Appendix A

Fourier Series

A.1 Fourier Coefficients

Let u be a $2T$-periodic function in \mathbb{R} and assume that u can be expanded in a trigonometric series as follows:

$$u(x) = U + \sum_{k=1}^{\infty} \{a_k \cos k\omega x + b_k \sin k\omega x\} \quad (A.1)$$

where $\omega = \pi / T$.

First question: how u and the coefficients U, a_k and b_k are related to each other? To answer, we use the following so called orthogonality relations, whose proof is elementary:

$$\int_{-T}^{T} \cos k\omega x \cos m\omega x \, dx = \int_{-T}^{T} \sin k\omega x \sin m\omega x \, dx = 0 \quad \text{if} \ k \neq m$$

$$\int_{-T}^{T} \cos k\omega x \sin m\omega x \, dx = 0 \quad \text{for all} \ k, m \geq 0.$$

Moreover

$$\int_{-T}^{T} \cos^2 k\omega x \, dx = \int_{-T}^{T} \sin^2 k\omega x \, dx = T. \quad (A.2)$$

Now, suppose that the series (A.1) converges uniformly in \mathbb{R}. Multiplying (A.1) by $\cos n\omega x$ and integrating term by term over $(-T, T)$, the orthogonality relations and (A.2) yield, for $n \geq 1$,

$$\int_{-T}^{T} u(x) \cos n\omega x \, dx = T a_n$$
or
\[a_n = \frac{1}{T} \int_{-T}^{T} u(x) \cos n\omega x \, dx. \tag{A.3}\]

For \(n = 0\) we get
\[\int_{-T}^{T} u(x) \, dx = 2UT\]
or, setting \(U = a_0/2\),
\[a_0 = \frac{1}{T} \int_{-T}^{T} u(x) \, dx \tag{A.4}\]
which is coherent with (A.3) as \(n = 0\). Similarly, we find
\[b_n = \frac{1}{T} \int_{-T}^{T} u(x) \sin n\omega x \, dx. \tag{A.5}\]

Thus, if \(u\) has the uniformly convergent expansion (A.1), the coefficients \(a_n, b_n\) (with \(a_0 = 2U\)) must be given by the formulas (A.3) and (A.5). In this case we say that the trigonometric series
\[\frac{a_0}{2} + \sum_{k=1}^{\infty} \{a_k \cos k\omega x + b_k \sin k\omega x\} \tag{A.6}\]
is the Fourier series of \(u\) and the coefficients (A.3), (A.4) and (A.5) are called the Fourier coefficients of \(u\).

\begin{itemize}
 \item \textit{Odd and even functions.} If \(u\) is an \textit{odd} function, i.e. \(u(-x) = -u(x)\), we have \(a_k = 0\) for every \(k \geq 0\), while
 \[b_k = \frac{2}{T} \int_{0}^{T} u(x) \sin k\omega x \, dx.\]
 Thus, if \(u\) is odd, its Fourier series is a \textit{sine} Fourier series:
 \[u(x) = \sum_{k=1}^{\infty} b_k \sin k\omega x.\]
 Similarly, if \(u\) is \textit{even}, i.e. \(u(-x) = u(x)\), we have \(b_k = 0\) for every \(k \geq 1\), while
 \[a_k = \frac{2}{T} \int_{0}^{T} u(x) \cos k\omega x \, dx.\]
 Thus, if \(u\) is even, its Fourier series is a \textit{cosine} Fourier series:
 \[u(x) = \frac{a_0}{2} + \sum_{k=1}^{\infty} a_k \cos k\omega x.\]
\end{itemize}
• **Fourier coefficients of a derivative.** Let \(u \in C^1(\mathbb{R}) \) be \(2T \)–periodic. Then we may compute the Fourier coefficients \(a'_k \) and \(b'_k \) of \(u' \). We have, integrating by parts, for \(k \geq 1 \):

\[
a'_k = \frac{1}{T} \int_{-T}^{T} u' (x) \cos k\omega x \, dx
= \frac{1}{T} \left[u(x) \cos k\omega x \right]_{-T}^{T} + \frac{k\omega}{T} \int_{-T}^{T} u(x) \sin k\omega x \, dx
= \frac{k\omega}{T} \int_{-T}^{T} u(x) \sin k\omega x \, dx = k\omega b_k
\]

and

\[
b'_k = \frac{1}{T} \int_{-T}^{T} u' (x) \sin k\omega x \, dx
= \frac{1}{T} \left[u(x) \sin k\omega x \right]_{-T}^{T} - \frac{k\omega}{T} \int_{-T}^{T} u(x) \cos k\omega x \, dx
= -\frac{k\omega}{T} \int_{-T}^{T} u(x) \cos k\omega x \, dx = -k\omega a_k.
\]

Thus, the Fourier coefficients \(a'_k \) and \(b'_k \) are related to \(a_k \) and \(b_k \) by the following formulas:

\[
a'_k = k\omega b_k, \quad b'_k = -k\omega a_k. \quad (A.7)
\]

• **Complex form of a Fourier series.** Using the Euler identities

\[e^{\pm ik\omega x} = \cos k\omega x \pm i \sin k\omega x\]

the Fourier series (A.6) can be expressed in the complex form

\[
\sum_{k=-\infty}^{\infty} c_k e^{ik\omega x},
\]

where the complex Fourier coefficients \(c_k \) are given by

\[
c_k = \frac{1}{2T} \int_{-T}^{T} u(z) e^{-ik\omega z} \, dz.
\]

The relations among the real and the complex Fourier coefficients are:

\[
c_0 = \frac{1}{2} a_0
\]
and
\[c_k = \frac{1}{2} (a_k - b_k), \quad c_{-k} = \bar{c}_k \quad \text{for} \quad k > 0. \]

A.2 Expansion in Fourier Series

In the above computations we started from a function \(u \) admitting a uniform convergent expansion in Fourier series. Adopting a different point of view, let \(u \) be a \(2T \)-periodic function and assume we can compute its Fourier coefficients, given by formulas (A.3) and (A.5). Thus, we can associate with \(u \) its Fourier series and write
\[
 u \sim \frac{a_0}{2} + \sum_{k=1}^{\infty} \left\{ a_k \cos k\omega x + b_k \sin k\omega x \right\}.
\]

The main questions are now the following:

1. Which conditions on \(u \) do assure “the convergence” of its Fourier series? Of course there are several notions of convergence (e.g. pointwise, uniform, least squares).

2. If the Fourier series is convergent in some sense, does it always have sum \(u \)?

A complete answer to the above questions is not elementary. The convergence of a Fourier series is a rather delicate matter. We indicate some basic results (for the proofs, see e.g. [36] Rudin, 1976 or [41], Zygmund and Wheeden, 1977.

- **Least squares or \(L^2 \) convergence.** This is perhaps the most natural type of convergence for Fourier series (see Sect. 6.4.2). Let
\[
 S_N(x) = \frac{a_0}{2} + \sum_{k=1}^{N} \{ a_k \cos k\omega x + b_k \sin k\omega x \}
\]
be the \(N \)-partial sum of the Fourier series of \(u \). We have

Theorem A.1. Let \(u \) be a square integrable function\(^1\) on \((-T,T)\). Then
\[
 \lim_{N \to +\infty} \int_{-T}^{T} [S_N(x) - u(x)]^2 \, dx = 0.
\]

Moreover, the following Parseval relation holds:
\[
 \frac{1}{T} \int_{-T}^{T} u^2 = \frac{a_0^2}{2} + \sum_{k=1}^{\infty} (a_k^2 + b_k^2). \quad (A.8)
\]

\(^1\) That is \(\int_{-T}^{T} u^2 < \infty \).
Since the numerical series in the right hand side of (A.8) is convergent, we deduce the following important consequence:

Corollary A.2 (Riemann-Lebesgue).

\[
\lim_{k \to +\infty} a_k = \lim_{k \to +\infty} b_k = 0
\]

- **Pointwise convergence.** We say that \(u \) satisfies the *Dirichlet conditions* in \([-T, T]\) if it is continuous in \([-T, T]\) except possibly at a finite number of points of jump discontinuity and moreover if the interval \([-T, T]\) can be partitioned in a finite numbers of subintervals such that \(u \) is monotone in each one of them.

 The following theorem holds.

Theorem A.3. If \(u \) satisfies the Dirichlet conditions in \([-T, T]\) then the Fourier series of \(u \) converges at each point of \([-T, T]\). Moreover\(^2\):

\[
\frac{a_0}{2} + \sum_{k=1}^{\infty} \{a_k \cos k\omega x + b_k \sin k\omega x\} = \begin{cases}
\frac{u(x^+) + u(x^-)}{2} & x \in (-T, T) \\
\frac{u(T^-) + u(-T^+)}{2} & x = \pm T
\end{cases}
\]

In particular, under the hypotheses of Theorem A.3, at every point \(x \) of continuity of \(u \), the Fourier series converges to \(u(x) \).

- **Uniform convergence.** A simple criterion of uniform convergence is provided by the Weierstrass test (see Sect.1.4). Since

\[
|a_k \cos k\omega x + b_k \sin k\omega x| \leq |a_k| + |b_k|
\]

we deduce: *If the numerical series*

\[
\sum_{k=1}^{\infty} |a_k| \quad \text{and} \quad \sum_{k=1}^{\infty} |b_k|
\]

are convergent, then the Fourier series of \(u \) is uniformly convergent in \(\mathbb{R} \), with sum \(u \).

This is the case, for instance, if \(u \in C^1(\mathbb{R}) \) and is \(2T \) periodic. In fact, from (A.7) we have for every \(k \geq 1 \),

\[
a_k = -\frac{1}{\omega k} b'_k \quad \text{and} \quad b_k = \frac{1}{\omega k} a'_k.
\]

Therefore

\[
|a_k| \leq \frac{1}{\omega k^2} + (b'_k)^2
\]

\(^2\) We set \(f(x) = \lim_{y \to x} f(y) \).
and

$$|b_k| \leq \frac{1}{\omega k^2} + (a_k')^2.$$

Now, the series $\sum \frac{1}{k^2}$ is convergent. On the other hand, also the series

$$\sum_{k=1}^{\infty} (a_k')^2 \quad \text{and} \quad \sum_{k=1}^{\infty} (b_k')^2$$

are convergent, by Parseval’s relation (A.8) applied to u' in place of u. The conclusion is that if $u \in C^1(\mathbb{R})$ and $2T$ periodic, its Fourier series is uniformly convergent in \mathbb{R} with sum u.

Another useful result is a refinement of Theorem A.2.

Theorem A.4. Assume u satisfies the Dirichlet conditions in $[-T, T]$. Then:

a) If u is continuous in $[a, b] \subset (-T, T)$, then its Fourier series converges uniformly in $[a, b]$.

b) If u is continuous in $[-T, T]$ and $u(-T) = u(T)$, then its Fourier series converges uniformly in $[-T, T]$ (and therefore in \mathbb{R}).
Appendix B

Measures and Integrals

B.1 Lebesgue Measure and Integral

B.1.1 A counting problem

Two persons, that we denote by \(R \) and \(L \), must compute the total value of \(M \) coins, ranging from 1 to 50 cents. \(R \) decides to group the coins arbitrarily in piles of, say, 10 coins each, then to compute the value of each pile and finally to sum all these values. \(L \), instead, decides to partition the coins according to their value, forming piles of 1-cent coins, of 5-cents coins and so on. Then he computes the value of each pile and finally sums all their values.

In more analytical terms, let

\[V : M \to \mathbb{N} \]

be a value function that associates to each element of \(M \) (i.e. each coin) its value. \(R \) partitions the domain of \(V \) in disjoint subsets, sums the values of \(V \) in such subsets and then sums everything. \(L \) considers each point \(p \) in the image of \(V \) (the value of a single coin), considers the inverse image \(V^{-1}(p) \) (the pile of coins with the same value \(p \)), computes the corresponding value and finally sums over every \(p \).

These two ways of counting correspond to the strategy behind the definitions of the integrals of Riemann and Lebesgue, respectively. Since \(V \) is defined on a discrete set and is integer valued, in both cases there is no problem in summing its values and the choice is determined by an efficiency criterion. Usually, the method of \(L \) is more efficient.

In the case of a real (or complex) function \(f \), the “sums of its values” corresponds to an integration of \(f \). While the construction of \(R \) remains rather elementary, the one of \(L \) requires new tools.

Let us examine the particular case of a bounded and positive function, defined on an interval \([a, b] \subset \mathbb{R}\). Thus, let

\[f : [a, b] \to [\inf f, \sup f] \]

To construct the Riemann integral, we partition $[a, b]$ in subintervals I_1, \ldots, I_N (the piles of \mathcal{R}), then we choose in each interval I_k a point ξ_k and we compute $f(\xi_k) l(I_k)$, where $l(I_k)$ is the length of I_k, (i.e. the value of the k–th pile). Now we sum the values $f(\xi_k) l(I_k)$ and set

$$(\mathcal{R}) \int_a^b f = \lim_{\delta \to 0} \sum_{k=1}^N f(\xi_k) l(I_k),$$

where $\delta = \max \{l(I_1), \ldots, l(I_N)\}$. If the limit is finite and moreover is independent of the choice of the points ξ_k, then this limit defines the Riemann integral of f in $[a, b]$.

Now, let us examine the Lebesgue strategy. This time we partition the interval $[\inf f, \sup f]$ in subintervals $[y_{k-1}, y_k]$ (the values of each coin for \mathcal{L}) with $\inf f = y_0 < y_1 < \ldots < y_{N-1} < y_N = \sup f$.

Then we consider the inverse images $E_k = f^{-1}([y_{k-1}, y_k])$ (the piles of homogeneous coins) and we would like to compute their length. However, in general E_k is not an interval or a union of intervals and, in principle, it could be a very irregular set so that it is not clear what is the “length” of E_k.

Thus, the need arises to associate with every E_k a measure, which replaces the length when E_k is an irregular set. This leads to the introduction of the Lebesgue measure of (practically every) set $E \subseteq \mathbb{R}$, denoted by $|E|$.

Once we know how to measure E_k (the number of coins in the k–th pile), we choose an arbitrary point $\overline{\alpha}_k \in [y_{k-1}, y_k]$ and we compute $\overline{\alpha}_k |E_k|$ (the value of the k–th pile). Then, we sum all the values $\overline{\alpha}_k |E_k|$ and set

$$(\mathcal{L}) \int_a^b f = \lim_{\rho \to 0} \sum_{k=1}^N \overline{\alpha}_k |E_k|$$

where ρ is the maximum among the lengths of the intervals $[y_{k-1}, y_k]$. It can be seen that under our hypotheses, the limit exists, is finite and is independent of the choice of $\overline{\alpha}_k$. Thus, we may always choose $\overline{\alpha}_k = y_{k-1}$. This remark leads to the definition of the Lebesgue integral in Sect. B.3: the number $\sum_{k=1}^N y_{k-1} |E_k|$ is nothing else that the integral of a simple function, which approximates f from below and whose range is the finite set $y_0 < \ldots < y_{N-1}$. The integral of f is the supremum of these numbers.

The resulting theory has several advantages with respect to that of Riemann. For instance, the class of integrable functions is much wider and there is no need to distinguish among bounded or unbounded functions or integration domains.

Especially important are the convergence theorems presented in Sect. B.1.4, which allow the possibility of interchanging the operation of limit and integration, under rather mild conditions.
Finally, the construction of the Lebesgue measure and integral can be greatly
generalized as we will mention in Sect. B.1.5.

For the proofs of the theorems stated in this Appendix, the interested reader
can consult, e.g. [36], Rudin, 1976, or [41], Zygmund and Wheeden, 1977.

B.1.2 Measures and measurable functions

A measure in a set Ω is a *set function*, defined on a particular class of subsets of Ω called *measurable set* which “behaves well” with respect to union, intersection and complementation. Precisely:

Definition B.1. A collection \mathcal{F} of subsets of Ω is called σ-algebra if:

1. $\emptyset, \Omega \in \mathcal{F}$.
2. $A \in \mathcal{F}$ implies $\Omega \setminus A \in \mathcal{F}$.
3. If $\{A_k\}_{k \in \mathbb{N}} \subset \mathcal{F}$ then also $\bigcup_{k \geq 1} A_k$ and $\bigcap_{k \geq 1} A_k$ belong to \mathcal{F}.

Example B.2. If $\Omega = \mathbb{R}^n$, we can define the smallest σ-algebra containing all the open subsets of \mathbb{R}^n, called the Borel σ-algebra. Its elements are called *Borel sets*, typically obtained by countable unions and/or intersections of open sets.

Definition B.3. Given a σ-algebra \mathcal{F} in a set Ω, a measure on \mathcal{F} is a function $\mu : \mathcal{F} \to \mathbb{R}$ such that:

1. $\mu(A) \geq 0$ for every $A \in \mathcal{F}$.
2. If A_1, A_2, \ldots are pairwise disjoint sets in \mathcal{F}, then
 \[\mu \left(\bigcup_{k \geq 1} A_k \right) = \sum_{k \geq 1} \mu(A_k) \]
 (σ-additivity).

The elements of \mathcal{F} are called measurable sets.

The Lebesgue measure in \mathbb{R}^n is defined on a σ-algebra \mathcal{M} containing the Borel σ-algebra, through the following theorem.

Theorem B.4. There exists in \mathbb{R}^n a σ-algebra \mathcal{M} and a measure $|\cdot|_n : \mathcal{M} \to [0, +\infty]$ with the following properties:

1. Each open and closed set belongs to \mathcal{M}.
2. If $A \in \mathcal{M}$ and A has measure zero, every subset of A belongs to \mathcal{M} and has measure zero.
3. If $A = \{x \in \mathbb{R}^n : a_j < x_j < b_j; \ j = 1, \ldots, n\}$ then $|A| = \prod_{j=1}^{n} (b_j - a_j)$.
The elements of \mathcal{M} are called *Lebesgue measurable sets* and $|\cdot|_n$ (or simply $|$ if no confusion arises) is called the *n-dimensional Lebesgue measure*. Unless explicitly said, from now on, *measurable* means *Lebesgue measurable* and the measure is the Lebesgue measure.

Not every subset of \mathbb{R}^n is measurable. However, the nonmeasurable ones are quite ... pathological! The sets of measure zero are quite important. Here are some examples: all countable sets, e.g. the set \mathbb{Q} of rational numbers; straight lines or smooth curves in \mathbb{R}^2; straight lines, hyperplanes, smooth curves and surfaces in \mathbb{R}^3.

Notice that a straight line segment has measure zero in \mathbb{R}^2 but, of course not in \mathbb{R}.

We say that a *property holds almost everywhere in $A \in \mathcal{M}$* (in short, a.e. in A) *if it holds at every point of A except that in a subset of measure zero*.

For instance, the sequence $f_k(x) = \exp(-n \sin^2 x)$ converges to zero a.e. in \mathbb{R}, a Lipschitz function is differentiable a.e. in its domain (Rademacher’s Theorem 1.3, p. 14).

The Lebesgue integral is defined for *measurable* functions, characterized by the fact that the inverse image of every closed set is measurable.

Definition B.5. Let $A \subseteq \mathbb{R}^n$ be measurable, and $f : A \to \mathbb{R}$. We say that f is measurable if

$$f^{-1}(C) \in \mathcal{F}$$

for any closed set $C \subseteq \mathbb{R}$.

If f is continuous, is measurable. The sum and the product of a finite number of measurable functions is measurable. The pointwise limit of a sequence of measurable functions is measurable.

If $f : A \to \mathbb{R}$, is measurable, we define its *essential supremum* or *least upper bound* by the formula:

$$\text{ess sup } f = \inf \{K : f \leq K \text{ a.e. in } A\}.$$

Note that, if $f = \chi_{\mathbb{Q}}$, the characteristic functions of the rational numbers, we have $\sup f = 1$, but $\text{ess sup } f = 0$, since $|\mathbb{Q}| = 0$.

Every measurable function may be approximated by *simple functions*. A function $s : A \subseteq \mathbb{R}^n \to \mathbb{R}$ is said to be *simple* if its range is constituted by a *finite number* of values s_1, \ldots, s_N, attained respectively on measurable sets A_1, \ldots, A_N, contained in A. Introducing the characteristic functions χ_{A_j}, we may write

$$s = \sum_{j=1}^{N} s_j \chi_{A_j}.$$

1 See e.g. [36], *Rudin, 1976*.
We have:

Theorem B.6. Let $f : A \to \mathbb{R}$, be measurable. There exists a sequence $\{s_k\}$ of simple functions converging pointwise to f in A. Moreover, if $f \geq 0$, we may choose $\{s_k\}$ increasing.

B.1.3 The Lebesgue integral

We define the Lebesgue integral of a measurable function on a measurable set A. For a simple function

$$s = \sum_{j=1}^{N} s_j \chi_{A_j}$$

we set:

$$\int_A s = \sum_{j=1}^{N} s_j |A_j|,$$

with the agreement that, if $s_j = 0$ and $|A_j| = +\infty$, then $s_j |A_j| = 0$.

If $f \geq 0$ is measurable, we define

$$\int_A f = \sup \int_A s,$$

where the supremum is computed over the set of all simple functions s such that $s \leq f$ in A.

In general, if f is measurable, we write $f = f^+ - f^-$, where $f^+ = \max \{f, 0\}$ and $f^- = \max \{-f, 0\}$ are the positive and negative parts of f, respectively. Then we set:

$$\int_A f = \int_A f^+ - \int_A f^-,$$

under the condition that at least one of the two integrals in the right hand side is finite.

If both these integrals are finite, the function f is said to be **integrable** or **summable** in A. From the definition, it follows immediately that a measurable functions f is integrable in A if and only if $|f|$ is integrable in A.

All the functions Riemann integrable in a set A are Lebesgue integrable as well. An interesting example of non Lebesgue integrable function in $(0, +\infty)$ is given by $h(x) = \sin x / x$. In fact\(^2\)

$$\int_0^{+\infty} \frac{|\sin x|}{x} \, dx = +\infty.$$

\(^2\) We may write

$$\int_0^{+\infty} |\sin x| \, dx = \sum_{k=1}^{\infty} \int_{(k-1)\pi}^{k\pi} \frac{|\sin x|}{x} \, dx \geq \sum_{k=1}^{\infty} \frac{1}{k\pi} \int_{(k-1)\pi}^{k\pi} |\sin x| \, dx = \sum_{k=1}^{\infty} \frac{2}{k\pi} = +\infty.$$
On the contrary, it may be proved that
\[
\lim_{N \to +\infty} \int_0^N \frac{\sin x}{x} \, dx = \frac{\pi}{2}
\]
and therefore the improper Riemann integral of \(h \) is finite.

The set of the integrable functions in \(A \) is denoted by \(L^1(A) \). If we identify two functions when they agree a.e. in \(A \), \(L^1(A) \) becomes a Banach space with the norm\(^3\)
\[
\| f \|_{L^1(A)} = \int_A |f|.
\]
We denote by \(L^1_{\text{loc}}(A) \) the set of \textit{locally summable functions}, i.e. of the functions which are summable in every compact subset of \(A \).

B.1.4 Some fundamental theorems

The following theorems are among the most important and useful in the theory of integration.

Theorem B.7 (Dominated Convergence Theorem). Let \(\{ f_k \} \) be a sequence of summable functions in \(A \) such that \(f_k \to f \) a.e. in \(A \). If there exists \(g \geq 0 \), summable in \(A \) and such that \(|f_k| \leq g \) a.e. in \(A \), then \(f \) is summable and
\[
\| f_k - f \|_{L^1(A)} \to 0 \quad \text{as} \quad k \to +\infty.
\]
In particular
\[
\lim_{k \to \infty} \int_A f_k = \int_A f.
\]

Theorem B.8. Let \(\{ f_k \} \) be a sequence of summable functions in \(A \) such that
\[
\| f_k - f \|_{L^1(A)} \to 0 \quad \text{as} \quad k \to +\infty.
\]
Then there exists a subsequence \(\{ f_{k_j} \} \) such that \(f_{k_j} \to f \) a.e. as \(j \to +\infty \).

Theorem B.9 (Monotone Convergence Theorem). Let \(\{ f_k \} \) be a sequence of nonnegative, measurable functions in \(A \) such that
\[
f_1 \leq f_2 \leq \ldots \leq f_k \leq f_{k+1} \leq \ldots .
\]
Then
\[
\lim_{k \to \infty} \int_A f_k = \int_A \lim_{k \to \infty} f_k.
\]

\(^3\) See Chap. 6.
Example B.10. A typical situation we often encounter in this book is the following. Let $f \in L^1(A)$ and, for $\varepsilon > 0$, set $A_\varepsilon = \{|f| > \varepsilon\}$. Then, we have

$$\int_{A_\varepsilon} f \to \int_A f \quad \text{as } \varepsilon \to 0.$$

This follows from Theorem B.7 since, for every sequence $\varepsilon_j \to 0$, we have $|f| \chi_{A_{\varepsilon_j}} \leq |f|$ and therefore

$$\int_{A_{\varepsilon_j}} f = \int_A f \chi_{A_{\varepsilon_j}} \to \int_A f \quad \text{as } \varepsilon \to 0.$$

Let $C_0(A)$ be the set of continuous functions in A, compactly supported in A. An important fact is that any summable function may be approximated by a function in $C_0(A)$.

Theorem B.11. Let $f \in L^1(A)$. Then, for every $\delta > 0$, there exists a continuous function $g \in C_0(A)$ such that

$$\|f - g\|_{L^1(A)} < \delta.$$

The fundamental theorem of calculus extends to the Lebesgue integral in the following form:

Theorem B.12 (Differentiation). Let $f \in L^1_{loc}(\mathbb{R})$. Then

$$\frac{d}{dx} \int_a^x f(t) \, dt = f(x) \quad \text{a.e. } x \in \mathbb{R}.$$

Finally, the integral of a summable function can be computed via iterated integrals in any order. Precisely, let

$$I_1 = \{x \in \mathbb{R}^n : -\infty \leq a_i < x_i < b_i \leq \infty; \ i = 1, \ldots, n\}$$

and

$$I_2 = \{y \in \mathbb{R}^m : -\infty \leq a_j < y_j < b_j \leq \infty; \ j = 1, \ldots, m\}.$$

Theorem B.13 (Fubini). Let f be summable in $I = I_1 \times I_2 \subset \mathbb{R}^n \times \mathbb{R}^m$. Then

1. $f(x, \cdot) \in L^1(I_2)$ for a.e. $x \in I_1$, and $f(\cdot, y) \in L^1(I_1)$ for a.e. $y \in I_2$.
2. $\int_{I_2} f(\cdot, y) \, dy \in L^1(I_1)$ and $\int_{I_1} f(x, \cdot) \, dx \in L^1(I_2)$.
3. The following formulas hold:

$$\int_I f(x, y) \, dx \, dy = \int_{I_1} dx \int_{I_2} f(x, y) \, dy = \int_{I_2} dy \int_{I_1} f(x, y) \, dx.$$
B.1.5 Probability spaces, random variables and their integrals

Let \mathcal{F} be a σ-algebra in a set Ω. A probability measure P on \mathcal{F} is a measure in the sense of definition B.2, such that $P(\Omega) = 1$ and

$$P : \mathcal{F} \to [0, 1].$$

The triplet (Ω, \mathcal{F}, P) is called a probability space. In this setting, the elements ω of Ω are sample points, while a set $A \in \mathcal{F}$ has to be interpreted as an event. $P(A)$ is the probability of (occurrence of) A.

A typical example is given by the triplet

$$\Omega = [0, 1], \mathcal{F} = \mathcal{M} \cap [0, 1], P(A) = |A|$$

which models a uniform random choice of a point in $[0, 1]$.

A 1-dimensional random variable in (Ω, \mathcal{F}, P) is a function

$$X : \Omega \to \mathbb{R}$$

such that X is \mathcal{F}-measurable, that is

$$X^{-1}(C) \in \mathcal{F}$$

for each closed set $C \subseteq \mathbb{R}$.

Example B.14. The number k of steps to the right after N steps in the random walk of Sect. 2.4 is a random variable. Here Ω is the set of walks of N steps.

By the same procedure used to define the Lebesgue integral we can define the integral of a random variable with respect to a probability measure. We sketch the main steps.

If X is simple, i.e. $X = \sum_{j=1}^{N} s_j \chi_{A_j}$, we define

$$\int_{\Omega} X \, dP = \sum_{j=1}^{N} s_j P(A_j).$$

If $X \geq 0$ we set

$$\int_{\Omega} X \, dP = \sup \left\{ \int_{\Omega} Y \, dP : Y \leq X, Y \text{ simple} \right\}.$$

Finally, if $X = X^+ - X^-$ we define

$$\int_{\Omega} X \, dP = \int_{\Omega} X^+ \, dP - \int_{\Omega} X^- \, dP$$

provided at least one of the integral on the right hand side is finite.
In particular, if
\[\int_\Omega |X| \, dP < \infty, \]
then
\[E(X) = \langle X \rangle = \int_\Omega X \, dP \]
is called the expected value (or mean value or expectation) of \(X \), while
\[\text{Var}(X) = \int_\Omega (X - E(X))^2 \, dP \]
is called the variance of \(X \).

Analogous definitions can be given componentwise for \(n \)-dimensional random variables
\[\mathbf{X} : \Omega \rightarrow \mathbb{R}^n. \]
Appendix C

Identities and Formulas

C.1 Gradient, Divergence, Curl, Laplacian

Let F be a smooth vector field and f a smooth real function, in \mathbb{R}^3.

Orthogonal cartesian coordinates

1. gradient:
 \[\nabla f = \frac{\partial f}{\partial x} \mathbf{i} + \frac{\partial f}{\partial y} \mathbf{j} + \frac{\partial f}{\partial z} \mathbf{k}. \]

2. divergence ($F = F_1 \mathbf{i} + F_2 \mathbf{j} + F_3 \mathbf{k}$):
 \[\text{div } F = \frac{\partial}{\partial x} F_1 + \frac{\partial}{\partial y} F_2 + \frac{\partial}{\partial z} F_3. \]

3. Laplacian:
 \[\Delta f = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} + \frac{\partial^2 f}{\partial z^2}. \]

4. curl:
 \[\text{curl } F = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ F_1 & F_2 & F_3 \end{vmatrix}. \]

Cylindrical coordinates

\[x = r \cos \theta, \quad y = r \sin \theta, \quad z = z \quad (r > 0, \quad 0 \leq \theta \leq 2\pi) \]
\[\mathbf{e}_r = \cos \theta \mathbf{i} + \sin \theta \mathbf{j}, \quad \mathbf{e}_\theta = -\sin \theta \mathbf{i} + \cos \theta \mathbf{j}, \quad \mathbf{e}_z = \mathbf{k}. \]

1. gradient:
 \[\nabla f = \frac{\partial f}{\partial r} \mathbf{e}_r + \frac{1}{r} \frac{\partial f}{\partial \theta} \mathbf{e}_\theta + \frac{\partial f}{\partial z} \mathbf{e}_z. \]
2. **divergence** \(\mathbf{F} = F_r \mathbf{e}_r + F_\theta \mathbf{e}_\theta + F_z \mathbf{k} \):

\[
\text{div} \mathbf{F} = \frac{1}{r} \frac{\partial}{\partial r} \left(rF_r \right) + \frac{1}{r} \frac{\partial}{\partial \theta} F_\theta + \frac{\partial}{\partial z} F_z .
\]

3. **Laplacian**:

\[
\Delta f = \frac{1}{r} \frac{\partial}{\partial r} \left(r \frac{\partial f}{\partial r} \right) + \frac{1}{r^2} \frac{\partial^2 f}{\partial \theta^2} + \frac{\partial^2 f}{\partial z^2} = \frac{\partial^2 f}{\partial r^2} + \frac{1}{r} \frac{\partial f}{\partial r} + \frac{1}{r^2} \frac{\partial^2 f}{\partial \theta^2} + \frac{\partial^2 f}{\partial z^2} .
\]

4. **curl**:

\[
\text{curl} \mathbf{F} = \frac{1}{r} \left| \begin{array}{ccc} \mathbf{e}_r & r \mathbf{e}_\theta & \mathbf{e}_z \\ \partial_r & \partial_\theta & \partial_z \\ F_r & r F_\theta & F_z \end{array} \right| .
\]

Spherical coordinates

\[
x = r \cos \theta \sin \psi, \quad y = r \sin \theta \sin \psi, \quad z = r \cos \psi \quad (r > 0, \ 0 \leq \theta \leq 2\pi, \ 0 \leq \psi \leq \pi)
\]

\[
\mathbf{e}_r = \cos \theta \sin \psi \mathbf{i} + \sin \theta \sin \psi \mathbf{j} + \cos \psi \mathbf{k}
\]

\[
\mathbf{e}_\theta = -\sin \theta \mathbf{i} + \cos \theta \mathbf{j}
\]

\[
\mathbf{e}_\psi = \cos \theta \cos \psi \mathbf{i} + \sin \theta \cos \psi \mathbf{j} - \sin \psi \mathbf{k}.
\]

1. **gradient**:

\[
\nabla f = \frac{\partial f}{\partial r} \mathbf{e}_r + \frac{1}{r \sin \psi} \frac{\partial f}{\partial \theta} \mathbf{e}_\theta + \frac{1}{r \sin \psi} \frac{\partial f}{\partial \psi} \mathbf{e}_\psi .
\]

2. **divergence** \(\mathbf{F} = F_r \mathbf{e}_r + F_\theta \mathbf{e}_\theta + F_\psi \mathbf{e}_\psi \):

\[
\text{div} \mathbf{F} = \frac{\partial}{\partial r} F_r + \frac{2}{r} F_r + \frac{1}{r} \left[\frac{1}{\sin \psi} \frac{\partial}{\partial \theta} F_\theta + \frac{\partial}{\partial \psi} F_\psi + \cot \psi F_\psi \right] .
\]

3. **Laplacian**:

\[
\Delta f = \frac{\partial^2 f}{\partial r^2} + \frac{2}{r} \frac{\partial f}{\partial r} + \frac{1}{r^2} \left\{ \frac{1}{(\sin \psi)^2} \frac{\partial^2 f}{\partial \theta^2} + \frac{\partial^2 f}{\partial \psi^2} + \cot \psi \frac{\partial f}{\partial \psi} \right\} .
\]

4. **curl**:

\[
\text{rot} \mathbf{F} = \frac{1}{r^2 \sin \psi} \left| \begin{array}{ccc} \mathbf{e}_r & r \mathbf{e}_\psi & r \sin \psi \mathbf{e}_\theta \\ \partial_r & \partial_\psi & \partial_\theta \\ F_r & r F_\psi & r \sin \psi F_z \end{array} \right| .
\]
C.2 Formulas

Gauss’ formulas

In \mathbb{R}^n, $n \geq 2$, let:

- Ω be a bounded smooth domain and and ν the outward unit normal on $\partial \Omega$.
- u, v be vector fields of class $C^1(\bar{\Omega})$.
- φ, ψ be real functions of class $C^1(\bar{\Omega})$.
- $d\sigma$ be the area element on $\partial \Omega$.

1. $\int_{\Omega} \text{div } u\, dx = \int_{\partial \Omega} u \cdot \nu \, d\sigma$ (Divergence Theorem).
2. $\int_{\Omega} \nabla \varphi \, dx = \int_{\partial \Omega} \varphi \nu \, d\sigma$.
3. $\int_{\Omega} \Delta \varphi \, dx = \int_{\partial \Omega} \nabla \varphi \cdot \nu \, d\sigma = \int_{\partial \Omega} \partial_{\nu \varphi} \, d\sigma$.
4. $\int_{\Omega} \psi \text{ div } F \, dx = \int_{\partial \Omega} \psi \nu \cdot F \, d\sigma - \int_{\Omega} \nabla \psi \cdot F \, dx$ (Integration by parts).
5. $\int_{\Omega} \psi \Delta \varphi \, dx = \int_{\partial \Omega} \psi \partial_{\nu \varphi} \, d\sigma - \int_{\Omega} \nabla \varphi \cdot \nabla \psi \, dx$ (Green’s identity I).
6. $\int_{\Omega} (\psi \Delta \varphi - \varphi \Delta \psi) \, dx = \int_{\partial \Omega} (\psi \partial_{\nu \varphi} - \varphi \partial_{\nu \psi}) \, d\sigma$ (Green’s identity II).
7. $\int_{\Omega} \text{curl } u \, dx = -\int_{\partial \Omega} u \times \nu \, d\sigma$.
8. $\int_{\Omega} u \cdot \text{curl } v \, dx = \int_{\Omega} v \cdot \text{curl } u \, dx - \int_{\partial \Omega} (u \times v) \cdot \nu \, d\sigma$.

Identities

1. $\text{div } \text{curl } u = 0$.
2. $\text{curl } \nabla \varphi = 0$.
3. $\text{div } (\varphi u) = \varphi \text{ div } u + \nabla \varphi \cdot u$.
4. $\text{curl } (\varphi u) = \varphi \text{ curl } u + \nabla \varphi \times u$.
5. $\text{curl } (u \times v) = (v \cdot \nabla) u - (u \cdot \nabla) v + (\text{div } v) u - (\text{div } u) v$.
6. $\text{div } (u \times v) = \text{curl u} \cdot v - \text{curl v} \cdot u$.
7. $\nabla (u \cdot v) = u \times \text{curl } v + v \times \text{curl } u + (u \cdot \nabla) v + (v \cdot \nabla) u$.
8. $(u \cdot \nabla) u = \text{curl u} \times u + \frac{1}{2} \nabla |u|^2$.
9. $\text{curl curl } u = \nabla (\text{div } u) - \Delta u$.
References

Partial Differential Equations

Mathematical Modelling

ODEs, Analysis and Functional Analysis

References

Numerical Analysis

Stochastic Processes and Finance

Index

Absorbing barriers, 111
Adjoint
– of a bilinear form, 399
– problem, 572
Advection, 180
Alternative
– for the Dirichlet problem, 524
– for the Neumann problem, 527
Angular frequency, 258
Arbitrage, 92

Barenblatt solutions, 103
Barrier, 143
Bernoulli’s equation, 328
Bessel function, 73, 295
Biharmonic equation, 552
Bilinear form, 380
Bond number, 331
Boundary conditions, 21
– Dirichlet, 21, 33
– mixed, 22, 33
– Neumann, 22, 33
– Robin, 22, 33
Breaking time, 201
Brownian
– motion, 55
– path, 55
Burgers, viscous, 217

Canonical
– form, 291, 293
– isometry, 377
Characteristic, 181, 230, 622, 623
– parallelogram, 275
– strip, 245
– system, 244
Chebyshev polynomials, 368

Closure, 8
Comparison, 38
Compatibility conditions, 400, 403
Condition
– compatibility, 118
– E, 221
– entropy, 640
– Rankine-Hugoniot, 198, 205, 633
Conjugate exponent, 11, 356
Conormal derivative, 525
Contact discontinuity, 628, 634, 642
Continuous isomorphism, 382
Convection, 61
Convergence
– least squares, 662
– uniform, 11
– weak, 391
Convolution, 428, 447
Cost functional, 569
Critical
– mass, 75
– survival value, 66
Curve
– rarefaction, 635
– shock, 642
d’Alembert formula, 274
d-harmonic function, 121
Dam break problem, 657
Darcy’s law, 102
Diffusion, 18
– coefficient, 54
Dirac
– comb, 434
– measure, 44
Direct
– product, 450
sum, 362
Dirichlet
eigenfunctions, 515
principle, 544
Dispersion, 285
relation, 259, 285, 333
Dissipation
external/internal, 284
Distribution, 432
composition, 443
division, 446
Distributional derivative, 436
Domain, 8
\(C^1, C^k\), 12
Lipschitz, 14
of dependence, 276, 313
smooth, 12
Drift, 60, 89
Duhamel method, 283
Eigenfunction, 368
of a bilinear form, 409
Eigenspace, 405, 407, 409
of a bilinear form, 409
Eigenvalues, 368, 407
Eigenvector, 407
Elastic restoring force, 111
Elliptic equation, 503
Entropy condition, 210, 641
Equal area rule, 202
Equation
backward, 94
backward heat, 39
Bessel, 73, 370
biharmonic, 553
Black-Scholes, 3, 93
Bukley-Leverett, 242
Burgers, 4
Chebyshev, 368
diffusion, 2, 17
Eiconal, 5, 248
elastostatics, 555
elliptic, 287
Fisher, 4
Fisher-Kolmogoroff, 603
fully nonlinear, 2
Hermite’s, 369
hyperbolic, 287
Klein-Gordon, 285
Laplace, 3
Legendre’s, 369
linear elasticity, 5
linear, nonlinear, 2
Maxwell, 5
minimal surface, 4
Navier, 555
Navier-Stokes, 5, 154, 559
Navier-Stokes, stationary, 564
parabolic, 287, 579
parametric Bessel’s (of order p), 370
partial differential, 2
Poisson, 3, 115
porous media, 103
porous medium, 4
quasilinear, 2
reduced wave, 178
Schrodinger, 4
semilinear, 2
stationary Fisher, 551
stochastic differential, 89
Sturm-Liouville, 367
transport, 2
Tricomi, 287
uniformly parabolic, 580
vibrating plate, 3
wave, 3
Equicontinuity, 390
Equipartition of energy, 340
Escape probability, 137
Essential
support, 427
supremum, 356
Euler equation, 385
European options, 88
Expectation, 58, 70
Expiry date, 88
Extension operator, 475
Exterior
Dirichlet problem, 163
domain, 164
Robin problem, 165, 177
Fick’s law, 61
Final payoff, 94
First
exit time, 135
integral, 237, 239
variation, 385
Flux function, 179
Focussing effect, 342
Forward cone, 311
Fourier
coefficients, 365
law, 20
series, 28
transform, 452, 471
Fourier-Bessel series, 74, 371
Index

Frequency, 258
Froude number, 331
Function
– Bessel’s of first kind and order order p, 371
– characteristic, 10
– compactly supported, 10
– complementary error, 220
– continuous, 10
– d-harmonic, 119
– essentially bounded, 356
– Green’s, 157
– Hölder continuous, 355
– harmonic, 18, 115
– Heaviside, 44
– piecewise continuous, 205
– summable, 355
– test, 48, 427
– weight, 368
Functional, 375
Fundamental solution, 43, 48, 148, 280, 309

Gas dynamics, 619
Gaussian law, 56, 68
Genuinely nonlinear, 636
Global Cauchy problem, 23, 34, 76
– nonhomogeneous, 80
Gram-Schmidt process, 367
Greatest lower bound, 9
Group velocity, 259

Harmonic
– lifting, 141
– measure, 139
Harnack’s inequality, 131
Heisenberg Uncertainty Principle, 419
Helmholtz decomposition formula, 151
Hermite polynomials, 369
Hilbert triplet, 399
Hooke’s law, 554
Hopf’s maximum principle, 126
Hopf-Cole transformation, 219
Homeomorphism, 416
Hugoniot line, 628
Hyperbolic system, 618

Identity
– Green’s (first and second), 15
– strong Parseval’s, 458
– weak Parseval’s, 456
Inequality
– Hölder, 356

Infimum, 9
Inflow/outflow
– boundary, 238
– characteristics, 185
Inner product space, 357
Integral surface, 229
Integration by parts, 15
Interior sphere condition, 126
Invasion problem, 113
Inward heat flux, 33
Isometry
– isometric, 358
Ito’s formula, 90

Kernel, 372
Kinematic condition, 329
Kinetic energy, 264

Lagrange multiplier, 563
Lattice, 66, 118
Least
– squares, 28
– upper bound, 9
Lebesgue spine, 146
Legendre polynomials, 369
Light cone, 248
Linearly degenerate, 644
Liouville Theorem, 132
Little o, 11
Local
– chart, 12
– wave speed, 190
Localization, 475
Logarithmic potential, 151
Logistic growth, 105
Lognormal density, 91

Mach number, 306
Markov properties, 57, 69
Mass conservation, 60
Material derivative, 154
Maximum principle, 83, 120
– weak, 36, 530, 599
Mean value property, 123
Method, 23
– Duhamel, 81
– electrostatic images, 158
– Galerkin’s, 386
– of characteristics, 189, 622
– of descent, 314
– of Faedo-Galerkin, 589, 607
– of stationary phase, 261
– reflection, 475
– separation of variables, 23, 26, 267, 302, 405, 518
– time reversal, 323
– vanishing viscosity, 214
Metric space, 351
Minimax property (of the eigenvalues)
– for the first eigenvalue, 414, 424
Mollifier, 428
Monotone scheme, 601
– weak, 549
Multidimensional symmetric random walk, 66
Multiplicity (of an eigenvalue), 407

Neumann
– eigenfunctions, 516
– function, 163
Norm
– Integral of order p, 355
– least squares, 353
– maximum, 353
– maximum of order k, 354
Normal probability density, 43
Normed space, 351
Numerical sets, 7

Open covering, 475
Operator
– adjoint, 378
– bounded, continuous, 372
– compact, 394
– discrete Laplace, 119
– linear, 371
– mean value, 118
Optimal
– control, 570
– state, 570
Orthonormal basis, 365

Parabolic
– boundary, 23, 34
– dilations, 40
Parallelogram law, 358
Partition of unity, 476
Perron method, 142
Phase speed, 258
Poincaré’s inequality, 464, 486
Point
– boundary, 8
– interior, 7
– limit, 8
Point source solution
– two dimensional, 343
Poisson formula, 131
Potential, 115
– double layer, 166
– Newtonian, 149
– retarded (two dimensions), 343
– single layer, 170
Potential energy, 265
Principal Dirichlet eigenvalue, 515
Principle of virtual work, 558
Projection
– on closed convex sets, 422
Put-call parity, 97
Quantum mechanics harmonic oscillator, 420

Random
– variable, 54
– walk, 49
– walk with drift, 58
Range, 372
– of influence, 276, 311
Rankine-Hugoniot condition, 198, 205
Rayleigh quotient, 412, 516
Reactivity, 63
Reflecting barriers, 111
Regular point, 144
Resolvent, 405
– of a bilinear form, 409
– of a bounded operator, 406
Retarded potential, 316
Retrograde cone, 299
Reynolds number, 560
Riemann
– invariant, 630
– problem, 212, 625, 646
Rodrigues’ formula, 369

Schwarz
– inequality, 358
– reflection principle, 175
Self-financing portfolio, 92, 100
Selfadjoint operator, 379
<table>
<thead>
<tr>
<th>Sequence</th>
<th>Stopping time, 57, 135</th>
</tr>
</thead>
<tbody>
<tr>
<td>– Cauchy, 352</td>
<td>Strike price, 88</td>
</tr>
<tr>
<td>– fundamental, 352</td>
<td>Strip condition, 246</td>
</tr>
<tr>
<td>Set</td>
<td></td>
</tr>
<tr>
<td>– bounded, 8</td>
<td>Strong Huygens’ principle, 311, 313</td>
</tr>
<tr>
<td>– closed, 8</td>
<td>Sub/superharmonic function, 141</td>
</tr>
<tr>
<td>– compact, 8</td>
<td>Sub/supersolution, 36</td>
</tr>
<tr>
<td>– compactly contained, 8</td>
<td>Superposition principle, 17, 77, 266</td>
</tr>
<tr>
<td>– connected, 8</td>
<td>Supersolution principle, 382</td>
</tr>
<tr>
<td>– convex, 8</td>
<td>Support, 10</td>
</tr>
<tr>
<td>– dense, 8</td>
<td>– of a distribution, 435</td>
</tr>
<tr>
<td>– open, 8</td>
<td>Surface tension, 328</td>
</tr>
<tr>
<td>– precompact, 389</td>
<td>Symbol</td>
</tr>
<tr>
<td>– sequentially closed, 8</td>
<td>– $o(h)$, 53</td>
</tr>
<tr>
<td>– sequentially compact, 8, 389</td>
<td>– “big O”, 63</td>
</tr>
<tr>
<td>Shock</td>
<td>System</td>
</tr>
<tr>
<td>– curve, 198</td>
<td>– hyperbolic, 618</td>
</tr>
<tr>
<td>– speed, 198</td>
<td>– p-system, 621</td>
</tr>
<tr>
<td>– wave, 198</td>
<td>Tempered distribution, 454</td>
</tr>
<tr>
<td>Similarity, self-similar solutions, 41</td>
<td>Tensor</td>
</tr>
<tr>
<td>Sobolev exponent, 489</td>
<td>– deformation, 554</td>
</tr>
<tr>
<td>Solution</td>
<td>– product, 450</td>
</tr>
<tr>
<td>– classical, 505</td>
<td>– stress, 153, 554</td>
</tr>
<tr>
<td>– distributional, 505</td>
<td>Term by term</td>
</tr>
<tr>
<td>– integral, 205</td>
<td>– differentiation, 12</td>
</tr>
<tr>
<td>– self-similar, 103</td>
<td>– integration, 12</td>
</tr>
<tr>
<td>– steady state, 25</td>
<td>Theorem</td>
</tr>
<tr>
<td>– strong, 505</td>
<td>– Ascoli-Arzelà, 390</td>
</tr>
<tr>
<td>– unit source, 46</td>
<td>– Lax-Milgram, 381</td>
</tr>
<tr>
<td>– variational, 505</td>
<td>– Leray-Shauder, 418</td>
</tr>
<tr>
<td>– viscosity, 505</td>
<td>– projection, 362</td>
</tr>
<tr>
<td>– weak, 205</td>
<td>– Rellich, 485</td>
</tr>
<tr>
<td>Sommerfeld condition, 178</td>
<td>– Riesz’s representation, 376</td>
</tr>
<tr>
<td>Space</td>
<td>– Riesz-Fréchet-Kolmogoroff, 391</td>
</tr>
<tr>
<td>– dual, 375</td>
<td>– Shauder, 416</td>
</tr>
<tr>
<td>– separable, 365</td>
<td>Time-like curve, 250</td>
</tr>
<tr>
<td>Space-like curve, 249</td>
<td>Topology, 7, 352</td>
</tr>
<tr>
<td>Spectral decomposition</td>
<td>– euclidian, 8</td>
</tr>
<tr>
<td>– of a matrix, 405</td>
<td>– relative, 9</td>
</tr>
<tr>
<td>– of an operator, 408</td>
<td>Trace, 477</td>
</tr>
<tr>
<td>Spectrum, 404</td>
<td>– inequality, 483</td>
</tr>
<tr>
<td>– continuous, 407</td>
<td>Traffic in a tunnel, 252</td>
</tr>
<tr>
<td>– of a bilinear form, 409</td>
<td>Transition</td>
</tr>
<tr>
<td>– of a bounded operator, 406</td>
<td>– function, 69</td>
</tr>
<tr>
<td>– point, 407</td>
<td>– layer, 216</td>
</tr>
<tr>
<td>– residual, 407</td>
<td>– probability, 57, 121</td>
</tr>
<tr>
<td>Spherical waves, 259</td>
<td>Transmission conditions, 545</td>
</tr>
<tr>
<td>Stability estimate, 382</td>
<td>Travelling wave, 182, 190, 215</td>
</tr>
<tr>
<td>Standing wave, 269</td>
<td>Trivial extension, 475</td>
</tr>
<tr>
<td>Stationary phase (method of), 337</td>
<td>Tychonov class, 83</td>
</tr>
<tr>
<td>Steepest descent, 573</td>
<td>Uniform ellipticity, 519</td>
</tr>
<tr>
<td>Stiffness matrix, 387</td>
<td>Unit impulse, 45</td>
</tr>
<tr>
<td>Stochastic process, 55, 68</td>
<td>Upper, lower limit, 9</td>
</tr>
<tr>
<td>Stokes System, 560</td>
<td></td>
</tr>
</tbody>
</table>
Value function, 88
Variational formulation
– Dirichlet problem, 508, 521
– Mixed problem, 514, 528
– Neumann problem, 511, 526
– Robin problem, 513
Variational inequality
– on closed convex sets, 422
Variational principle
– for the first eigenvalue, 412
– for the k-th eigenvalue, 413
Volatility, 89

W
– rarefaction, p-system, 648, 649
Wave
– capillarity, 334
– cylindrical, 294
– gravity, 334
– harmonic, 257
– incoming/outgoing, 296
– linear, 326
– linear gravity, 343
– monochromatic/harmonic, 294
– number, 258
– packet, 260
– plane, 259, 294
– shock, 642
– shock, p-system, 647, 648
– simple, 635
– spherical, 295
– standing, 258
– travelling, 257
Weak coerciveness, 523
Weak formulation
– Cauchy-Dirichlet problem, 582
– Cauchy-Robin/Neumann problem, 592–594
– Initial-Dirichlet problem (wave eq.), 606
Weakly coercive
– bilinear form, 594
– form, 399
Weierstrass test, 11, 29

Young modulus, 340
As of 2004, the books published in the series have been given a volume number. Titles in grey indicate editions out of print. As of 2011, the series also publishes books in English.

A. Bernasconi, B. Codenotti
Introduzione alla complessità computazionale

A. Bernasconi, B. Codenotti, G. Resta
Metodi matematici in complessità computazionale

E. Salinelli, F. Tomarelli
Modelli dinamici discreti

S. Bosch
Algebra

S. Graffi, M. Degli Esposti
Fisica matematica discreta

S. Margarita, E. Salinelli
MultiMath – Matematica Multimediale per l’Università
A. Quarteroni, R. Sacco, F. Saleri
Matematica numerica (2a Ed.)
2002, 2004 ristampa riveduta e corretta

13. A. Quarteroni, F. Saleri
Introduzione al Calcolo Scientifico (2a Ed.)

14. S. Salsa
Equazioni a derivate parziali - Metodi, modelli e applicazioni

15. G. Riccardi
Calcolo differenziale ed integrale

16. M. Impedovo
Matematica generale con il calcolatore

17. L. Formaggia, F. Saleri, A. Veneziani
Applicazioni ed esercizi di modellistica numerica per problemi differenziali

18. S. Salsa, G. Verzini
Equazioni a derivate parziali – Complementi ed esercizi
2007, ristampa con modifiche

19. C. Canuto, A. Tabacco
Analisi Matematica I (2a Ed.)

20. F. Biagini, M. Campanino
Elementi di Probabilità e Statistica
21. S. Leonesi, C. Toffalori
 Numeri e Crittografia

22. A. Quarteroni, F. Saleri
 Introduzione al Calcolo Scientifico (3a Ed.)

23. S. Leonesi, C. Toffalori
 Un invito all'Algebra

24. W.M. Baldoni, C. Ciliberto, G.M. Piacentini Cattaneo
 Aritmetica, Crittografia e Codici

25. A. Quarteroni
 Modellistica numerica per problemi differenziali (3a Ed.)
 (1a edizione 2000, ISBN 88-470-0108-0)

26. M. Abate, F. Tovena
 Curve e superfici

27. L. Giuzzi
 Codici correttori

28. L. Robbiano
 Algebra lineare

29. E. Rosazza Gianin, C. Sgarra
 Esercizi di finanza matematica

30. A. Machì
 Gruppi – Una introduzione a idee e metodi della Teoria dei Gruppi
 2010, ristampa con modifiche
31. Y. Biollay, A. Chaabouni, J. Stubbe
 Matematica si parte!
 A cura di A. Quarteroni

32. M. Manetti
 Topologia

33. A. Pascucci
 Calcolo stocastico per la finanza

34. A. Quarteroni, R. Sacco, F. Saleri
 Matematica numerica (3a Ed.)

35. P. Cannarsa, T. D'Aprile
 Introduzione alla teoria della misura e all'analisi funzionale

36. A. Quarteroni, F. Saleri
 Calcolo scientifico (4a Ed.)

37. C. Canuto, A. Tabacco
 Analisi Matematica I (3a Ed.)

38. S. Gabelli
 Teoria delle Equazioni e Teoria di Galois

39. A. Quarteroni
 Modellistica numerica per problemi differenziali (4a Ed.)

40. C. Canuto, A. Tabacco
 Analisi Matematica II
 2010, ristampa con modifiche

41. E. Salinelli, F. Tomarelli
 Modelli Dinamici Discreti (2a Ed.)
42. S. Salsa, F.M.G. Vegni, A. Zaretti, P. Zunino
 Invito alle equazioni a derivate parziali

43. S. Dulli, S. Furini, E. Peron
 Data mining

44. A. Pascucci, W.J. Runggaldier
 Finanza Matematica

45. S. Salsa
 Equazioni a derivate parziali – Metodi, modelli e applicazioni (2a Ed.)

46. C. D’Angelo, A. Quarteroni
 Matematica Numerica – Esercizi, Laboratori e Progetti

47. V. Moretti
 Teoria Spettrale e Meccanica Quantistica – Operatori in spazi di Hilbert

48. C. Parenti, A. Parmeggiani
 Algebra lineare ed equazioni differenziali ordinarie

49. B. Korte, J. Vygen
 Ottimizzazione Combinatoria. Teoria e Algoritmi

50. D. Mundici
 Logica: Metodo Breve

51. E. Fortuna, R. Frigerio, R. Pardini
 Geometria proiettiva. Problemi risolti e richiami di teoria

52. C. Presilla
 Elementi di Analisi Complessa. Funzioni di una variabile
53. L. Grippo, M. Sciandrone
 Metodi di ottimizzazione non vincolata

54. M. Abate, F. Tovena
 Geometria Differenziale

55. M. Abate, F. Tovena
 Curves and Surfaces

56. A. Ambrosetti
 Appunti sulle equazioni differenziali ordinarie

57. L. Formaggia, F. Saleri, A. Veneziani
 Solving Numerical PDEs: Problems, Applications, Exercises

58. A. Machi
 Groups. An Introduction to Ideas and Methods of the Theory of Groups

59. A. Pascucci, WJ. Runggaldier

60. D. Mundici
 Logic: a Brief Course

61. A. Machi
 Algebra for Symbolic Computation

62. A. Quarteroni, F. Saleri, P. Gervasio
 Calcolo Scientifico (5a ed.)

63. A. Quarteroni
 Modellistica Numerica per Problemi Differenziali (5a ed.)
64. V. Moretti
Spectral Theory and Quantum Mechanics
With an Introduction to the Algebraic Formulation

65. S. Salsa, F.M.G. Vegni, A. Zaretti, P. Zunino
A Primer on PDEs. Models, Methods, Simulations

66. V.I. Arnold
Real Algebraic Geometry

67. F. Caravenna, P. Dai Pra
Probabilità. Un'introduzione attraverso modelli e applicazioni

68. A. de Luca, F. D'Alessandro
Teoria degli Automi Finiti

69. P. Biscari, T. Ruggeri, G. Saccomandi, M. Vianello
Meccanica Razionale

70. E. Rosazza Gianin, C. Sgarra
Mathematical Finance: Theory Review and Exercises. From Binomial Model to Risk Measures
2013, X+278pp, ISBN 978-3-319-01356-5

71. E. Salinelli, F. Tomarelli
Modelli Dinamici Discreti (3a Ed.)

72. C. Presilla
Elementi di Analisi Complessa. Funzioni di una variabile (2a Ed.)

73. S. Ahmad, A. Ambrosetti
A Textbook on Ordinary Differential Equations
74. A. Bermúdez, D. Gómez, P. Salgado
 Mathematical Models and Numerical Simulation in Electromagnetism
 2014, XVIII+430pp, ISBN 978-3-319-02948-1

75. A. Quarteroni
 Matematica Numerica. Esercizi, Laboratori e Progetti (2a Ed.)

76. E. Salinelli, F. Tomarelli
 Discrete Dynamical Models
 2014, XVI+386pp, ISBN 978-3-319-02290-1

77. A. Quarteroni, R. Sacco, F. Saleri, P. Gervasio
 Matematica Numerica (4a Ed.)

78. M. Manetti
 Topologia (2a Ed.)

79. M. Iannelli, A. Pugliese
 An Introduction to Mathematical Population Dynamics.
 Along the trail of Volterra and Lotka
 2014, XIV+338pp, ISBN 978-3-319-03025-8

80. V.M. Abrusci, L. Tortora de Falco
 Logica. Volume 1

81. P. Biscari, T. Ruggeri, G. Saccomandi, M. Vianello
 Meccanica Razionale (2a Ed.)

82. C. Canuto, A. Tabacco
 Analisi Matematica I (4a Ed.)

83. C. Canuto, A. Tabacco
 Analisi Matematica II (2a Ed.)

84. C. Canuto, A. Tabacco
 Mathematical Analysis I (2nd Ed.)
 2015, XIV+484pp, ISBN 978-3-319-12771-2
85. C. Canuto, A. Tabacco
 Mathematical Analysis II (2nd Ed.)
 2015, XII+550pp, ISBN 978-3-319-12756-9

86. S. Salsa
 Partial Differential Equations in Action. From Modelling to Theory (2nd Ed.)
 2015, XVIII+688, ISBN 978-3-319-15092-5

The online version of the books published in this series is available at SpringerLink.
For further information, please visit the following link:
http://www.springer.com/series/5418