Index

A
Acute kidney injury (AKI) 147–148
biomarker analysis, 147–148
in cardiopulmonary bypass surgery patients, 144
patient population, 145–147
post-operative prediction, 152
pre-operative predictors, 151–154
pro-inflammatory biomarkers, 144
risk assessment tools, 144
risk score, 144
sample collection, 147
statistical analysis, 148–151
uTi, 144, 145

Adipokine markers, 194, 199–200
Adiponectin receptor C-terminal fragment
(AdipoR/AipoR CTF) 65–66
animal models, 97–98
antibodies, 98
bioassays, 95
biomarker measurements, 98
blood sample preparation, 80
brain morphologic observations, 87
cell and tissue staining procedure, 86
cell culture methods, 95, 99
cell culture treatment, 95–96, 99
cell lines, 95
cell proliferation counts, 97
cellular insulin, 97, 100–102
conjugates and standards, 66–67
correlation to inflammation, 118, 119
diabetic collection, 116
disease progression, 98, 102, 104–106
ELISA, 96

blood levels, 74
calibrator reproducibility and stability, 72
cross reactivity, 72
immunoglobulin bound form measurement, 67–68
immunoglobulin chain identification, 71
interference testing, 73
patient recovery, 73
fat morphologic observations, 86
fatty-acid oxidation, 62, 63
FBG measurement, 112
gestational diabetes collection, 114–115
Ig-CTF correlations, 119, 121
Ig-CTF distribution, 118, 120
predictive values, Ig-CTF, 120, 122
gluconeogenesis, 62, 63
glucose clamp, 113
G protein-coupled receptor, 63–64
HbA1c measurement, 112
IDE, 78–79
Ig-CTF and CTF measurements, 116
Ig-CTF R1 values, sample measurement, 116–118
iMALDI approach, 68–69
immunoglobulin binding mechanism, 70–71
immunfluorescent staining, 87–89
inhibition studies
ADAM17/TACE and IDE activity, 81–84
InnoZyme™ Insulysin-IDE
Immunocapture Activity Assay Kit, 80
InnoZyme™ TACE Activity Kit, 80
insulin

© Springer International Publishing Switzerland 2015
M. Pugia (ed.), Inflammatory Pathways in Diabetes: Biomarkers and Clinical Correlates, Progress in Inflammation Research,
DOI 10.1007/978-3-319-21927-1
Adiponectin receptor C-terminal fragment (AdipoR/AipoR CTF) (cont.)
receptor response, 88, 90
sensitivity/resistance, 112, 113
sensitizing agent, 62
intracellular calcium, 96–97, 99–100
in-vivo insulin, 101–103, 105–106
leptin resistance, 94
liver morphologic observations, 87
mass spectroscopy peptide enrichment assays, 71–72
mechanism of action, 104, 107
MEROPS search, 78
muscle
 glucose uptake, 62, 63
 morphologic observations, 86
OGTT, 112
oligomeric isoforms, 62
pancreas morphologic observations, 87
patient reproducibility and stability, 73
peptide preparation, 64–65
plasma forms, 85
precision and accuracy testing, 73
pre-diabetic
 collection, 115, 116
 correlation, 121–123
 protease identification, 79–80
 reference range testing, 114
 SELDI-MALDI method, 69
 SISCAPA method, 68
 TACE, 79
 T-cadherin, 63
tissue
 and blood analysis, 81
 forms and distribution, 85
 sample preparation, 80
TNF-α, 62
TZD treatment, 62
western blot method, 67, 70, 96, 98–99
western blot techniques, 81
X-ray crystallography analysis, 62
Adipose stress markers, 201–203
Advanced glycation end products (AGEs), 195–196
 vs. CD59 markers, 6
 glycated hemoglobin, 5
 human serum albumin, 5
 molecular damages, 5
 nontraditional markers, 5
 receptors activation, 5–6
AGEs See Advanced glycation end products (AGEs)
Aprotinin, 172, 183–185

B
β-secretase (BACE), 78–79
Biacore testing, 65
Bikunin (Bik)
 anti-inflammatory cellular signaling
 aprotinin, 183–185
 Ca²⁺ in-flux, 179, 186
 cellular signal response, 177–179
 DPP-4, 178–181
 membrane disruption, 179, 180, 185–186
 necrosis, 185
 peptide analogs, 181–183
 PI3K-Akt pathway, 181, 182, 186–187
 proliferation, 186
 proteinuria, 184
 trypsin inhibition, 182, 184
 urinary trypsin inhibitor, 172
Bioassays, 95

C
Cardiomyocyte (C2C12) models
 cell culture treatment, 99
 intracellular calcium, 99–100
 western blot analysis, 98–99
Cardiovascular disease (CVD), 18, 38–39
 adiponectin response, 168
 atherosclerosis, 157
 demographic characteristics, 161, 162, 164
 diagnostic risk factor, 161, 163, 164
 epidemiological evidence, 158
 indicators, 157–158
 PAR activation, 158–159
 statistics methods, 161
CD59 glycoprotein
 animal experimental model, 41
 glycated (see Glycated CD59 (GCD59))
 glycation-inactivation, 39–40, 42–43
MAC inhibition mechanism, 35–36
Chronic kidney disease (CKD), 131, 137, 139
Complement system
 diabetic complications
 cardiovascular disease, 38–39
 nephropathy, 36–37
 neuropathy, 38
 retinopathy, 37
MAC
 alternative pathway, 31, 33
 classical pathway, 31, 33
 inhibitory protein (see CD59 glycoprotein)
MBL/lectin pathway, 31, 33
non-lytic effects, 34–35
therapeutic application, 44
C-reactive protein (CRP)
acute phase reactants, 158
pro-inflammatory response, 166, 168
vascular stenosis, inflammation markers, 164–166
C-terminal fragment (CTF) See Adiponectin receptor C-terminal fragment (AdipoR/AipoR CTF)
CVD See Cardiovascular disease (CVD)

D
Dysfunctional cell growth markers
AdipoR1 CTF, 206
Akt-PI3K pathway, 206
hypoxia, 204–206

E
ELISA See Enzyme linked immunosorbent assays (ELISA)
Endothelial dysfunction
adipose angiotensin, 12
Bikunin, 13
chronic activation, 12
kinin formation, 11–12
nitric oxide, 11
TFPI action, 13
Endothelial stress markers, 203–204
Enzyme linked immunosorbent assays (ELISA), 96, 174
blood levels, 74
calibrator reproducibility and stability, 72
cross reactivity, 72
immunoglobulin bound form measurement, 67–68
immunoglobulin chain identification, 71
interference testing, 73
patient recovery, 73

F
Fasting blood glucose (FBG), 112
Fatty acid markers, 200–201
Fibrosis
Bikunin action, 17
coaulation, 16
mechanism, 16, 17
PAR activation, 15–16
Free fatty acids (FFAs), 9–10

G
GCD59 See Glycated CD59 (GCD59)
Gestational diabetes
collection, 114–115
Ig-CTF correlations, 119, 121
Ig-CTF distribution, 118, 120
predictive values, Ig-CTF, 120, 122
Glomerular filtration rate (GFR), 129, 131, 132
Glycated CD59 (GCD59)
ELISA, 46
HbA1c assay, 45
OGTT test, 47
plasma level, 46–47

H
Hyperglycemia
complications with, 3
glycation stress (see Advanced glycation end products (AGEs))
insulin resistance, 3–4
oxidative stress, 6–7
stress markers
AGE, 195–196
glycation stress markers, 195
impaired insulin metabolism, 194–195
insulin resistance, 193–195
stress factor, 193, 194
therapeutic approaches, 196

I
Inflammation
endothelial dysfunction
adipose angiotensin, 12
Bikunin, 13
chronic activation, 12
kinin formation, 11–12
nitric oxide, 11
TFPI action, 13
fibrosis
Bikunin action, 17
coaulation, 16
mechanism, 16, 17
PAR activation, 15–16
innate immune apoptosis
complement system, 15
cytokines, 14–15
lymphocytes, 14–15
mechanism, 13–14
serine proteases, 15
T-cells, 15
Infliximab, 114
Innate immune mediated apoptosis
 complement system, 15
cytokines, 14–15
lymphocytes, 14–15
mechanism, 13–14
ersine proteases, 15
T-cells, 15
Innate immunity markers, 206–207
Insulin-degrading enzyme (IDE), 78–79
Insulin resistance, 3–4

M
Membrane attack complex (MAC)
 alternative pathway, 31, 33
classical pathway, 31, 33
inhibitory protein (see CD59 glycoprotein)
MBL/lectin pathway, 31, 33
non-lytic effects, 34–35
MEROPS search, 78
Metabolic syndrome (MetSyn), 166, 167
Modified Eagle Medium (MEM), 95–96

N
Nephropathy, 18–19, 36–37
Neuropathy, 20, 38

O
Obesity, 194, 198–199
 adipose signaling
 adiponectin, 8
ghrelin level, 8–9
hypoxia, 10
leptin signals, 7
free fatty acids, 9–10
inflammatory response (see Inflammation)
 prevalence, U.S., 3–4
Oral glucose tolerance test (OGTT), 112
Oxidative stress markers, 197
 biomarker measurements, 196–197
 ROS, 196, 198

P
Protease activate receptors (PAR) signalling,
 15–16

R
Reactive oxidative species, 196–198
Reactive oxygen species (ROS), 6–7
Retinopathy, 19, 37
ROS See Reactive oxidative species; Reactive oxygen species (ROS)

T
Thiazolidinediones (TZD) treatment, 62
TNF-α–converting enzyme (TACE), 79

U
Urinary trypsin inhibitor (uTi), 144, 145
 anti-inflammatory cellular signaling
 Akt and PIK3 measurements, 175
 apoptosis assays, 176
 cell culturing procedure, 173–174
 DPP-4 peptidase activity assay, 174
 intra-cellular analysis, 176
 proliferation, 181, 186
 protease and inhibitor balance, 177, 178
 serine protease activity, 174
 trypsin-specific chromogenic substrate,
 176–177
 western-blot analysis, 175
CRP
 acute phase reactants, 158
 pro-inflammatory response, 166, 168
 vascular stenosis, inflammation
 markers, 164–166
CVD
 adiponectin response, 168
 atherosclerosis, 157
 demographic characteristics, 161, 162, 164
 diagnostic risk factor, 161, 163, 164
 epidemiological evidence, 158
 indicators, 157–158
 PAR activation, 158–159
 statistics methods, 161
Kunitz type inhibitor, 172
 marker analysis, 160–161
 metabolic syndrome (MetSyn), 166, 167
 patient assessment, 159–160
 sample collection, 160–161
 uristatin immunoassay
 anti-inflammatory response, 127–131, 139
 clinical analysis, 133–134
 cross-reactivity, 132
 dipstick method, 132
 follow-up care, 137–138
 health screen collection, 134–135
 hospital infection collection, 136
hospital patient collection, 136
kidney model, 128–131
proteinuria/hematuria, 138–139
sample and data bank, 134–135
urinary tract infection collection, 136
urine samples, 137
viral infections, 138
WBC, 129–132
Western blot, 136–137
uristatin response, 168
Uristatin (Uri) immunoassay
anti-inflammatory response, 127–131, 139
clinical analysis, 133–134
cross-reactivity, 132
dipstick method, 132
follow-up, 137–138
health screen collection, 134–135
hospital infection collection, 136
hospital patient collection, 136
kidney model, 128–131
proteinuria/hematuria, 138–139
sample and data bank, 134–135
urinary tract infection collection, 136
urine samples, 137
viral infections, 138
WBC (see White blood cells (WBCs))
western blot, 136–137
uTi See Urinary trypsin inhibitor (uTi)

W
White blood cells (WBCs)
anti-inflammatory response, 129–130
cell death, 131–132
neutrophilic elastase, 129