farming systems research (FSR)
- FTF. See Feed the Future (FTF)

G
- Garrido, M.V., 374
- Gatzweiler, F.W., 1–20, 25–37, 66, 81–94
- Gender and social disparity, smallholder
 - farming systems
 - agricultural innovations
 - Africa, 183
 - households, 183
 - smallholder and marginalized farming systems, 183
 - trade offs, 184
 - women farmers, 184
 - sustainable and human development, 181
 - sustainable intensification
 - CA mechanization, 192
 - ‘food system activities’ dimension, 191
 - gender mainstreaming, 191
 - intrinsic empowerment, 193
 - stakeholder analysis, 192
 - trade-offs, 189
 - technological innovations
 - CA, 187
 - small-scale biomass production, 187–190
- Gerber, N., 41–61
- Global Positioning System (GPS), 385
- Global Poverty Fund Association Project (GPFA), 103
- GM. See Gross margin (GM) analysis
- Gómez, M.I., 44
- Gonja-East District, 389, 394
- Government intervention, 90
- Government policy, 146–147
- GPFA. See Global Poverty Fund Association Project (GPFA)
- GPS. See Global Positioning System (GPS)
- Graw, V., 401, 402
- Green Revolution (GR), 11, 46, 47, 241, 399
- Gross Domestic Product (GDP), 325, 371
- Gross margin (GM) analysis, 295
 - backward and forward linkage actors
 - 306, 307
 - bottom feeding carp, 305
 - dikes and excavating refuges, 303
 - inputs and outputs, farming systems
 - 303, 304
Gross margin (GM) analysis (cont.)
liquid pesticides, 305
total revenue and variable cost, 305
Gross return (GR), 295
Gujarat Grassroots Innovation Augmentation Network (GIAN), 32
Gulti, D., 113–124

H
Hagedorn, K., 27, 31
Hailu, B.A., 401
Haque, L., 257–287
Hernandez, R., 241–255
High Level Task Force on Global Food Security (HLTF), 55
Higher target case (HTC), 409
Hildebrand, P.E., 382
Hirway, I., 12
Home gardening, 53
Hoque, M.S., 257–287
Hossain, M., 99–111
Howells, J., 72
HTC. See Higher target case (HTC)
Husmann, C., 125–139

I
IFAD. See International Fund for Agricultural Development (IFAD)
Indicators of sustainable production (ISP), 201
Information and communication technologies (ICT), 46
applications, 49
impact pathways, 49 Kenya’s ICT ecosystem
producers and consumers, 50
Innovation assessment
agricultural sustainability, 201
indices of foreign technology sustainability, 201, 202
MAVT, 202
sustainability assessment
methodologies, 201
sustainability indicators, 202
sustainable production, 201
TIM, 202
Innovation diffusion
barriers and processes, 73–75
creativity, 70
design and positive reaction, 71
emotional and cognitive processes, 72
extraversion, 71
leadership, 72
linear relationship, 71
management, 72–73
personal initiatives, 71
Innovation index 1, 170
Innovation index 2, 170
Innovation Systems Model, 116, 123
Innovation_binary, 170
Innovation_count, 170
Innovations
agro-ecological simulation models, 378
BCR, 374
bio-economic approach, 375, 380
biological process models, 375
biophysical simulation models, 373
cereals, 380
Cobb–Douglas production function, 379
crop and agro-ecological models, 374
crop residues and fodder crops, 376
DEA, 377, 378
farm household models, 378
fertiliser, 380
FHM, 374, 375
FSR, 373
functional integration, 375
fuzzy pair-wise goal ranking, 377
Gams software, 380
harvested crops, 379
household characteristics, 378
household model, 379
input-oriented technical efficiency, 377
input–output coefficients, 378, 380
linear decomposition, 377
linear programming technique, 375
livestock activities, 379
market imperfections, 376
meat consumption, 380
meta-modelling approach, 375, 379, 380
multi-market models, 373, 376
multiple goal linear programming, 377
natural resource management, 375
non-agriculture income, 376
non-linear bio-economic farm household model, 379
normative decision-making and accounting techniques, 373
NPV, 374
optimization, 373
policy instruments and measures, 376
principal component and factor analysis, 378
production and consumption, 378
production ecology, 377
resource allocation, marketing and institutional development, 376
rural agricultural policies, 378
savings and investment, 376
socio-economic indicators, 375
soil quality, 378
SRM, 374
surveys, 377, 379
TCG, 377
technical, profit and food allocative efficiency, 377
traction elasticities, 380
Institute of Agricultural Research (IAR), 117
Institutional innovations, 28, 30, 32–36. See also Polycentric systems
Integrated rice-fish farming systems (IRFFS), 293–294
Adivashi Fisheries Project, 291
agriculture, 289
BCR, 295
districts and sub-districts, 291, 292
GM analysis, 295
government sources, 292
GR calculation, 295
green revolution period, 290
marginal farming system, 290
partial budget analysis, 291, 296
poor rural people, 290
population growth and low per capita income, 289
sample size by category, 292, 293
SWOT analysis, 291, 296–297
technology adoption studies, 290
value chain analysis (see Value chain analysis)
Intellectual property (IP) rights, 68
International Development Enterprises (IDE), 46
International Fund for Agricultural Development (IFAD), 168
Internet of Things (IoT), 157, 158
IoT. See Internet of Things (IoT)
Iskandar, D.D., 81–94
Islam, A.H.M.S., 289–318

K
Kassa, B., 115
Kaufmann, G., 72
Kelley, T.G., 400
Kenya’s ICT ecosystem
customer base, 148, 149
foreign companies, 150
government policy, 146–147
international firms, 143
mobile payment systems, 144
mobile phone, money and internet penetration, 149, 151
M-Pesa, 147
network infrastructure, 144, 145
sectoral experts, 150
Seven Seas Technologies in Kenya, 150
supportive innovation environment, 145–146
Kintampo South District, 388, 394
Kirton Adaptation-Innovation Inventory (KAI), 67
Knowledge Economy Index (KEI), 8
Kotu, B.H., 397–419
Krausmann, F., 228
Kriesemer, S.K., 199–210
Krishna, V.V., 400
Kuhn, A., 225–236
Kumar, M., 65–78

L
Labonne, J., 50
Ladenburger, C., 401, 402
Land degradation
agro-ecological zones, 213, 216
Central Asia, 220
constraints and drivers, 218
ELD, 215
Government mobilization, 222
landusers, 215
livestock production, 220
market access, 218
phosphogypsum, 220
profitability, 221
rainfed production, 221
SLM technologies, 214, 222
trade and mutual exchanges, 222
Laser land leveling (LLL), 333
Liman, H., 386
Line sowing/seed drilling/zero tilling, 334
Liquid manure and insecticide, fish pond water, 167
LLL. See Laser land leveling (LLL)
Lowder, S.K., 6–8

J
Jackson, C., 186
Joshi, P.K., 323–366
Lower target case (LTC), 410
LTC. See Lower target case (LTC)

M
Macharia, I., 400
Macharia, M., 150
Mahajan, V., 400
Majid, N., 399
Marginal districts of Bihar and Odisha
awareness and adoption, 355
awareness level, 348–351
characteristics, 346
constraints, 351, 352
farmer survey (see Farmer survey)
farmers proportion, 348
farmers, percentage share, 354
farming experience, 346, 347
GDP, 325
global technological and economic environments, 351
headcount ratios across districts in Bihar and Odisha, 329, 330
hybrid rice and organic/semi-organic farming, 353
innovative/progressive farmers, 329
IPM, 351
irrigation sources, 347, 348
land ownership, market and tenure situation, 347
landholding characteristics, 358
logical scenarios, 365
maize, 332–333, 356–357
market infrastructure, 335, 336
mechanized DSR and SRI, 348
natural resources, 325
productivity and current states of yields, 326, 328
public extension services, 365
pulses, 334, 357 (see also Regression analysis)
rice, 331–332
rice technologies, adopters, 351, 352
social and institutional networks, 351
social bias in awareness, 360
socio-economic indicators, 325
technologies, 337–344
untried technologies, 356
wheat, 333, 334
yields and current state of pulses, 326, 329
yields of principal crops across districts, 326, 327
younger farmers, 360
Marginalized smallholders
economics, 81
households, 82
on-farm production, 81
poverty line
agricultural production, 86
budget constraints, 84
elasticity, 87
fertilizer and seeds, 82
Lagrangean equation, 84
marginal income, 85, 87
off-farm activities, 86
on-farm activities, 83
productivity output, 84
technology adoption, 87
transaction costs, 84, 86
public transport facilities, 82
rural households, 88, 89
Mass spraying, 372
Mazid, M.A., 99–111
Mechanized direct seeded rice (DSR) technology, 331
Mechanized zero tillage technology (MZTT), 355
Mendola, M., 81
Meta-modelling, 375
M-Farm, 144, 146, 154, 155
MFLs. See Microfinance institutions (MFIs)
Microfinance institutions (MFIs), 136
Minimum support price (MSP), 335
Ministry of Agriculture (MOA), 301
Ministry of Food and Agriculture (MoFA), 164, 393
Minten, B., 50, 82, 298
Mirzabaev, A., 213–223
MOA. See Ministry of Agriculture (MOA)
Mobile communication technology, 15
Mobile technology
big networks capitalization, 158–159
hardware and infrastructure, 156
IoT, 157–158
mobile connected devices, 157
SMS/voice services, 156
technologies, 156
MoFA. See Ministry of Food and Agriculture (MoFA)
Mosher, T.A., 400
Most Advanced Yet Acceptable (MAYA), 75
Motuma, T., 401
M-Pesa (mobile payment system)
education, health and entertainment, 144
Intel-powered smartphone, 148
m-services developers, 147
non-call related services, 147
in rural areas, 155
M-Services, Kenyan farmers
elements of, 152, 153
financial services, 155
information provision, 152
input provision, 155
maize and beans, 152
output markets, 156
semi-subistence, low-input and
low-productivity farmers, 152
MSP. See Minimum support price (MSP)
Multiattribute Value Theory (MAVT), 202
MZTT. See Mechanized zero tillage
technology (MZTT)

N
Naher, F., 241–255
Napasintuwong, O., 400
NARS. See National Agricultural Research
Systems (NARS)
National Agricultural Research Systems
(NARS), 102
National Democratic Congress (NDC), 386
Ndiritu, S.W., 183
New Patriotic Party (NPP), 387
NGOs. See Non-governmental organizations
(NGOs)
Non communicable diseases (NCD), 42
Non-governmental organizations (NGOs), 128
Non-Timber Forest Product (NTFP), 206
Novelty and innovation
conceptualization, 76
deprivation, and adversity, 77–78
poverty, 76
Nutrient Expert for Hybrid Maize (NEHM), 49

O
On-farm client-oriented research (OFCOR),
117
Operation Feed Yourself (OFY), 372, 386
Oromia Seed Enterprise (OSE), 128
OSE. See Oromia Seed Enterprise (OSE)
Owusu, A.B., 369–394

P
Palmer-Jones, R., 186
Pangaribowo, E., 41–61
Paris, T.R., 185
Partial budget analysis, 296, 306–308
Participatory action research (PAR), 168
Peoples National Party (PNP), 386
Peterson, R.A., 400
Pingali, P.L., 185
Polycentric systems
action situation, 25
agro-ecological environments, 26
circular flow, 34
collective-choice rules, 26
desired behavior, 28
enabling and inhibiting functions, 31
innovators, 29
institutional innovations, 30, 32
marginality, 26
polycentric orders, 34
social and physical technology, 33
social networks, 27
technical and institutional innovation
26, 28
value creation, 33
Polycentricity, 25, 26
Poor smallholders (SHs)
agricultural production, 266
cluster analysis
agricultural growth, 273
agricultural market, 274
day labor, 275
marginality, 273
productivity growth, 275
stable solution, 273
dry season, 264
employment, 266
livelihood capitals, 269
livelihood opportunities and income
cereal crop and day-labor, 271
employment, 271
maize and wheat, 271
marginal areas, 271
medial poor and subjacent poor, 271
physical sickness, 268
rice yield rates, 264
water management and irrigation, 266
Porter, M., 233
Potential adoption rate (PAR), 382–383, 390
Productivity growth
agricultural infrastructure, 94
transaction costs, 93
Psychological mechanisms
creativity and innovation, 65
marginality, 66
optimal marginality, 66
post-structuralist ideas, 66
scientific/technological solution, 66
Q
Qaim, M., 400
Qiang, C.Z.-W, 50

R
R4D. See Research for development (R4D)
Ray, S.C., 377
RCTs. See Resource conserving technologies (RCTs)
Reardon, T., 82
Regression analysis
 marginal effects, probit regressions, 358–364
 target groups and characteristics, 358
Remenyi, D., 371
Renkow, M., 82
Research for development (R4D), 100
Research-Extension Liaison Committee (RELC), 119
Research, extension linkage models, 116–117
Resilience, 16, 27, 203
Resource conserving technologies (RCTs), 333
Reuters Market Light (RML), 50
Rigby, D., 201
Robison, J., 27
Rodney, W., 371
Roetter, R.P., 376
Rogers, E., 400
Rogers, E.M., 164, 201
Root and Tuber Improvement and Marketing Programme (RTIMP), 168, 387
Root and Tuber Improvement Programme (RTIP), 168
Rosenbaum, P.R., 169
Roy, D., 323–366
RTIMP. See Root and Tuber Improvement and Marketing Programme (RTIMP)
RTIP. See Root and Tuber Improvement Programme (RTIP)
Ruben, R., 371, 375, 378
Rubin, D.B., 169
Russell, J.T., 382

S
Sand-based mini-hatchery, 206, 207
SAP. See Structural adjustment programme (SAP)
Scaillet, O., 381
Schultz, T.W., 4
Schumpeter, J.A., 34
Sen, A., 9, 76
Shah, N., 12
Shultz, T.E., 397
Singh, R.K., 201
SIS. See Small indigenous species (SIS)
Smale, M., 385
Small indigenous species (SIS), 299
Smallholder farmers
 agriculture, 370, 386
 growth and productivity, 372
 innovation and technology, 2
 agro-ecological zones, 371
in Asia and Africa, 1
 attributes/indicators, 370
 block farming systems, 372
 BRAC approach, 14
 broader economic transformations, 5
categorization, 383
class sizes, 3
Cocoa Mass Spraying Programme, 387
community-based technologies, 17, 370
composite indicator, 383
 concepts and criteria, 3
corruption and bureaucracy, 387
CPP, 386
cultural/economic support systems, 387
data collection, 383–384
determinants, 4
distribution, 386
economic viability, 4
ex-ante technology assessment, 371
 372, 385
exploitative colonial system, 371
fertilizers, 372
flora and fauna, 388
food
 crop and agro-processing firms, 372
 insecurity, 370
 and nutrition security, 13
 security, 386
FSR approaches, 382
GPS, 385
income effect, 383, 390–393
innovation (see Innovations)
inorganic fertilizers, 388
international dynamics, 2
land quality, 2
maize and cassava, 388
mass spraying, 372
OFY Programme, 372
PAR, 390
policies, 2
political/administrative conditions, 387
potential communities, 385
pouring on farmers syndrome, 371
poverty and marginality, 370
resource endowments/poverty levels, 370
returns of scale, 4
rural economic growth and development, 370
rural electrification, 372
SAP, 372
size and productivity, 6
social debate and political conflicts, 371
stochastic dominance test, 387
in Sub-Saharan Africa and South Asia
12, 13
sustainable intensification, 9
technocrats and bureaucrats, 371
tractors, 372
vegetable production, 388
Village Mango Project, 387
women in agriculture, 15
zones, 385
Smith, A., 69
Smith, C., 202
SNNP. See Southern National, Nationalities and Peoples’ Region (SNNP)
Social disparity. See Gender and social disparity
Sonkar, V., 323–366
South Asia, 12, 43, 242, 262, 277
South Seed Enterprise (SSE), 128
Southern National, Nationalities and Peoples’ Region (SNMNP), 133
SRI. See System of Rice Intensification (SRI)
SRM. See Supply response models (SRM)
SSA. See Sub-Saharan Africa (SSA)
SSE. See South Seed Enterprise (SSE)
Stoorvogel, J.J., 385
Stress-tolerant rice varieties
agricultural growth and production, 241, 245
agricultural technologies, 242
boro rice cultivation, 248
breeder seeds, 248
cohort analysis, 252, 253
complementary technologies, 254
cultivable land, 245, 246
data entry, 244
education, 254
farmer-level analysis, 244
foodgrain production, 247
food security, 242
FTF zone level, 243, 245, 248–251
green revolution technologies, 241
growth cycle, 250
high grain quality, 249
household characteristics
educational attainment, 245
FTF zone, 245
irrigation
boro rice/wheat crop, 247
modern techniques, 247
rain-fed rice seasons, 247
operated land, 246
paddy varieties, 252, 254
paddy yields, 251
sampling observation, 243
seedbed, 251
seed patterns, 251
sharecroppers, 246
survey administration
extensive care, 244
FTF zone, 244
practice fieldwork, 244
technology adoption, 243, 254
time-to-adoption, 253
Striga in millet and sorghum fields, 167
Structural adjustment programme (SAP) 372, 386
Sub-Saharan Africa (SSA), 12, 43, 225–228, 235, 262, 277
Supply response models (SRM), 374
Surface seeding technique, 333
Sustainability indicator
agricultural research organizations, 200
agricultural sector, 199
analytical framework
AHP, 203, 204
analysis and composite, 203, 204
average normalized net present value, 206
Broomgrass (Thysanolaena maxima), 206
characteristics, 203
clusters of selected technologies, 206, 208
CSI, 204
data limitations, 203, 204
sand-based mini-hatchery, 206, 207
vermitechnology, 206
CSI, 207
decision-making tool, 200
hatchery hardly, 207
innovations (see Innovation assessment)
limitations of framework, 209–210
Sustainability indicator (cont.)
radar chart, 207, 209
Rio+20 conference (UN 2012), 200
technology–practice–idea–innovation, 200
vermicompost, 207
vermitechnology, 207
Sustainable land management (SLM), 16, 217, 223. See also Land degradation
SWOT analysis, 17
adoption and diffusion, rice-fish technology in Bangladesh, 308–310
economic, environmental and health conditions, 296
opportunities and threats (external situation), 296
simplicity and practicality, 296
strength and weakness (internal situation), 296
System of rice intensification (SRI), 46, 53, 332

T
Tambo, J.A., 163–180
TCG. See Technical coefficient generator (TCG)
Technical coefficient generator (TCG), 377
Technological innovations, 26, 28, 29, 33, 36, 74. See also Smallholder farmers
Technology adoption, 90, 91, 221 335–336, 352
Technology innovation, BRAC
drought-tolerant variety, 106
financial support, 108
hybrid and OP seed varieties, 105
potato storage, smallholder farmer, 108
saline-tolerant variety, 106
short duration varieties, 107
submergence-tolerant variety, 106
sunflower cultivation, 108
Tesfaye, Z., 401
Threat identification model (TIM), 202
Tolon District, 17, 390, 394
Topaloglou, N., 381
Total variable cost (TVC), 295
Traditional technologies
agricultural systems, 52
home gardens, 53
vegetables and fruits, 53
Transaction costs
poor communication, 82
reduction, 92–93

Traxler, G., 400
Tripathi, G., 323–366
Tschajanov, A.V., 4
TVC. See Total variable cost (TVC)

V
Value chain analysis
agricultural sector research and policy fields, 293
asset specificity, uncertainty and frequency, 294
description, 293
input and output physical units, 294
modelling and simulation methods, 294
power relations and distributions, 293
system dynamics, 293
types of analysis, 294
Value chain evaluation framework
actors, rice-fish value chain, 299
credit facilities, 315
disease and predators, 314
DOF, 301
gerendered distribution system, 303
GM analysis (see Gross margin (GM) analysis)
good extension services, 315
Indian carp species, 299
labor allocation pattern, rice and rice-fish farming household, 301, 302
land tenure system and property rights, 315
laws and law-enforcing regulatory agencies, 300
mapping
fish traders, 299
governance structures, 297
input suppliers, 299
linkages between products, 297
marketing/supply channels, 297
rice-fish production and distribution, 298
rice-fish technology, Bangladesh 297, 298
MOA, 301
national organizations, 301
opportunities, 313–314
partial budgeting, 306–308
rice-fish system, 300
risk and uncertainty, 314
SIS, 300
strengths, 308–311
Index

SWOT analysis, 308–310
traditional agricultural commodity, 300
weakness, 312–313
van Keulen, H., 375
Van Langenhove, H., 202
van Ruijven, A., 378
Veleva, V., 201
Vermitechnology, 206, 207
Virchow, D., 199–210, 225–236
von Braun, J., 1–20, 82, 215

W
Waage, J., 45
Walrasian system, 35
Weinberger, K.M., 199–210
WFC. See WorldFish Center (WFC)
Wiggins, S., 8
Women farmers, 119, 184
Wood, 385
Woodhill, J., 45
World farm size distribution, 6
WorldFish Center (WFC), 291, 292, 301
Wulsin, L. Jr., 374
Wünscher, T., 163–180

Y
Yamane, T., 385
Yesmin, J., 257–287
YICT. See Yield-increasing crop technologies (YICT)
Yield-increasing crop technologies (YICT)
agricultural growth, 399–400
cereal crops, 398
chemical fertilizers and row planting technique, 399
crop price, 407
crop type, 409–410
data analysis
adjustments, 405
adoption paths, 406
inflation rate, 405
maximum adoption level, 406
net benefit per hectare, 405
partial budget approach, 405
food insecurity, 417
grain, 398
households, 403–404, 408–411
maize, 398
marginal areas, 399
marginality hotspot districts (woredas), 401–403
net benefit per hectare, 410
post-survey re-stratification, 404–405
poverty, 398, 411
staple food, 398
subdistricts (kebeles), 402–403
time and adoption, 400–401
timing
accelerated case scenario, 412
assumptions, 411
average discounted total net benefit, 416
discounted net per capita benefit per day (birr), 416, 417
HTC, 413
LTC, 413
productivity growth, 415
projection period, 413
simulation results, 413, 414
typical and accelerated scenarios, 412, 415
variable costs, 408
yield gaps, measurement, 407–408

Z
Zero till (ZT) drills, 333
ZT. See Zero till (ZT) drills