References

Adams, T. C., 1938, Recent Deposition of Salts from the Great Salt Lake: Journal of Geology, v. 46, p. 637–646.

References

Anderson, J. E., J. Cartwright, S. J. Drys dall, and N. Vivian, 2000, Controls on turbidite sand deposition during gravity-driven extension of a passive margin: examples from Miocene sediments in
References

API, 1994, Design of solution-mined underground storage practices: Washington, DC, American Petroleum Institute, Recommended practice No. 1114
Aref, M. A. M., 1998a, Holocene stromatolites and microbial laminites associated with lenticular gypsum in a marine-dominated environ-
ment, Ras el Shetan area, Gulf of Aqaba, Egypt: Sedimentology, v. 45, p. 245–262.

Bailey, R. K., 1949, Talc in the salines of the potash field near Carlsbad, Eddy County, New Mexico: American Mineralogist., v. 34, p. 9–10.

Banat, K. M., F. M. Howari, and M. B. Abdullah, 2006, Mineralogy and hydrochemical characteristics of the late marshes and swamps of Hor Al Hammar, Southern Iraq: Journal of Arid Environments, v. 65, p. 400–419.

References

1667

Bell, C. M., 1989, Saline lake carbonates within an Upper Jurassic-Lower Cretaceous continental red bed sequence in the Atacama region of northern Chile: Sedimentology, p. 4.

Benson, J. L., M. Pultz, and D. D. Bruner, 1996, Paleotopographic Vs Eustatic Controls on Deposition of the Smackover Formation,
References

Berry, R. F., R. B. Flint, and A. E. Grady, 1978, Deformation history of the Outalpa area and its application to the Olary Province, South Australia: Transactions Royal Society of South Australia, Adelaide, South Aust., Australia, v. 102, p. 43–53.

Bierlein, F. P., 1995, Rare-earth element geochemistry of elastic and chemical metasedimentary rocks associated with hydrothermal sulphide mineralisation in the Olay Block, South Australia: Chemical Geology, v. 122, p. 77–98.

Binner, R. J., J. McAndrew, and S. Sun, 1980, Origin of uranium mineralisation in Jabiluka, in J. Ferguson, and A. Goleby, eds., Uranium

Boys, C., 1990, The geology of potash deposits at PCS Cory Mine, Saskatchewan: Master’s thesis, University of Saskatchewan; Saskatoon, SK; Canada.
Bozkurt, U., 1989, A fluid inclusion study of selected boreholes, Salton Sea geothermal system, Imperial Valley, California: Master’s thesis, University of California, Riverside; Riverside, CA; United States.
References

Brooks, J. J., and P. Schaeffer, 2008, Okenane, a biomarker for purple sulfur bacteria (Chromatiaceae), and other new carotenoid deriva-tives from the 1640†Ma Barncy Creek Formation: Geochimica et Cosmochimica Acta, v. 72, p. 1396–1414.

References

Butler, G. P., 1973. Modern evaporite deposition and geochemistry of coexisting brines, the sabkha, Trucial Coast, Arabian Gulf [with comment]: in Marine Evaporites; Origin, Diagenesis, and Geochemistry, p.

Chita, M. B., G. Grecchi, and F. Roegl, 1978, Intragypsiferous marls of the San Miguel de Salinas Basin (Spain); paleogeographic implications of a quantitative study: Cita, M. B. International meeting on...
geodynamic and biodynamic effects of Messinian salinity crisis in the Mediterranean. Messinian Semin.
Clark, D. N., 1980a, The sedimentology of the Zechstein 2 Carbonate Formation of eastern Drenthe, the Netherlands, in H. Fuchtbauer, and T. Peryt, eds., The Zechstein basin with emphasis on carbonate sequences, E. Schweizerbart'sche VbH: Contributions to Sedimentology 9, p. 131–165.

Doelling, H. H., 2001, Geologic map of the Moab and eastern part of the San Rafael Desert 30’ × 60’ quadrangles, Grand and Emery Counties, Utah, and Mesa County, Colorado: Utah Geological Survey Map 180.

Dunham, R. J., 1972, Capitan Reef, New Mexico and Texas: Facts and questions to aid interpretation and group discussion, v. 72–14: Midland, Texas, Permian Basin Section SEPM Publication.

References

Evans, G., 2010, An historical review of the Quaternary sedimentology of the Gulf (Arabian/Persian Gulf) and its geological impact, Quaternary carbonate and evaporite sedimentary facies and their ancient analogues, IAS Special Publication: John Wiley & Sons Ltd., p. 11–44.
Feazel, C. T., 1985, Diagenesis of Jurassic grainstone reservoirs in the Smackover Formation, Chatom Field, Alabama, in P. O. Roehl, and
References

References

References

Gill, D., 1985, Depositional facies of Middle Silurian (Niagaran) pinnacle reefs, Belle River Mills gas field, Michigan Basin, SE Michigan, in P. O. Roehl, and P. W. Choquette, eds., Carbonate
Grew, E. S., 1988, Kerornerupine at the Sare Sang, Afghanistan, white- schist locality: implications for tourmaline-kerornerupine distribution in metamorphic rocks: American Mineralogist, v. 73, p. 345–357.

References

Jowett, E. C., L. M. Cathles III, and B. W. Davis, 1993, Predicting depths of gypsum dehydration in evaporitic sedimentary basins:
References

Kashima, K., 2002, Environmental and climatic changes during the last 20,000 years at Lake Tuz, central Turkey: Catena, v. 48, p. 3–20.

Kasprzyk, A., 1994, Distribution of strontium in the Badenian (Middle Miocene) gypsum deposits of the Nida area, southern Poland: Geological Quarterly (Poland), v. 38, p. 497–512.

References

Kovalevich, V. M., 1976, Halite of the salt deposits of Miocene age from the Forecarpathians: Fluid Inclusion Research, v. 9, p. 72.

References

Last, W. M., 1989a, Continental brines and evaporites of the northern Great Plains of Canada: Sedimentary Geology, v. 64, p. 207–221.

References

Lowenstein, T., and F. Risacher, 2009, Closed Basin Brine Evolution and the Influence of Ca-CI Inflow Waters: Death Valley and Bristol Dry Lake California, Qaidam Basin, China, and Salar de Atacama, Chile: Aquatic Geochemistry, v. 15, p. 71–94.

References

Mazurov, M. P., and A. T. Titov, 1999, Magnesite skarns from the sites of layer-by-layer injections of basic magma into the evaporites of...
the platform’s sedimentary cover [Russian]: Geologiya i Geofizika, v. 40, p. 82–89.

Melim, L. A., 1991, The origin of dolomite in the Permian (Guadalupian) Capitan Formation, Delaware Basin, west Texas and New Mexico:

Menduina, J. S., Ordonez, and M. A. Garcia del Cura, 1984, Geología del yacimiento de glautberita de Cerezo del Rio Tiron (Provincia de Burgos): Boletin Geologico y Minero, Instituto Geologico y Minero de Espana, v. 95, p. 33–51.

Miller, J. A., 1985, Depositional and reservoir facies of the Mississippian Leadville Formation, Northwest Lisbon Field, Utah, in P. O. Roehl,

Neal, J. T., 1994, Surface features indicative of subsurface evaporative dissolution: Implications for storage and mining: Solution Mining Research Institute, Meeting paper, 1994 Spring meeting, Houston Texas.

Nie, Z., L. Bu, M. Zheng, and Y. Zhang, 2009, Crystallization Path of...
References

Oren, A., 2009, Microbial diversity and microbial abundance in salt-saturated brines: Why are the waters of hypersaline lakes red?: Natural Resources and Environmental Issues: Vol. 15, Article 49. Available at: http://digitalcommons.usu.edu/nrei/vol15/iss1/49.

References

Oren, A., 2009, Microbial diversity and microbial abundance in salt-saturated brines: Why are the waters of hypersaline lakes red?: Natural Resources and Environmental Issues: Vol. 15, Article 49. Available at: http://digitalcommons.usu.edu/nrei/vol15/iss1/49.

Palmer, A. N., and M. V. Palmer, 1998, Geochemistry of Cueva de Villa Luz, Mexico, an active H2S cave [abs.]: Journal of Cave and Karst Studies, v. 60, p. 188.

References

References

Pierce, C., 1985, Polyalhalite replacement after gypsum at Ojo de Liebre Lagoon (Baja California, Mexico); an early diagenesis by mixing of marine brines and continental waters: Schreiber, B. Charlotte, Harner, H. Lincoln. Sixth international symposium on salt, v. 6, p. 257–265.

Powell, C. M., W. V. Preiss, C. G. Gatehouse, B. Krapez, and Z. X. Li, 1994, South Australia record of a Rodinian epicontinental basin and its Mid-Proterozoic breakup (≈700 Ma) to form the Palaeopacific ocean: Tectonophysics, v. 237, p. 113–140.

References

Runnegar, B., W. Dollase, R. Ketcham, M. Colbert, and W. Carlson, 2001, Early Archean sulfates from Western Australia first formed as hydrothermal barites, not gypsum evaporites: Geological Society of America, Annual Meeting, November 5–8, 2001; Session No. 166.
References

References
References

Singewald, J. T., and E. W. Berry, 1922, The geology of the Corocoro copper district of Bolivia: Johns Hopkins University studies in geology -- No. 1. 117 p.

Sneider, R. M., J. S. Sneider, G. W. Bolger, and J. W. Neasham, 1997, Comparison of Seal Capacity Determinations: Conventional Cores
Formation; Arbuckle Mountains, Oklahoma: Gulf Coast Association of Geological Societies Transactions, v. 28, p. 589–599.

Stenger, B., T. Pham, N. Al-Araleg, and P. Lawrence, 2003, Tilted original oil/water contact in the Arab-D reservoir, Ghawar field, Saudi Arabia: GeoArabia, v. 8, p. 9–42.

Steenge, W. D., 1979, Solution mining at controlled production rate, Dutch patent, 7,905,287.

Stivaletta, N., 2011, Physicochemical Conditions and Microbial Diversity Associated with the Evaporite Deposits in the Laguna de la Piedra (Salar de Atacama, Chile): Geomicrobiology journal, v. 28, p. 83.

Sugitani, K., K. Mimura, K. Suzuki, K. Nagamine, and R. Sugisaki, 2003, Stratigraphy and sedimentary petrology of an Archean volca-nic-sedimentary succession at Mt. Goldsworthy in the Pilbara Block, Western Australia: implications of evaporite (nahcolite) and barite deposition: Precambrian Research, v. 120, p. 55–79.

References

Sun, Y., and W. Püttmann, 1997, Metal accumulation during and after deposition of the Kupferschiefer from the Sangerhausen Basin, Germany: Applied Geochemistry, v. 12, p. 577–592.

References

Tucker, M. E., 1991, Sequence stratigraphy of carbonate-evaporite basins; models and application to the Upper Permian (Zechstein) of...

Walker, R. N., M. D. Muir, W. L. Diver, N. Williams, and N. Wilkins, 1977b, Evidence of major sulphate evaporite deposits in the
References

Webster, R., 1975, Gems, their sources, descriptions and identification: London, Newnes, Butterworths.

References

Wilson, J. T., 1966, Did the Atlantic close and then re-open?: Nature, v. 211, p. 676–681.

Woronick, R. E., and L. S. Land, 1985, Late burial diagenesis, Lower Cretaceous Pearsall and Lower Glen Rose Formations, south Texas (USA), in N. Schneidemesser, and P. M. Harris, eds., Carbonate cements, SEPM, Tulsa; Special Publication 36, p. 265–275.

Zverev, V. P., 1967, Otsenka nasyshchennosti podzemnykh vod sul’fatom kal’tsiya v diapazone temperature 0–40 degrees C: in Regional’naya geotermiya i rasprostraneniye termal’nykh vod, p. 308–313.
Index

A
Abu Dhabi sabkha
hydrology of, 224
intertidal facies (lagoon-edge muds), 220–222
intertidal facies/strandline sands, 219–220
island shoal and bank facies, 215–217
subtidal facies, 217–219
supratidal facies, 222–223
Acetate ligand, 1488
Acid saline lake system
indicators, 128
palaeodrainage fills, 128
playa groundwater system, 130
sedimentary minerals, 132
sulphur cycling processes, 132
Aci Golu, Turkey, 342
Active diapir, 514–516
Active piecement conditions, of salt, 514, 515
Admiral Bay Pb-Zn deposit, 1555
Aerosols, 123–126
Aggrading/accreting systems, 177–178
Ainslie Detachment, 1551
Alabasterite gypsum, 75, 79
Alberta Basin Devonian formation, Canada, 787–788
Albite in Starra deposit, 1635
Albitisation, 1386
alterites and, 1408–1412
effects of, 1412
feldspar and, 1410
sodic alteration, 1408
Albitites
and albitisation, 1408–1412
distribution, 1411
worldwide examples of, 1409
Alborz Anticline, 580
Algae
organic productivity, 960
salinity tolerance, 871–873
Algal mats. See Cyanobacteria
Alginites, 839
Alkanes, 867, 894
Al-Khiran sabkha, 237–240
Alligator Ridge, Nevada, 1604
Allochthon/allochthonous salt, 612, 972
at basin scale, 550–553
brine pools on sea floor, 923
classification system, 547, 548
distribution in Gulf of Mexico, 553
fault families in, 547–550
sheets, 523–527, 533, 543
Sigsbee mass, 605
structures, 494
Allochthon-edge stratiform Pb-Zn deposits
Cretaceous cover, 1539
galena crystals, 1540
halokinetic units, 1543
mineralisation, 1539–1540
Nappe zone, 1538
organic-rich sediments, 1543
plan and section, 1539
sulphur isotope, 1541, 1542
Alluvial fans
alluvial fans-ephemeral saline lake, 256–277
Early Pleistocene, 320
Gulf of Suez sabkhas, 241
Kadmah Bay Sabkhas, 234, 236
Umm as Samim, 256
Alpine Foldbelt, Albania and Romania, 1073–1075
Al Salif diapir, Yemen, 589
Altiplano Puna plateau, remote sensing system, 177–178
Alunite in saline lacustrine, 82
Alunite-jarosite, 128
Amadeus Basin, Australia, 565, 583, 1139–1141
Ammonium chloride uses, 1193
Ammonium sulphate uses, 1193
Amphibolite
to greenschist facies, 1439, 1448
meta-evaporites in, 1445
borates of Eastern Liaoning, China, 1445–1448
Greenville complex, St Lawrence County, 1448–1450
Mary Kathleen Fold Belt, 1453–1459
Mount Isa Inlier, Northern Australia, 1450–1453
Pine Creek Inlier, Northern Territory, 1466–1468
Staveley Formation, 1459–1461
Willyama Supergroup, 1461–1466
Anaerobic oxidation of methane (AOM), 939, 940
Anchizone, 1394
Ancient evaporites
area contrasts, 389
depositional settings, 395
lacustrine deposits, 391
palaeomagnetic latitudes, 391
Phanerozoic evaporites in deep time, 392
Phanerozoic marine-fed salts, 393
potash (pre-quaternary)
Canadian Maritimes (Mississippian of Nova Scotia and New Brunswick), 1165–1168
Cretaceous Trans-Atlantic Potash, 1150–1153
formation, mineable potash, 1177–1179
German Potash (Z1, Z2 and Z3 Potash), 1154–1155
Khorat Plateau, Thailand, 1144–1150
Moroccan Meseta (Late Triassic), 1153–1154
Nagaur-Ganganagar evaporite basin, India, 1175–1177
New Mexico Potash, USA, 1159–1161
Ancient evaporites (cont.)
Permian Potash, 1154
potash geology, WCSB, 1169–1173
Pripyat Basin (Devonian) Belarus, 1173–1175
quality control, 1179–1186
Upper Kama Potash Region, Cis-Urals Russia, 1161–1165
Upper Rhine Graben, France, 1141–1144
WCSB fluids, 1173
West Canadian Potash (Devonian) Canada, 1168–1169
Z3-Boulby Potash, UK, 1155–1159

salt accumulations, 389
salt beds, building blocks of
deeper evaporites, 397–399
evaporitic mudflats, 394, 396
saltern, 396–397

tectonic and climatic conditions, 394
warmer climates, 394

Angara-Ilim volcanics, 1619, 1620
Anhydrite, 603
in Archaean carbonates, Brazil, 1473–1474
axial head/keg barrel, 61
burial, 5
calcitised, 728
chicken-wire, 61, 62
elargate anhydrite nodules, 61
enterolithic, 61, 62
in Greenschist Conditions, Salton Sea, 1437–1439
hydrothermal, 5
melting point, 1619
nodular, 70–74
textures, 61
Anhydritization, 73, 482, 761
Anloo salt pillow, folded internal structure of, 506
Anpeng trona salt mine, China
solution mining, 1362–1363

Antarctica
evaporite accumulations, 87
microbes in modern salt lakes, 903
stratigraphic evolution, 386–387

Antarctic Circumpolar Current (ACC), 385

Anticlines, 607
Apennines, 461–469
Aptian-Lower Albian rocks, 1540
Aquathermal pressuring, by overpressure, 795
Arab Formation, Arabian Gulf, 985–990
Arabian (Persian) Gulf sabkhas
Eastern Saudi Arabia, 231–240
salt structures, 594
Southern Arabian Gulf, 212–231
Aragonian lacustrine gypsum, 682
Ara Group intrasalt reservoirs, Oman, 1055–1056
Ara Salt Group of Oman, 1086

Archaea
anaerobic methane-oxidising, 938, 939
biomarkers, 897, 898, 900
halophilic (haloarchaea), 889, 897, 898, 911, 912
hyperthermophilic, 945, 946
metabolic styles of prokaryotes on, 863
methane-oxidizing, 923, 937
methanogenic, 888
occurrence
Dead Sea, Middle East, 912, 916
Guaymas Basin, 959
Mediterranean deeps, 930
Red Sea deeps, 932, 933
photoautotrophic mechanism, 890
salinity range, 900

Archaean salt allochthons, 589
Archaeglobus, 875
Artemia
A. gracilis, 327
A. salina, 879
A. urmiana, 344
Arthrosira, 906–910
Asal, Republic of Djibouti, perennial saline lakes, 371–374
Atacama Desert, Chile
iodine, 1280–1281
minerals, 1281
nitrate salts, 1283–1287
Athabasca Tar Sands, Western Canada, 1082–1084

Australia
acid saline lakes in, 128–132
coastal salinas
carbonate salinas, 306–312
gypsum salinas, 312–314
halite salinas, 314–316
playas, water composition in, 117

Authigenesis, 825
Authigeneric anhydrite
dissolution-derived late burial anhydrite, 760
late stage anhydrite, 757–759
oxygen isotopic values, 759
sparry burial anhydrite, 757, 761

Authigenic salts, 82
Autochthonous salt structures, 494
tectonic, 548–550

Autosutures
formation of, 543–544
identification of, 545, 546

Autotrophs, 860, 896

B
Back reactions, 121–123
Backstepping, 595
Bacteria
anoxic sulphur oxidising photosynthesizers, 873–874
chemosynthesizers, 874–875
sulphate reducers
alkalophiles, 877
archaeal sulphate reducers, 875
evaporite dissolution
classification, 642–643
proto-conglomerates, 642
extent
hydrology and texture, 650–653
stratiform breccias, 649–650
pipes, 624
stages of, 1443
Breciation, 685
Brenham explosion, salt caverns, 1365–1368
Brimstone. See Sulphur
Brine(s)
bittern evolution, 106
calcium chloride, 1273–1278
chemical divides, 148
curtain/reflux plume, 200
extration methods, 1221–1225
flow regime, 773
flux, changing directions, 1035–1036
indicators of brine parenthood
boron isotopes, 139–141
bromine profiles, 132–135
chlorine isotopes, 141–144
fluid inclusions and brine temperatures, 144–147
sulphur and oxygen isotopes, 135–139
in Karabogazgol, 1225–1229
in Laguna Del Ray, Mexico, 1229–1231
lithium
geological setting of, 1267
production, 1261–1267
marine brines
bittern precipitates, 104
evolution of, 105
hydrogeochemistry of, 104
mineral to precipitate, 103
as penesaline waters, 104
salinity based classification, 104
mixed (marine/continental)
acid groundwater, 127–132
aerosols, 123–126
back reactions, 121–123
evaporite bedrock, 126–127
marine aerosols and continental gypsum, 123
mixing of brine, 110–112
natrocarbonatite and, 1616–1619
nonmarine brines
carbonate depletion in, 113–114
hydrologic classification and brine evolution, 113
mineral occurrences, 113
path I brines, 114–116
pool
in allochthon terrane, 923–927
ancient methanogenic seep carbonates, 939–942
in Bannock Basin, 928
hardgrounds precipitation, 937–939
iron (Fe) and sulphur in seafloor, 927–934
methane and hydrogen sulphide, seafloor in, 934–937
organic characteristics, 929
salt allochthon-associated vs. oxygenated seawater, 928, 929
potash evaporites from, 1129
reflux
dolomite, 190
dolomitisation, 190–194
gypsum replacement, 195
latent reflux, 192–193
Owens Lake, California, 196–197
Permian Capitan shelf, 193
seepage reflux, 191–192
salinity stratification controls texture, 185–190
salts behaviour in, 106
solution mining, production in, 1316
solution recovery in Utah, USA, potash
evaporites, 1133–1137
stratification
bicarbonate in mixolimnion, 186
brine stability and evaporite textures, 188–190
monimolimnion, 186
Solar Lake, 187
trona-nahcolite-shortite chemistry, 114–116
Brine-rock burial evolution, 821–822
Bristol Dry Lake, California
continental sabkhas, 259–261
gypsum converts to burial anhydrite in, 70
Pleistocene evaporites, 70
Bromine
as brine parenthood indicators, 132–135
description, 1282
production, 1282–1283
uses, 1193
Browne Formation, 582–585
Bryan Mound salt dome, Texas
solution mining, 1374
BSR. See Bacterial sulphate reduction (BSR)
Buckner Anhydrite, 951
Bulk isotopic analyses, limestones, 825
Buoyancy forces, 795
Buoyancy forces, by overpressure, 795
Burial anhydrite
authigenic anhydrite, 757
dissolution-derived late, 760
Burial dewatering, hydrated salts
gypsum-anhydrite conversion, 817–819
gypsum dewatering and faulting, 820
mechanical model, 821
Triassic evaporites, 820–821
Burial hydrology
hydrotectonic flow patterns, 767–769
regional aquifers, 770
shallow and deeper aquifers, 770
Sverdrup basin, 770–772
tectonic process, 770
Buried diapirs, compressional reactivation of, 526–527
C
Cadibarrawirracanna, South Australia, bedrock component in, 124
Cadjeput Pb-Zn deposit, Australia
dolomites from, 1554
geological evolution, 1553
mineralisation, 1554–1555
ore evolution models, 1554
ore system and textures, 1551
salter beds, 1552
Cadjeput zinc mine, 715–717
CAES. See Compressed air energy storage (CAES)
Calcined magnesia, 1287
Calcitisation
definition, 727
evaporites
aragonite inclusions, 731–732
bacterial calcitisation, 733
examples, 728–729
hydrological process, 729
meteoric flushing, 729
Mississippi sulphate, 732
Raisby formation, 729–730
Calcium carbonate and scapolite, 1402, 1405
Calcium chloride
- brines and minerals, 1273–1278
- occurrences, 1262
- uses, 1193
Calcium sulphate
- character and extraction history, 1251–1252
- production, 1252–1253
Calders reef, 743
Caltanissetta Basi, 468
Calyptogena clams, 880
C. ponderosa, 936
Canadian Maritimes (Mississippian of Nova Scotia and New Brunswick)
- ancient (pre-quaternary) potash evaporites, 1165–1168
Candelaria, Chile
- Cu-Au deposit, 1644–1646
Canning Basin, West Australia
- base metal concentrations, 1492
- geochemical sampling, 1491
- Pb-Zn deposits, 1491
Canopies, 540–547
- canopy-margin thrust systems, 546
- types of, 547
Capillary evaporation
- displacive halite grows, 62
- halite grows by, 65
- mudflat aggradation, 168
- phreatic zone, 167
- in sabkha precipitates, 223
Capillary evaporites in Djerid, 1128
Caprock
- formation (diagenesis of salt), 602–607
- zonation, 602
Caprock carapace of Mt Sedom, Israel, 689
Caprock-hosted Pb-Zn deposit, Gulf Coast & North Africa
- bacteriogenic limestones, 1535
- biogenic calcite forms, 1535
- calcite precipitation, 1538
- iron sulphides, 1536
- metal sulphides, 1536
- peridiapiric mineralisation, 1536
- sulphides in, 1537
- Winnfield Dome diapir, 1537–1538
Carapace, 524
Carbonate, 603
- patterns, sediments, 592–595
- primary evaporitic
 - Archaean, 38
 - laminites, 13–14
 - marine and hypersaline, 37–38
 - microbially and stromatolites, 15–32
 - ooids and peloids, 34
 - Palaeoproterozoic, 38
 - Panzerrozoic, 39
 - pisolite, 32–34
 - tepees, 35–37
- salinas
 - bacteria, 312
 - biomarker stratigraphy, 309
 - dolomite precipitation, 307–308
 - holocene lacustrine, 306
 - packstone/mudstone, 309
 - sapropel carbonates, 311
- stringer reservoirs, South Oman Salt Basin, 1057–1064
Carbonatite
- flows at Kerimas, 1617
- GIS-based compilation, 1619
Cargill saltworks, Kansas, 1346–1347
Carlsbad-Lechuguilla cavern system, 709–710
Carnallite
- ore processing method, 1103
- potash salts, 1087
- triaxial deformation experiments, 499–500
- viscosity, 497
Carrols Corner Formation, 1548–1549, 1551
Cas’kejas Formation, 1647
Castle(s)
- in gypsum karst terrain, 626
- mechanism of formation, 946
Castile Formation, Delaware Basin, West Texas, 56
Celestite
- barium in subsurface basin brines, 746
- Eocene La Tossa and Calders reefs, 743, 744
- occurrence, 738, 739
- precipitation, 743
- replacements, 742, 743
- stratiform and layered celestine deposits, 745
- strontium levels, 740–742
Central Basin-Urumieh-Dokhtar zone, 579
Central Domain, iron-oxide deposits, 1637–1638
Centrifugal and centripetal flow, 783
Century deposit
- characteristics, 1584
- Zn-Pb deposit, 1591–1592
- Chabazite, 1299, 1302, 1303
- Chalky dolomite, 644
- Chemotrophs, 860, 875
- Chert nodules, 720
- disaggregated, 1460
- lutecite in, 727
Chilean saltpetre, 1284, 1285
Chloride salts, solubility of, 499
Chlorine isotopes, as brine parenthood indicators, 141–144
Chott el Djerid, chotts zone, 1124–1129
Christmas-tree diapirs, 538, 539, 659
CHS. See Composite halokinetic sequence (CHS)
Circum-diapir drag folds, 536
Circumsalt fluid flow, 815
Classic autochthon geometries, 613
Clayton Valley, Nevada, lithium in, 1269–1271
Climatic scales, local variations in
- humidity, 99
- salinity, 100
- salt crust formation, 99–100
- sediment type, 101
- surface brine, 99
- temperature, 99
Cluster well pads, solution mining, 1320–1322
Coble creep, 499
Colemanite, 1196
- formation, 1210
- nodules, 1204
- in Turkey, 1197, 1198
Collapse dolines, 622
Collapse-related traps, 1078
Collision margin burial realm, 767–769
Columbian emeralds
- formation model, 1430
- meta-evaporites, 1427–1431
- structural and regional geology of, 1428
Index

Compactional drapes, 1080
Compactional fluids, 772
Composite halokinetic sequence (CHS), 606–607
Compressed air energy storage (CAES), 1326
Compressional salt tectonics, 553–554
downbuilt vs. reactivated (mildly squeezed)
diapirs, 568–573
gravity glide shortening, 554–560
inverted salt basins, 565–566
mild shortening, 566–568
thin-skinned fold and thrust belts, 560–565
Compression-driven salt-wing intrusion, 567, 569
Compressive deformation
worldwide occurrences of, 554, 555
Conophyton, 27
Conrad Deep, 1501
Consolidation-related flow, 772
Contact metamorphism, 1384
zones of, 1386
Continental evaporite basins, hydrologically closed, 112
Continental salt lakes, 116–120
Contractual faults, 547, 548
Contractual salt tectonism, 554
Conventional mining, potash salts
active and projected solution mines, 1095–1097
Boulby mine UK, 1094
brownfield mine expansion, 1095
evacuation costs, 1095
extraction techniques, 1094
mining, 1094
production method, 1095
provincial environmental regulations, 1095
in quaternary saline lacustrine settings, 1098–1099
room and pillar method, 1094
Saskatchewan mines, 1094
shaft excavation, 1095
stress-relief mining, 1094
sylvinite mining, 1094
types, 1093
underground ore transport, 1095
Coorong region, Australia
Coorong-style, 725
hypersaline chert-filled vugs in, 4
lagoon, 307
Lakes, dolomite precipitation, 307–308
Copper
controlled by temperature and NaCl, 1605
in Lisbon Valley, Utah, 1516–1518
Coral reefs, 589
Corella Formation, 1455–1459
Corocoro deposits, Central Andes
bed-parallel burrow traces, 1525
critical factors, 1526
gypsum, 1527, 1528
halokinetic/weld association, 1529
mineralization, 1526
mud-crack polygons, 1525–1526
ore-hosting clastic horizons, 1526
redbed copper, 1528–1529
sedimentological model, 1527
Toledo mine, 1526
vetas sediment hosts, 1527
Coronation Hill, Australia, 1638–1640
Cosmo Howley Au deposit, 1639–1640
Couette flow, salt, 506
Counter-regional system, 540
Coxco Dolomite, 1581
Craton
in Australia, 1390
in Brazil, 1474
definition, 1388
mantle tomography, 1389
Pilbara and Kaapvaal, 1393
in Precambrian regions, 1388
of southwestern Gondwana, 1441
Cretaceous Trans-Atlantic Potash, 1150–1153
Creta deposit, Oklahoma, 1529–1531
Crocodylus porosus, 287
Crustal cycling of brines, 829–835
Cryogenesia, 4
Cryogenic salts, 2, 95
Crystal-scale deformation, 499
Cyanobacteria
adaptation to increased salinity, 868, 871–873
distribution in microbial mat, 860
microbial mat, 892–894
Microcoleus chthonoplastes, 892
oil prone source rock, 840
organic productivity, 960
photosynthetic, 861
phycobilisome pigments, 861
salinity tolerance, 871–873

D
Dahl Hit at Ain Hit, 686–687
Damp salt, solution-transfer creep, 501
Danakil Depression, Ethiopia
Holocene–Late Pleistocene perennial lake
level, 44
Pleistocene halite textures, 46
quaternary potash evaporites, 1114
Dasht-e Kavir, salt desert, 299
Dasht-e Lut, sand and stone desert, 299
Dead-burned magnesite, 1287
Dead Sea, Middle East
depression, 777–778
halite caves, 688
occurrence, 688
Sedom cave, 689–690
feast or famine in, 911–914
green algae, 871
haloarchaea, 916
halophilic archaea, 912
perennial saline lakes
basin margin sediments, 365–367
deepwater halite, 361–362
deep water laminites, 362–365
density stratification, 357–361
geological settings, 353–355
water level changes, 356–357
potash
area of concentration pans, 1129
artificial salt ponds, 1130
Dead Sea Salt Work’s (DSW) production, 1133
MOP manufacture, process stream, 1131
production chemistries, 1132
residual brine, crystallization process, 1132
Death Valley, California
borate deposits, 1210, 1211, 1212, 1213
continental sabkhas, 261–262
Dedolomitisation
- definition, 727
- dolomite matrix
evaporite-derived, 735
fracture-associated dedolomite, 738
Madrid Basin, Spain, 736, 737
textural variability, 735
Deepsea hypersaline anoxic lakes (DHALS), 924, 1500, 1501
Deep Springs Lake, California, continental sabkhas, 257–258
Deep structuring process, 551
Deepwater slope setting, 596
Deformation
- Digne thrust sheet, 565
- Northern Potwar deformation zone, 563
Degrading/deflating systems, 177–178
Delamination
- in Middle Archaean, 1388
- in Pilbara craton, 1388, 1390
Delaware Basin, West Texas, 56, 631–634
Delgado Sandstone Tongue, 598–599
Dense soda ash, 1242
Depopods, 540
Desert(s)
in Atacama, Chile
- iodine, 1280–1281
- minerals, 1281
- nitrate salts, 1283–1287
causes of, 89
- coastal upwelling, 91
- continental distribution of, 86–89
earth-scale distribution, 89
- high pressure belts, 89
- Köppen climate classification, 92–94
- Namib Desert, 125
quaternary, 86
- rain shadow/adiabatic, 90–91
- saline hydrologies, 92
- strontium-isotopic composition, 89–90
Desulphohalobium retbaense, 875
Desulphotomaculum
characteristics, 945
D. nigrificans, 945
- sulphate reducing bacteria, 945
Desulphovibrio, 876
D. brasiliensis, 222, 321
D. halophilus, 875
D. oxyclinae, 875
- mesophilic isolates, 945
- sulphate reducing bacteria, 945
Detroit-method wells, solution mining, 1315
Detroit River brinefield, USA, 1347–1348
Devonian carbonates of Canada, 1080
Dextral wrench zone, 563
Diagenetic trap, 1081
Diapir(s), 299–301
- drag zones, 537
- and extension, 514–516
- fluviodeltaic sedimentation and, 590
- piercement modes for, 514
- sedimentation rate, 518–520
Diapiric solution breccias
Flinders Ranges, 655–657
Gulf Islands, 654
Hormuz formation, 655
- outcropping and subcropping areas, 653, 654
- rock flour, 653
- vs. salt ablation breccias, 657–659
Diapirism
- and differential loading, 516–518
- extensional faulting, 514
- reactive, 514
Diatom
- benthic, 873
- Laguna de Pozuelos, 878
Dibenzothiophenes (DBTs), 951, 952
Dicarboxylate anions, brines in, 1489
Diffuse dissolution
- basal anhydrite, Thailand
diagenetic basal anhydrite, 676
- isotopic signatures, 677
- Maha Sarakham formation, 675
- Maha Sarakham salt, Thailand
- landsurface, 674
- nodular anhydrite residues, 672–673
- subsurface structure, 671–672
- Palo Duro basin, West Texas, 674–675
Diffusion creep, 499
Diffusion mechanism map, of damp rock salt, 497
Digne thrust sheet, 565
Diprotodon, 286–287
Dislocation creep, 499
Dissolution-derived late burial anhydrite, 675, 760
Dissolution, evaporites
breccia
classification, 642–643
proto-conglomerates, 642
hydrocarbons
- Athabasca Tar Sands, Western Canada, 1082–1084
collapse-related traps, 1078
- compactional drapes, 1080
- Devonian carbonates of Canada, 1080
distribution, Tarim Basin, China, 1079
- salt collapse depressions, 1078
- stratigraphic traps, 1080
- structural and diagenetic trap, 1081
- trap styles, 1079
- Westhazel General Petroleums Pool of west-central Saskatchewan, Canada, 1080
- Wolf Springs fields, 1081
Djebel Frikhtia allochthon, Algeria, 532
Djebel
- collapse, 622
- solution, 622–623
- suffosion, 622
Dolomite
composition, 1440–1441
drawdown basin, 441–443
scapolitic, 1441
Dolomitisation, 190–194, 1546
Dolomitised Limestones, Central Basin Platform, West Texas, 1001–1002
Dongchuan copper, China
chloride-rich brines, 1520
cu-sulphides, 1520
distribution, 1519
Fe-oxide ores, 1521
formations, 1518
geological map, 1520
stratigraphy, 1520
Don Juan Pond, 831
Evaporite karst (cont.)
 hazards
collapse dolines or sinkholes, 696–697
groundwater drainage, 695
gypsum karst, 696
processes and mechanisms for hazard creation, 696
watertable level variation, 696
man-made structures atop salts
 Badush dam, 706
 Gachsaran formation, 704
 Mosul dam, 705–706
 St. Francis dam collapse, 703
 Triassic Spearfish formation, 704
 outcomes in, 708
 problems in, 708
 Miocene gypsum, Spain, 700–702
 Mosul, Iraq, 702, 703
 Ripon Area, UK, 697–700
 speleothems in non-evaporite karstified host, 694–695
Evaporite-sealed platform and reefs, Devonian, Canada, 1017–1021
Evaporitic mudflats. See Sabkhas
Exploration paradigms, bedded evaporite hydrocarbon association, 1030–1031
Extensional faults, 514, 547, 548
Extracellular polymeric substance (EPS), 20
Eyre Lake, Australia
 brine chemistry, 280
 ephemeral streams, 278
 lacustral sedimentation, 282–283
 lunette-cored islands, 282
 monsoonal outbursts, 280
 Quaternary evaporite, 92
 salt-rich soils in, 117
 sedimentation, 279
 Warburton Channel, 279
 western-fed flooding event, 281

F
Falling diapirs, 520–521
 drive raft tectonics, 521–523
 Fault-dominated minibasins, 613
 Fault-segmented sheet (Roho), 539–540, 540
 Fault welds, 547, 548
 Feedback process, 540
 Feldspar and albitionisation, 1410
 Feldspathoids, 1425
 and lapis lazuli, 1426
 Fe-oxide-Au deposits, 1622, 1623
 Feoxide Cu-Au deposit, 1653
 Ferroan dolomite, 1440
 Filled vugs and nodules
 baryte
cold-seep, 751–752
 Magnet Cove deposit, 752
 massive and vein-fill, 753
 Morrison formation, 755
 occurrence, 750
 Olvido formation, 754–755
 sand rosettes, 756
 stratiform, 750
 calcitisation (see Calcitisation)
 celestite
 barium in subsurface basinal brines, 746
 Eocene La Tossa and Calders reefs, 743, 744
 occurrence, 738, 739
 precipitation, 743
 replacements, 742, 743
 stratiform and layered celestine deposits, 745
 strontium levels, 740–742
 composition, 719
 fluorite
 basinal fluid escape, 748
 isotopic signature, 747
 sedimentary, 749
 silicified evaporites
 abiological processes, 725
 anhydite pseudomorphs, 722
 bacterial degradation of organic matter, 725
 chalcedony, 721
 examples, 720–721
 Italian cherts, 726
 magadilite nodules, 725–726
 mognate, 727
 precipitation, 724
 quartz nodules, 723, 724
 silicified-calcitized anhydrite nodule texture, 722
Filter pressing, 1602
Five salt-dome crests, Gulf of Mexico, 638–639
Flamingo connection. See Organic matter
Flow edges, 533–536
Flower Garden Bank, 594
Flowing salt, sediments and, 585–587
Flow fluid
 circumsalt, 815
 in halokinetic basins, 812
 hypersaline collision belts, 779, 780
 lateral caprock model, 606
 postorogenic, 769
 supersalt, 812–817
 thermobaric, 773–777
Fluid inclusions, 953
Fluid inclusions-based salinities, 604–605
Fluid modelling, 536
Fluvial sand fairways, 592
FluvioDeltaic sedimentation and diapirs, 590
Fluviolacustrine sediments, 591
Focused rapid dissolution, 669–670
Fold belt structures, 555–556
Fold-thrust belts basal detachments in salt, 561, 562
Footwall shortcut thrusts, 565
Fracture pressure, 793
Fragum erugatum, 880
Free convection, 790
Free-flowing namakiers, 574
Friable alabastrarine gypsum, 685
Frome Lake, South Australia, ephemeral stream floodplain, 284–287
Fulda region, hydrated salt layers, 1613, 1614
Fumarolic anhydrite, 1601
Furnace Creek Formation, 1211–1212
Fused magnesia, 1287

G
Galena, solubility of, 1487
Galkynysh (aka Yolotan/Osman) gas field, 966
Galynshy geology, 966
Gastropod
 pellet production, 882
 salinity tolerance, 883
Gays River Zn-Pb deposit, Nova Scotia
 Carboniferous sediments, 1546
 clay mineral and vitrinite reflectance, 1547
 dolomitization, 1546
 fluid inclusion temperature and salinity, 1546
 isotopes, 1545
 location, 1543–1544
massive ore zone, 1544
Pleistocene sediments, 1547–1548
TSR mixing zone, 1548
Gellenoncourt saltworks, France, 1341–1342
George Fisher deposit, 1583
German Potash (Z1, Z2 and Z3 Potash), 1154–1155
Geryonis, 287
Ghawar Field, Saudi Arabia, 990–998
Giants Russian gas fields, 964
Glauberite and Glauber’s salt, 1216
with gypsum/anhydrite, 1231
primary vs. secondary textured, 1232
in Spain, 1216, 1231–1233
translucent type, 1232
Glauber’s salt. See Mirabilite
Gold deposit at Alligator Ridge, 1604
bismuth transport, 1650
controlled by temperature and NaCl, 1605
Muruntat, 1649–1651
non-IOCG, 1649–1650
in Pine Creek Orogen, 1637
precipitation, 1604
solubility of, 1603–1604
transport system, 1604
in VHMS deposits, 1605
Goongaw deposit, 1554
Gorham oil field, Kansas, 1355–1357
Gotnia formation, 807
Grain boundary healing, 501
migration, 500
sliding, 499
Grand Saline sinkhole, Texas, 1358–1359
Granular flow, 499
Gravity glide shortening, 554–560
Gravity gliding vs. spreading, 513
Great Salt Lake, Utah
climate change, 329
geological settings, 325–326
mudstones, 327
perennial water body, 324–325
shorezone spits and bars, 327
sodium sulphate, 1237
water elevation, 329
Greenschist Conditions, Salton Sea, anhydrite in, 1437–1439
Greenschist facies, 1386
amphibolite to, 1439, 1448
lower metamorphism, 1466
mineral assemblages, 1438
Greenschist realm, meta-evaporites in, 1437
Green River Formation, 1243, 1244, 1246
Greenschist Conditions, Salton Sea, anhydrite in, 1437–1439
Greenschist facies, 1386
amphibolite to, 1439, 1448
lower metamorphism, 1466
mineral assemblages, 1438
Greenschist realm, meta-evaporites in, 1437
Greenstone belts, 1391–1393, 1414, 1416
Grenville complex, St Lawrence County, meta-evaporites in amphibolite, 1448–1450
Grimsby hydrothermal field, 1653
Ground collapse, Tusla, solution mining, 1342–1343
Guaymas Basin, Gulf of California, 1664–1666
Guern Halfay Pb-Zn deposit, 1540, 1541
Gulf of Mexico
minibasin, turbidite fill in, 596
reef system, 594
salt and allochthon distribution in, 553
Gulf of Suez, sabkhas, 240–241
Gypsum, 604
beds
Alabaster, 75, 79
aragonite pellets, 44
bird-beak, 40
crystal forms in, 40, 42
daisy gypsum, 75
fibrous, 76–79
pedogenic dominates in, 48–51
sand-sized lenticular gypsum, 41–42
satin-spar gypsum, 79
selenitic, 79
subaqueous form, 41
character and extraction history, 1251–1252
in China, 1252–1253
continental, 123
dissolution, 112
phreatic caves
bathyphtreatic karst, 678
caprock sinkholes and vadose passages, Russia, 681, 682
maize cave, 679, 680
Optymistychna cave, western Ukraine, 679–681
plaster, 1251–1253
production, 1252–1253
salinas, 312–314
SSGS, 1439
synthetic, 1253–1254
uncalcined vs. calcined, 1253
in United States, 1254
uses, 1193
Vadose caves
Miocene epikarst, Madrid Basin, Spain, 682–684
Modern Gypsum Karst, Saudi Arabia, 686–687
modern karst in Cretaceous Gypsum, Texas, 684–686
Halobiota
light dwellers and pigmentation, 860–864
metabolic pathways in producers and consumers, 858–860
non-photosynthesizers and layering, 864–868
salinity tolerance
bacteria (see Bacteria)
extremophiles, 884–888
heterotrophic consumers, 877
ingesters, grazers and pelletizers, 879–884
primary producers, 868–873
vertebrates, 877–879
Halodule uninervis, 219
Haloes, 789–792
Halogen
components in basinal brines, 1485–1487
geochemistry, 1648
Halokinetic basins, fluid flow in, 812
Halokinetic breccias, Flinders ranges, 655–657
Halokinetic deformation, 536
Halokinetic salt, 493
Halokinetic salt traps, 1036
Alpine Foldbelt, Albania and Romania, 1073–1075
Ara Group intrasalt reservoirs, Oman, 1055–1056
Athel (Al Shamou) silicilute stringer reservoirs, 1064–1068
carbonate stringer reservoirs, South Oman Salt Basin, 1057–1064
intrasalt halokinetic plays, 1054–1055
limitations, 1037
Minibasin plays, 1052–1054
regionally-tiered salt plays, Gulf of Mexico, 1048–1051
Rocky Mountain Foldbelt, USA, 1075–1076
salt-related traps, Tarim Basin, China, 1076–1078
subsalt reservoirs, compressional evaporite provinces, 1068
supradiapiric traps, 1037–1043
tiered allochthon plays, deepwater realm, 1043–1048
Zagros Foldbelt, Iran, 1068–1073
Halokinetic sequence in marine shelf setting, 600, 601
Hanserian Evaporite Group (HEG) potash salt, 1086
Haoud Berkaoui oilfield, Algeria, 1359–1360
Harbour lake on Baffin Island, lapis lazuli in, 1425–1426
Harrison and Patton’s notion of basal thrusting, 535
Haselgebirge breccias, 661–663
Hayward Lake, West Australia, brine stratification, 185, 186
Heiberg Formation, 770–772
Heishan Formation, 1518–1520
Hockley Dome caprock, 603
Holbrook Anticline, Arizona, 634–636
Holomixis, 915
Homologous temperature scale (T_H), 499
Hook folds, 600
Howlite, 1205
Hutchison salt, Kansas, 630–631
explosion, salt caverns, 1370–1371
Hydrated salts
burial dewatering
gypsum-anhydrite conversion, 817–819
gypsum dewatering and faulting, 820
mechanical model, 821
Triassic evaporites, 820–821
layers, heating of, 1613
Hydroboracite, 1207
lamina, 1210
in Monte Amarillo, 1208
syndepositional formation, 1209
type I/II pseudomorphs, 1209–1210
Hydrocarbon(s), 536
ancient saltern and mudflat seals, 969
annual crude oil production, 965
dissolution, evaporite
Athabasca Tar Sands, Western Canada, 1082–1084
collapse-related traps, 1078
compactional drapes, 1080
Devonian carbonates of Canada, 1080
distribution, Tarim Basin, China, 1079
salt collapse depressions, 1078
stratigraphic traps, 1080
structural and diagenetic trap, 1081
trap styles, 1079
Westhazel General Petroleum Pool of west-central
Saskatchewan, Canada, 1080
Wolf Springs fields, 1081
evaporite
classification, 969
dissolution, 1078–1084
and hydrocarbon association, 966
role in, 967
seals to giant fields, 967
Galkynysh (aka Yolotan/Osman) gas field, 966
Galkynysh geology, 966
hundred Russian gas fields, 964
halokinetic salt traps, 1036
Alpine Foldbelt, Albania and Romania, 1073–1075
Ara Group intrasalt reservoirs, Oman, 1055–1056
Athel (Al Shamou) silicilute stringer reservoirs, 1064–1068
carbonate stringer reservoirs, South Oman Salt Basin, 1057–1064
intrasalt halokinetic plays, 1054–1055
limitations, 1037
Minibasin plays, 1052–1054
regionally-tiered salt plays, Gulf of Mexico, 1048–1051
Rocky Mountain Foldbelt, USA, 1075–1076
salt-related traps, Tarim Basin, China, 1076–1078
subsalt reservoirs, compressional evaporite provinces, 1068
supradiapiric traps, 1037–1043
tiered allochthon plays, deepwater realm, 1043–1048
Zagros Foldbelt, Iran, 1068–1073
International Energy Agency (IEA), 966
Kashagan oil field, 966
Kish 2 gas field, 966
Libra oil fields in the Santos basin, 966
reservoirs (bedded) and traps
bedded basinwide evaporites, 1009–1010
bedded salt seals, 976–979
brine flux, changing directions, 1035–1036
dolomitised limestones, Central Basin Platform, West Texas, 1001–1002
Eocene and Miocene Associations, Middle East, 1010–1014
evaporite-sealed platform and reefs, Devonian, Canada, 1017–1021
exploration paradigms, bedded evaporite hydrocarbon
association, 1030–1031
Ghawar Field, Saudi Arabia, 990–998
Jurassic Arab Formation, Arabian Gulf, 985–990
Jurassic Smackover Fm., Gulf of Mexico, 1002–1009
North Ward-Estes Field, Texas, 1025–1028
peritidal muddy carbonates, evaporitic mudflat seals, 979–983
platform carbonates, bedded saltern seals, 983–985
quality tied to bedded evaporite seal type, 1021
recognising bed dissolution, 1034–1035
recognising depositional differences, 1031–1034
Rotliegende Sands of Northern Netherlands and North Sea, 1028–1030
Index

Silurian Pinnacle Reef Fields, Michigan Basin, 1014–1017
Slaughter-Levelland Trend, West Texas and New Mexic, 998–1001
Yates Field, West Texas, 1021–1025
rock’s inherent ductility, 969
in salt caverns, 1325–1327, 1366
Barber’s Hill explosion and collapse, 1368–1369
Brenham explosion, 1365–1368
Hutchinson explosion, 1370–1371
Menzengraben potash mine, East Germany, 1371–1372
Mineola Propane fire, 1369–1370
Weeks Island, Louisiana, 1363–1365
West Hackberry explosion, 1365
seal capacity of evaporites
allochthons, 972
bedded evaporites, 971
biodegradation, 970
density/buoyancy, 970
environments favouring seal continuity, 973–976
hydrocarbon migration and trapping, south Oman salt basin, 975
marine carbonate reservoir, 975
oil re-entrainment, 970
salt permeability/brine permeation measurement, 970, 971
seal type and ultimate recoverable reserves, 965
Sulige gas field, China, 966
Hydrocarbon generation, by overpressure, 795
Hydrocarbon-related diagenetic zones (HRDZs), 780
Hydrocarbon-stained black salt, 800
Hydrographic isolation
brine curtain, 200
hydroseal, 201
Messinian salinity crisis, 199
Hydrohalite, 2
Hydrologically closed continental evaporite basins, 112
Hydrology. See also Brine(s)
active phreatic/vadose regime, 162–163
extraterrestrial salts, 200–205
saline basins
degrading hydrology and playa capture, 175–176
dry mudflat/sandflat, 165–166
evaporitic saline mudflat, 163–165
fluctuating watertables indicators, 169
remote sensing, 177–185
stokes surfaces, 169–175
unconfined meteoric watertable, 168–169
Hydrostatic pressure, 792
Hydrotectonic flow pattern, 766, 767
Hydrothermal mineral deposit, 1603
Hydrothermal ore deposits, 1621–1624
Hydrothermal salts, 1653–1656
alteration in, 1601
anhydrite
in sekko ore, 1656
cracking of organic matter, 956–959
fluids, convective circulation, 1384
metamorphism, 1384
VHMS deposits, anhydrite
chimneys, 1665
chloritization, 1663
distribution, 1654–1655
at mid ocean and back-arc spreading centres, 1660–1664
plate tectonic settings, 1666
at sediment-covered spreading centres, 1664–1666
sulphur isotopes, 1663
TAG mound, 1660–1664
Hypersaline fluid evolution
basin-scale burial hydrology
hydrotectonic flow patterns, 767–769
regional aquifers, 770
shallow and deeper aquifers, 770
Sverdrup basin, 770–772
tectonic process, 770
brine-rock burial evolution, 821–822
burial dewatering of hydrated salts
gypsum-anhydrite conversion, 817–819
gypsum dewatering and faulting, 820
mechanical model, 821
Triassic evaporites, 820–821
compactional fluids, 772–773
crustal cycling of brines
deep-basin brines, 831
Eske distribution, 831–833
evaporite derived Na-Cl brines, 833
Pyrenean collision zone, 833–835
seawater freezing, 830–831
deep flow in pull-apart basins, 777–778
drilling mud chemistry, 807–808
evaporites as pressure seals, 792–795
flow in collision belts
fractures, 781
inversion-related thrust faulting, 779
Miocene/Pliocene fluid flow, 779, 780
Pyrenean thrust belt, 782
squeegee effect, 779
flow in post-orogenic basins
Alberta Basin, 787–788
evaporite confining system, 785
gravitational pore-brine sinking, 783
lacustrine depression, 788
Palo Duro Basin, 785
Permian Basin of West Texas and Oklahoma, 787–785
Salado and Rustler evaporites, 785, 786
topography driven flow, 783
fluid flow in halokinetic basins, 812
haloes, convection and saltout, 789–792
Permian Gharif formation, 823, 824
salinity-driven convection, 789
generated underpressure, 808–809
salt-maintained overpressure
allochthon basins, 802
Ara stringer, 800–801
black staining, 799, 800
hydrofracture, 798
Permian halite, 796
seismic valving and pumping, 802–803
strings and rafts, 798, 799
Tengiz oil field, 796, 797
true pressure seal, 795
suprasalt fluid flow and alteration, 812–817
temperature anomalies and brine flow, 809–812
thermobaric-thermohaline fluids (see Thermobaric-thermohaline fluids)
unpredicted pressure change, 805–807
water-salt interactions, 827–829

I
Iberian Pyrite Belt, sulphide deposits, 1492
IC. See Illite crystallinity (IC)
Icehouse climate, 383
Idaho Cobalt Belt, USA, 1649
Ikaite, 763
Illite crystallinity (IC), 1394–1396
Illite, transformation character, 82–83
Imbricate wedge, 547
Incipient mud volcano, 608, 610, 612
Industrial salts, world production, 1194
Inland Chotts and Coastal Sabkhas in North Africa, potash evaporites
Bayovar project, 1129
capillary evaporites in Djerid, 1128
deflationary, 1125
ephemeral carnallite formation, 1128
location, 1126
pore brines, 1127
rainfall and lake areas, 1127
thenardite and carnallite, 1129
Tunisian chott and sabkha brines, 1127
Tunisian coast, near Zarzis, 1128
zone of chotts, 1124
Inneston Lake, Southern Australia, gypsum beds in, 42
Inorganic components in basinal brines, 1485–1487
Intergranular pressure solution at grain contacts, 501
Intermediate solid solution, 1601
International Energy Agency (IEA), 966
Intrasalt halokinetic plays, 1054–1055
Intrasalt minibasins, 540–541
Intrasediment salts, 60–62
Inverted salt basins, 60–62
IOCG deposits. See Iron-oxide copper gold (IOCG) deposits
Iodine
in Atacama Desert, Chile, 1280–1281
in Australia, 1282
costs, 1280
description, 1278
in optical polarising film, 1281
production, 1279
uses, 1193
Iron-oxide copper gold (IOCG) deposits
basinal brine/evaporite fluid, 1626
caracteristics, 1622, 1623
chloride transport, 1604, 1605
classification, 1626, 1652
Copper-rich deposits, 1634
evaporite-associated class, 1630
in evaporite/basinal brine milieu, 1630–1631
fluid chemistry, 1631
fluid-related settings, 1651
hybrid magmatic-non-magmatic, 1628
hydrothermal brines and waters, 1624–1626
Kiruna-type deposits, 1626, 1627, 1629, 1630
magmatic end-member, 1628–1629
mineralisation, 1650–1653
non-magmatic end-member, 1628
precipitation, 1650
sensu lato examples, 1627, 1630
sensu stricto deposits, 1627, 1629
tonnage grade plot, 1632
Western Mining, 1626
Isachsen formation, 770–772
ISLA1 and ISLA2, 180
Isotopes, as brine parenthood indicator
boron, 139–141
chlorine, 141–144
oxygen, 135–139
sulphur, 135–139
J
Jabiluka, 1636, 1641
Jänecke plot, 107, 108
Jebel Dhanha diapirs, 593, 594
‘J’ hook folds, 600
Jinchuan, 1607
Jubilee Zn-Pb deposit, Nova Scotia
Carrols Corner Formation, 1548–1549
location, 1548
Macumber Formation in, 1548
NNW-trending faults, 1549
sulphate-rich brines, 1551
sulphur isotope, 1550
thermochemical sulphate reduction, 1551
Windsor Formation, 1549
Jurassic Arab Formation, Arabian Gulf, 985–990
Jurassic Louann Salt, Gulf of Mexico, 487–491
Jurassic Smackover Fm., Gulf of Mexico, 1002–1009
JWS sink, New Mexico, 1351–1354
K
Kadmah Bay/Kuwait Bay sabkha, 234–237
Karabogazgol
brines in, 1225–1229
sodium sulphate in, 1225–1229
water salinity in, 1228
Karst domes, 624–626
Kashagan oil field, 966
Kebrit and Shaban Deeps, Red Sea
bottom brine layers, 1506
gypsum in, 1506–1507
organic matter in, 1506
piston core sampling, 1505–1506
sulphide layering, 1506
sulphur isotopes from gypsum, 1507
Keg River formation, 776
Kerimasi volcanics, 1617
Kernite, 1196–1198
Kerogen, 795, 852
cracking, 839
formation, 839
long-chain hydrogens, 839–840
oil and gas generating, 837, 838, 839
sapropelic, 840–841
type I-II hydrogen, 837
Keuper (Triassic) salt belts, 564
Keyes Field, 809
Khurat Plateau, Thailand, ancient potash evaporites, 1144–1150
Khuff Formation, Arabian Gulf, 416
Kiirunavaara deposit, 1647
Kipushi Zn-Cu-Pb deposit, Africa
Axial Breccia, 1522
bacterial sulphate reduction, 1525
carbon-oxygen stable isotope, 1524
geological map, 1523
on ground targeting, 1525
halokinetic breccia, 1522, 1525
location, 1521–1522
Neoproterozoic Nguba Group, 1521–1524
salt diapir/allochthon, 1522
thermochemical sulphate reduction, 1525
Kiruna-Tjämotis-Arjeplog district, Sweden, iron oxide deposits, 1646
Kiruna-type deposits, 1626, 1627, 1629, 1630
Kish 2 gas field, 966
Komatiitic magmas, 1607
Koolpin Formation, Australia, 1639–1640
Kora Bogaz Gol, Caspian Sea, 292
Korsunovsky iron ore deposits, Siberia, 1606, 1619–1620
Kramer borate deposit, 1197, 1210–1211
Kuh-e-Namak Qom, Iran, 579–581
Kuwait sabkhas
Al-Khiran Sabkha, 237–240
Kadmah Bay/Kuwait Bay, 234–237
Kwanza Basin, Angola, 560, 561

L
Lacustrine evaporites
Eocene Lake Gosuite, USA, 403–405
Mercia mudstone, 409
model sabkhas
depositional characteristics, 251–256
groundwater transport, 253–254
saline mudflat, 252–253
saline pan, 254–256
nodular beds of gypsum/anhydrite, 409
Oligo-Miocene Lake, Calatayud Basin, Spain, 405–407
Permian Lacustrine Redbeds, Kansas, 407–409
Lady Loretta deposit, 1583
Lagoa Vermelha, Brazil, dolomites, 321–323
Laguna Del Ray, Mexico, sodium sulphate brines, 1229–1231
Lake(s)
acid saline lake, Australia, 128–132
Antarctica microbes in modern salt lakes, 903
brine processing and solution chemistry, 1101
Bristol Dry Lake, California, 259–261
continental salt lakes, 116–120
Coorong Lakes, South Australia, 307–308
East African saline lakes, 905–911
Eocene Lake Gosuite, USA, 403–405
Great Salt Lake, Utah (see Great Salt Lake, Utah)
Harbour on Baffin Island, 1425–1426
Holocene-Late Pleistocene perennial lake level, 44
Lake Aci, Turkey, 342
Lake Asal, Republic of Djibouti, 371–374
Lake Cadibarravirracanna, South Australia, 124
Lake Eyre, Australia, 92, 278–283
Lake Frome, South Australia, 284–287
Lake Greenly complex, South Australia, 118, 119
Lake Harbour on Baffin Island, 1425–1426
Lake Hayward, Western Australia, 185, 186
Lake Inneston, Southern Australia, 42
Lake Lewis, Central Australia, 1304–1305
Lake Lisan, Jordan Valley, 367–371
Lake Macleod, Australia, 96
Lake Magadi, East Africa, 115, 344–353
Lake Natron, East Africa, 347–350
Lake Peigneur, Louisiana, 1360–1362
Lake Torrens, Australia, 881
Lake Tuz, Turkey (Tuz Gölü), 340–342
Lake Tyrell in Victoria, 128–129
Lake Untersee, East Antarctica, 27
Lake Urmia, NW Iran, 342–344
Lake Van, Turkey, 335–338
Lake Yaninee in South Australia, 128
Lop Nur, 1137–1139
Mahoney Lake, Canada, 916
Mono Lake, California, 334
North Stromatolite Lake, 309, 310
Oligo-Miocene Lake, Calatayud Basin, Spain, 405–407
oligotrophic lake, 916
Owens Lake, California, 196–197
Patience Lake-PCS solution mine, Saskatchewan, Canada, 1100
perennial saline lakes (See Perennial saline lakes)
Searles lake, California, 1212, 1213, 1219, 1236
Soda Lakes, Nevada, 1243
Solar Lake, Gulf of Aqaba, 187
Solar Lake, Gulf of Elat, 316–318
Storr’s Lake, Bahamas, 912, 914
Zabuye Lake, China, 1271–1273
Lamellibrachia luymesi, 936, 937
Laminae, 603
Laminar anhydrite caprock, development of, 603
Laminates
carbonate systems, 13–14
textural layering with, 57–58
LANDSAT satellite, 180
Langbeinite, 1104
mining in Carlsbad, New Mexico, 1094
ore, potash salts, 1087
Langer Heinrich deposit, 1594, 1595
Laoxue Formation, 1518–1520
Lapis lazuli
in Edwards Mine, New York, 1425
feldspathoids and, 1426
geological setting, 1427
in Lake Harbour on Baffin Island, 1425–1426
meta-evaporites, 1425–1427
in North Italian Mountains, Colorado, 1427
Precambrian of Baffin Island, Canada, 1425
La Popa Basin, Nuevo Leon, Mexico, 597–599
La Popa weld, 533
Largentière Pb-Zn deposit, France
biological reduction, 1570–1571
calcium sulphate, 1571
economic precipitates, 1568–1569
fracture fillings, 1569
geology, 1568
location, 1567
mineralization, 1569
sulphates in, 1568
sulphur isotope, 1570
Uzer fault with, 1571–1572
Fe-oxide-Au deposits, 1622, 1623
hydrolytic alteration haloes, 1625
hydrothermal fluid circulation, 1621–1624
igneous rocks, 1622
IOCG deposits, 1622, 1623
iron-rich associations, 1619
Korshunovsky iron ore deposits, Siberia, 1619–1620
molted salts, 1616–1619
saline haloes, 1620–1626
Magnesites
Holocene occurrences of, 1289
Kunwarara deposits, 1289–1290
and magnesia salts, 1287–1292
in Rum Jungle Uranium Field, Northern Territory, 1467
Magnesium, 1287
in metasediments, 1435–1437
Mahoney Lake, Canada, biology and density
stratification, 916
Malembo Group, 560
Mangarak fault zone, kinematics of, 576, 577
Marcona
Fe-oxide deposits, 1631, 1633
hydrothermal activity, 1633
Marine coastal sabkhas
beach-dune and fluvial sabkhat, 242–249
carbonate-hosted, 212–231
hydrolgy and hydrogeochemistry, 223–231
siliciclastic-hosted, 231–240
siliciclastic sediment, 212
Maritimes Basin, Canada, evaporite-cored thrusts
and MVT in, 1543
Martian surface, hydrated salt minerals, 201–203
Mary Kathleen Fold Belt, meta-evaporites in
amphibolite, 1453–1459
McArthur River (HYC) Pb-Zn deposit
brine-pool laminites in, 1589
characteristics, 1584
chloride-rich waters, 1581
Cosco Dolomite, 1581
depositional association, 1577
deposit location, 1578
facies, 1586–1588
geology, 1579
halokinetic deformation styles, 1588
hydrothermal circulation, 1590
lower Barney Creek Formation, 1589
mineral resources, 1576
mother salt level, 1585–1586
organic characteristics, 1587
pinolitic texture, 1585
re-interpreted evaporite occurrence chart, 1580–1581
sedimentological analysis, 1588
siderite marbles, 1578–1579, 1581
stratigraphy, 1577–1578, 1582, 1585–1586
sulphide minerals from, 1592
Wollogorang Formation, 1581–1582
McKay formation, 1641
Measurement while drilling (MWD) techniques, solution
mining, 1322
Megalania prisca, 287
Megapolygonal desiccation cracks, 170–171
MelipellalNaltahua deposit, 1631
Menzengraben potash mine, East Germany, salt
 caverns, 1371–1372
Mercaptan, 1606
Mercator mud volcano (MMV), 613
Meromixis, 916, 918
Mesogenesis, 959
Messinian evaporites, of Mediterranean
Apennines, 461–469
basinwide drawdown, 457
Cyprus and Levantine basin, 469–472
deepest karst, 457
eustatic correlations, 475–476
Messinian salinity Crisis, 457
salinity crisis, 457–458
sicily, 466
Sorbas and Fortuna basins, Spain, 459–461
stratigraphy, 457–458, 472–471
tectonic setting, 456
Meta-evaporites, 1382
in amphibolite/granulite realm, 1445
borates of Eastern Liaoning, China, 1445–1448
Grenville complex, St Lawrence County, 1448–1450
Mary Kathleen Fold Belt, 1453–1459
Mount Isa Inlier, Northern Australia, 1450–1453
Pine Creek Inlier, Northern Territory, 1466–1468
Staveley Formation, 1459–1461
Willyama Supergroup, 1461–1466
description, 1382–1385
in greenschist conditions, Salton Sea, 1437–1439
implications, 1475
magnesium levels in metasediments, 1435–1437
metaplaya sequences, Damara Orogen, 1439–1445
mineral associations
albitites and albitization, 1408–1412
scapolite and scapolitization, 1401–1408
sodic phyllosilicates and talc, 1421–1424
tourmaline and tourmalinisation, 1412–1420
Naukluft Nappe Complex, 1444
Oaxacan Granulites, Mexico, 1470
occurrences, 1392
precious stones, 1424
Columbian emeralds, 1427–1431
lapis lazuli, 1425–1427
rubies in SE Asia, 1431–1433
pre-neoproterozoic, 1388–1391
processes and indicator minerals, 1387
protopliths, 1391–1394
regionally extensive, 1386
in Sar-e-Sang region, Afghanistan, 1423
scapolitic, Rajasthan, India, 1470–1473
Seve Nappe Complex, 1468–1470
sulphide-anhydrite Archaean carbonates,
Brazil, 1473–1474
Swedish Caledonides, 1468–1470
tsvorite and tanzanite, 1433–1435
world-scale tectonism, 1386–1388
Metal
and brines, 1487–1488
transport
in high temperature saline realm, 1603–1605
precipitation models, 1496–1499
Metal
Metalliferous brines. See also Red Sea acidification, 1495
basinal brines
chlorine and bromine concentration, 1486
inorganic components in, 1485–1487
metal carrying capacity, 1489–1490
salinity of, 1485, 1486
breach points, 1485
buried evaporite unit, 1483, 1485
carrier brines, 1493–1496
composition, 1485
Eh-pH and chlorinity/salinity, 1493–1496
evaporite brine mixing, 1497
grey-bed leaching, 1483
ionic source, 1483
metal fixers, 1496–1499
metals, ligands and salinity, 1487–1488
modern oil field, 1489
organic components in, 1488–1489
redox fronts, 1497–1499
seal and trap, 1485
sediments as metal sources, 1490–1493
type II marine kerogen, 1486
Metalliferous deposits, evaporites and, 1666–1667
Metamorphic facies
depth vs. temperature, 1385
and mineral phases, 1383
regional metamorphism, 1386
Metamorphism
contact, 1384, 1386
dynamic (see Dynamic metamorphism) in evaporitic basins, 1385
halite, 1397–1399
illite crystallinity and, 1394–1396
and metasomatism, 1408, 1425, 1433, 1459
regional (see Regional metamorphism)
world-scale tectonism, 1386–1388
Metasediments
in greenschist realm, 1437
magnesium levels in, 1435–1437
Mgo-smectites, 82
MgSO₄-depleted potash evaporites, 147
MgSO₄-enriched potash evaporites, 148–149
Microbialites, 860, 867, 894, 961. See also Stromatolites carbonate-precipitating, 24
classification of, 21
CO₂ degassing, 23
examples, 17–19
location and characteristics, 17–19
microfabrical classification, 16, 19
Precambrian, 27
sedimentology, 27–29
textures, 15–16
transition features, 30–32
travertine cement reefs, 23
Venn classification of, 16
Microcline, 1443
Microcoleus, 21
Middle Devonian evaporitic brine, 788
Middle East, coastal salinas
Late Pleistocene Salinas, Egyptian Red Sea Coast, 319–321
Ras Muhammad Pool, Southern Sinai, 318–319
Solar Lake, Gulf of Elat, 316–318
Mild shortening, 566–568
Mine of Mosaic, Saskatchewan (Canada), 1100
Mineola Propane fire, salt caverns, 1369–1370
Mineral conversion, by overpressure, 795
Minibasins, 540–547, 591
driving mechanisms for, 542–543
plays, 1052–1054
Miocene Ebro Basin, Spain, palaeohydrologic pattern, 788–789
Miocene epikarst, Madrid Basin, Spain, 682–684
Miocene evaporites, 1505
Miocene gypsum, Spain, gypsum-karst related subsidence, 700–702
Miocene red beds, outcropping primary salt weld in, 532, 533
Mirabilite, 1237
Canadian production, 1222–1224
characteristics, 4
definition, 1216
extraction, 1224
in Great Salt Lake, USA, 1237
in Turkey, 1234, 1236
Mississippi Fan Fold Belt, 557
Mississippi Valley Type (MVT), 955
base metal deposits, 605
deposits, 1482
and bedded platform sulphates, 1551, 1552
grade-tonnage plot, 1552
in Maritimes Basin, Canada, 1543
Pb-Zn deposits, 1495–1496, 1534
SedEx deposit vs., 1533–1534
sulphide precipitation, 1553, 1554
Mixolimnion, 916, 918
MMV. See Mercator mud volcano (MMV)
Moab Cane Creek Mine solution facility, Utah (USA), 1100
Mock-turtle anticline, 520
MODACON, 705
Modern Gypsum Karst, Saudi Arabia, 686–687
Molecular sieves, zeolites, 1297
geological controls on, 1299–1304
properties, 1298
usage and production, 1298–1299
Molten salts, 1616–1619
Mono Lake, California
hydrological and hydrogeochemical evolution, 334
lake levels and conditions, 331–332
tufa mound and pinnacles, 332–334
Monomixis, 918
Moroccan Meseta (Late Triassic), ancient potash evaporites, 1153–1154
Mosaic Potash Company in Belle Plaine, Saskatchewan, solution recovery brine, 1137
Mosul, Iraq
dam, catastrophic failure, 705–706
karst problems in, 702, 703
Motoyama deposits, 1658
Mount Homa volcanics, 1617
Mount Isa Inlier, Northern Australia
deposit characteristics, 1583
meta-evaporites in amphibolite, 1450–1453
SedEx deposits, 1590–1593
Zn-Pb sulphides, 1592
Mud diapirism
features of, 609–610
vs. salt diapirism, 607, 608
Mud diapirs, 607, 612, 613
Mulhouse Basin (Oligocene), Europe
organic matter, 921, 922
Mummification process, sodium carbonate, 1239–1240
Muriate of potash (MOP), 1088
lake brine processing and solution chemistry, 1101
Murunski Granite, 1650
Muruntau gold deposit, Uzbekistan, 1649–1651, 1667
Mussafah Channel, Abu Dhabi
CaSO₄ occurrence in, 220
MVT deposits. See Mississippi Valley Type (MVT), deposits
Non-radioactive waste disposal, salt caverns, 1330
Noril’sk Region Siberia, 1607
anhydrite crystals, 1608–1609, 1611
faulting, 1608
gEOLOGY of, 1609
intracontinental rifting, 1610
Ni-PGE deposit at, 1612
Phanerozoic age, 1608
sulphate reduction, 1610
sulphur isotope, 1609–1612
thermochemical sulphate reduction, 1611
Norphlet formation, 759, 760
North America
borate salts in, 1210–1214
sodium carbonate in, 1243–1247
trona in, 1243–1247
North Basin, of Dead Sea, 9
Northern Potwar deformation zone, 563
North Italian Mountains, Colorado, lapis lazuli in, 1427
North Ward-Estes Field, Texas, 1025–1028
Nullarbor’s saline speleothems, 695

O
Oaxacan Granulites, Mexico, meta-evaporites, 1470
Ocnele Mari Brinefield, Romania, solution mining, 1332–1335
Oil and gas. See Hydrocarbon
Old Belvedere Spinello brinefield, Italy, 1335–1337
Oldoinyo Lengai, African Rift
carbonatite flow, 1617
carbon-oxygen crossplot, 1618
magmatic minerals, 1616
natrocarbonatites at, 1616
sodium carbonate lavas at, 1618
subsolidus minerals in, 1617
Oligotrophic lake, 916
Olympic Dam deposit, South Australia, 1626, 1630
evolution, 1645
iron-oxide deposits, 1641–1644
Oncale breccias, 668
Ooids, 34
Open-toed sheet, 526, 529, 530
Optical polarising film (OPF), iodine in, 1281
Optymistychna cave, western Ukraine, 679–681
Ore
potash evaporites, extraction technology
conventional mining, 1093–1099
Brine processing and solution chemistry, 1101
ore beneficiation, 1101–1105
solution mining of potash, 1100–1101
salts and contaminants, potash evaporites, 1087
Organic components in metalliferous brines, 1488–1489
Organic matter
destruction, 902
feast or famine cycle (see also Source rock)
brines layered, biological responses to, 904
in Dead Sea, 911–914
Lorca Basin, Spain, 914–916
flamingo connection, East African saline lakes
African rift valley lakes, 905–906
Arthospira platensis, 906–910
East African rift lakes, 905
Lake Bogoria, 910, 911
Lake Magadi, 911
Lake Nakuru, 905, 908–910
Lake Natron, 905
organic productivity in saline waters, 903
preservation, 902, 919–922
production, 916–919
sedimentation rate, 921, 922
Storr’s Lake, Bahamas, 912, 914
Orogenic belts
continental, 1386
definition, 1386
in southwestern Africa, 1440
Orthomagmatic ore deposits, 1601. See also Iron-oxide copper gold (IOCG) deposits
evaporite-igneous interactions, 1603
faulting, 1608
filter pressing, 1602
halite-rich masses, 1605
mercaptan, 1606
mineralogic outcome, 1606
Ni-Cu deposits, 1606–1608
Noril’sk Region Siberia, 1608–1612
Osmotic pressure, 795
Osmotic stress, 868, 882, 888, 914
Ostracod
halotolerant, 881, 882
salinity tolerance, 868
Otto Fiord formation, 770, 771
Oulopholites, 694
Outcrop
depositional patterns, potash evaporites, 1114–1119
distribution and textures, 1117
Overburden pressure, 793
Overpressure
aquathermal pressuring by, 795
buoyancy forces by, 795
causes of, 794–795
epeirogenic movements by, 794–795
hydrocarbon generation by, 795
mineral conversion by, 795
salt-maintained, 795–802
seismic valving and pumping, 802–803
stringers and rafts, 799
in subsalt mud, 796
Tengiz oil field, 796, 797
Overpressure in carbonate stringers, 799, 800
Owens Lake, California
brine reflux, 196–197
surface sediment in, 101
 Oxygen isotopes as brine parenthood indicators, 135–139
P
Packbreccias, 643
Pahtohavare Au-Cu deposits, 1647–1649
PAJ1 and PAJ2, 180
Palaeohydrology, stokes surfaces and, 171–175
Palaeozoic evaporites, 779, 780
Paleocene-Lower Eocene El Haria Formation, 1540
Paleostress analysis, 604
Palimnarchos pollens, 287
Palo Duro basin, Texas, 674–675, 785
Palki sands, 590
Palygorskite, 82
Pangean supercontinent, assembly and disassembly, 431
Panning Sink, Kansas, 1355
Pans, saline, 254–256
Paradox Formation, 1316
Paramagmatic deposits, 1602
basaltic melt production, 1612
dykes and sills in salt, 1612–1616
Fe-oxide-Au deposits, 1622, 1623
hydrolytic alteration haloes, 1625
hydrothermal fluid circulation, 1621–1624
igneous rocks, 1622
IOCG deposits (See Iron-oxide copper gold (IOCG) deposits)
iron-rich associations, 1619
Korshunovsky iron ore deposits, Siberia, 1619–1620
molten salts, 1616–1619
saline haloes, 1620–1626
Parry Islands Foldbelt, Canada, 560
Partial salt dissolution
diffuse dissolution
basal anhydrite, Thailand, 675–677
Maha Sarakham Salt, Thailand, 671–674
Palo Duro Basin, West Texas, 674–675
focused rapid dissolution, 669–670
residue layer formation, 669
Parting muds, 1213
Passive diapirs
gross flow rate of salt, 518
shapes of, 515
Passive margin burial realm
brines, 768
characterization, 766
flow in, 767, 783–789
Patience Lake-PCS solution mine, Saskatchewan, Canada, 1100
Pb-Zn deposits
allochthon-edge stratiform, 1538–1543
Cadjebut Region, Australia, 1551–1555
caprock-hosted deposit, 1535–1538
Jubilee deposit, 1548–1551
Largentière deposit, 1567–1572
McArthur River (HYC) deposit, 1576–1590
modern oil field brines constituents, 1489
MVT deposits, 1534, 1535
Nanisivik Baffin Island, Canada, 1562–1565
peridiapiric diagenesis and, 1534–1535
Polaris Zn-Pb Mine, 1555–1562
San Vicente deposit, 1565–1567
stratiform sediment hosted, 1533–1534
PCS Patience Lake solution mine, Saskatchewan, Canada, 1100
Pearson’s Principle, 1488
Peigneur Lake, Louisiana, solution mining, 1360–1362
Pekelman Lagoon, 191
Peloids, 34
Perdido foldbelt, 556–558
Perennial saline lakes
climate and scale, 377
Dead Sea, Middle East
basin margin sediments, 365–367
deepwater halite, 361–362
deep water laminites, 362–365
density stratification, 357–361
geological settings, 353–355
water level changes, 356–357
evaporite deposits variations, 374, 375
Great Salt Lake, Utah, 324–329
Lake Aci, Turkey, 342
Lake Asal, Republic of Djibouti, 371–374
Lake Lisan, Jordan Valley, 367–371
Lake Natron and Lake Magadi, East Africa, 344–353
Lake Tuz, Turkey (Tuz Gölü), 340–342
Lake Urmia, NW Iran, 342–344
Lake Van, Turkey, 335–338
Mono Lake, California
hydrological and hydrogeochemical evolution, 334
lake levels and conditions, 331–332
tufa mound and pinnacles, 332–334
physiography of, 375
and sabkhas, pans, 377–380
Salda Lake, Turkey, 338–340
Periodic salt breakout, 524–525
Peritidal muddy deposits, evaporitic mudflat
seals, 979–983
Permian Basin, West Texas
pisolites, 33
solution mining, 1349–1355
tepes, 35
Permian Capitan shelf, brine reflux, 193
Permian Cutler Formation, 1518
Permian Gharif Formation, 823, 824
Permian Potash, 1154
Permian Zechstein Basins
Ca2 carbonate, 482
carbonate platform, 480
mineralogy, 479
stacking patterns, 481
stratigraphic evolution, 477–483
Phanerozoic Fe-oxide deposits, 1631–1634
Phanerozoic IOCG deposits, 1630
Phanerozoic potash salt series, 1086
Phase chemistry, trona solution mining, 1322–1324
Phormidium spp., 27
Photosynthesis
cyanobacteria, 860
light dwellers and pigmentation, 860–864
Phreatic gypsum caves
bathyphtreatic karst, 678
caprock sinkholes and vadose passages, Russia, 681, 682
maze cave, 679, 680
Opytmistycha cave, western Ukraine, 679–681
Piceance Creek Basin, Colorado
Shell Oil in, 1322, 1323
sodium carbonate, 1244–1247
solution mining nahcolite in, 1324
trona solution mining, 1322–1324
Picritic magmas, 1607
Pinda Group, 560
Pine Creek Inlier, Northern Territory, meta-evaporites in amphibolite, 1466–1468
Pine Creek Orogen, iron-oxide deposits, 1637–1638
Pisolites
marine, 33
from Permian of West Texas, 33
vadose, 33–34
Plate tectonic
definition, 1389
development, 1385
indicators, 1387
paradigm, 1386, 1391
Proterozoic associations, 1411
Platform carbonates, bedded saltern seals, 983–985
Platform evaporites
broad-scale depositional models, 399–400
depositional styles, 414
epeiric/epicontinental seaways, 411
on epeiric shelves, 410–414
greenhouse eustasy, 413
holomictic salterns, 412
marine-fed mudflats, 412
megasulphate systems, 412
Playa basin and range, 257
Death Valley, California, 261–262
degrading hydrology and, 175–176
groundwater system, 130
of Qaidam basin, 1105–1114
Saline Valley, California, 258–259
water composition, Australia, 117

Playas of Qaidam Basin, quaternary potash evaporites, 1105–1114
Plug-fed extrusion, 526–529
Plug-fed thrusts, 526, 528, 530
Poiseuille flow, salt, 506

Polaris Zn-Pb Mine, Canada
bacterial sulphate reduction, 1559–1560
Baumann Fiord Formation, 1561
Bay Fiord Formation, 1559, 1561–1562
dolomite, 1558
geological and geochemical characteristics, 1558
isotopes, 1559
location, 1555
mineralisation, 1560
ore grade divisions, 1557
paragenetic-diagenetic sequence, 1558
sedimentological study, 1562
temperatures, 1559–1561
Thumb Mountain Formation, 1555, 1557, 1562
time-stratigraphic diagram, 1555, 1556
Zinc concentration, 1557

Porphyry copper deposits, supergene enrichment, 1595–1597
Port Isabel fold belt, 557, 558
Post-induration interstratal breccia, 652
Post-kinematic layers, 587
Post-tectonic burial setting
brines, 768
caracterisation, 766, 769
flow in, 767, 783–789

Potash salts, 1086
ancient (pre-quaternary)
Canadian Maritimes (Mississippian of Nova Scotia and New Brunswick), 1165–1168
Cretaceous Trans-Atlantic Potash, 1150–1153
formation, mineable potash, 1177–1179
German Potash (Z1, Z2 and Z3 Potash), 1154–1155
Khorat Plateau, Thailand, 1144–1150
Moroccan Meseta (Late Triassic), 1153–1154
Nagaur-Ganganagar evaporite basin, India, 1175–1177
New Mexico Potash, USA, 1159–1161
Permian Potash, 1154
potash geology, WCSB, 1169–1173
Priyapt Basin (Devonian) Belarus, 1173–1175
quality control, 1179–1186
Upper Kama Potash Region, Cis-Urals Russia, 1161–1165
Upper Rhine Graben, France, 1141–1144
WCSB Fluids, 1173
West Canadian Potash (Devonian), 1168–1169
Z3 - Boulby Potash, UK, 1155–1159
from brine, 1129
carnallite, 1087
core-based geology, 1119–1124
Dead Sea Potash, Middle East, 1129–1133
depositional patterns, outcrop, 1114–1119
Inland Chotts and Coastal Sabkhas in North Africa, 1124–1129
MOP, 1088
occurrence and quality, at worldscale, 1106–1109, 1186–1190
operations, solution mining, 1316–1318

ore extraction technologies
conventional mining, 1093–1099
lake brine processing and solution chemistry, 1101
ore beneficiation, 1101–1105
solution mining of potash, 1100–1101
ore salts and contaminants, 1087
production and consumption
in Asia, 1092
in Canada, 1090
Permian potash, 1090
price, 1090, 1093
in United States, 1092
quaternary potash
Danakil Depression, Ethiopia, 1114
Playas of Qaidam Basin, 1105–1114
solution recovery brine in Utah, USA, 1133–1137
SOP, 1088 (see also Sulphate of potash (SOP))
sylvite, 1087
uses, 1193
world statistics, 1089
Potrerillos Formation, 598–599
Potwar Basin, 563
Power law behaviour, of dry rock salt, 497, 499
Precambrian
albitization, 1412
to Cambrian sulphur cycle, 160
diapiric hormuz salt, 691–694
IOCG deposits, 1627
magnesites, 1291
occurrences and mineralogies, 154
oceanic chemistry, 153–159
sedimentation, 389
sparry magnesites, 1291–1292
Precambrian-Cambrian transition, 159–162
Precambrian of Baffin Island, Canada, lapis lazuli, 1425
Pre-drill seismic techniques, 536
Prekinematic sediment layers, 587
Pre-Quaternary/pre-Neogene evaporite, 11. See also Ancient evaporites, potash (pre-quaternary)
Presqu’ile dolomite, 776
Pressure
cells and salinity-driven convection, 789
gradients, 794
osmotic, 795
seals, 792–795
unpredicted changes, 805–807
Pressure solution creep, 500
Primary evaporite
carbonate systems
Archaean, 38
laminites, 13–14
marine and hypersaline, 37–38
microbialites and stromatolites, 15–32
oids and peloids, 34
Palaeoproterozoic, 38
Phanerozoic, 39
pisolite, 32–34
teepees, 35–37
depositional textures, 9
salts
gypsum beds, 39–44
halite beds, 44–48
laminites, 54–58
pedogenic and wind reworked, 48–54
reefs, 58–60
Index

Pripyat Basin (Devonian) Belarus, ancient potash evaporites, 1173–1175

Problems in evaporite correlation
basin edges, 439–440
rapidity of deposition, 439
stratigraphic control, 439
stratigraphic relationships, 439

Proterozoic Cu-Au deposits, 1604

Proterozoic iron-oxide deposits, Australia
Candelaria Cu-Au deposit, 1644–1646
Coronation Hill, 1638–1640
Cosmo Howley Au deposit, 1639–1640
Koolpin Formation, 1639–1640
magnetite ironstone textures, 1635

Proterozoic Ni deposits, 1608

Proto-conglomerates, 642

Protoliths, 1391–1394

Pseudomorphs

carbonate, 1464
copper, 1526
hydroboracite, 1209
Palaeevaporite, 1443
types, 1209–1210

Pull-apart burial realm, 766–768, 777–778

Pyrenees thrust belt, 782

Pyrite-silica-anhydrite breccias, 1662–1663

Q

Qaidam Basins, China
lithium, 1271–1273
potash evaporites, 1086
Qom Basin of central Iran, 578, 579
Qom Kuh, 579–581
Quaternary climate, 383–384
Quaternary deserts, 86

Quaternary evaporites, 91
continental-interior settings, 94–96
marine-margin settings, 96–98
playas of Qaidam Basin, potash
bedded and displacive salts, 1110
formation period, 1105
Lake Dabuxum, 1105
location, 1105, 1110
Qarhan Playa sump, 1110
Qarhan saltflat/lake, 1109
potash, Danakil Depression, Ethiopia, 1114

R

Radioactive waste disposal, salt caverns, 1330–1331
Raft tectonics
in Angola, 522
definition, 521

falling diapirs, 521–523
salt basin characterisations, 522–523
Ramos Formation, 1526
Ramp basins, 541
Ramp model, evaporitic epeiric
arid-zone carbonate ramps, 415
carbonate ramp, 414
Irwin’s epicontinental-sea model, 415
Khuff Formation, 416, 417
Lower Clear Fork Formation, 416
marine versus nonmarine stages, 425
Permian Khuff Formation, 418
rimmed epeiric shelves, 419–425
San Andres Formation, 416
Ran El Melah, Algeria, 578
Rann of Kutch, sabbhas, 247–249
Rare earth elements (REE), concentrations and distributions, 1655
Ras Ghanada, UAE., 292
Ras Muhammad Pool, Southern Sinai, 318–319
Rauhwacke horizons
Burano formation, 663–665
definition, 659
deformation/lubrication, 660
Haselgebirge breccias, 661–663
Katangan Copper belt, 666
Murtlebury Nappe, 665
Oncala breccias, 668
proterozoic basins, 666
tectonite specific usage, 660
thermochromal sulphate reduction, 663
Rayleigh criteria, 130
Rayleigh number, 130
Rayleigh-Taylor instability, 497
Reactivated (mildly squeezed) diapirs, downbuilt diapirs vs., 568–573
Reactive diapirism, 514, 549, 568, 585, 587
Reactive diapirs, 578–588

Red Sea

Atlantis II Deep (see Atlantis II Deep, Red Sea)
brine-filled deeps, 1501
Conrad Deep, 1501
Kebr and Shaban Deeps, 1505–1507
metalliferous deep of, 1499–1500
sea floor depressions, 1507
seismic surveys, 1500
Redstone Copper Belt, Canada, 1531–1533
REE. See Rare earth elements (REE)
Reef system of Gulf of Mexico, 594
Regionally-tiered salt plays, Gulf of Mexico, 1048–1051
Regional metamorphism, 1384
metamorphic facies, 1386
thrust belts, 1394–1401
Regional-scale karst
subsidence and landscape in diapirc regions
Five Islands, Gulf of Mexico, 638–639
salt valleys, Moab region, 637–638
Zagros/Hormuz region, Arabian Gulf, 640–642
subsidence troughs
Black Hills, South Dakota, 636–637
creation, 628
Delaware Basin, West Texas, 631–634
Hutchison salt, Kansas, 630–631
subcrop salt dissolution, 628
Regional sediment starvation, 528
Rejuvenated diapirs, 571

Index
Reservoirs and traps, hydrocarbons
bedded basinwide evaporites, 1009–1010
bedded salt seals, 976–979
brine flux, changing directions, 1035–1036
dolomitised limestones, Central Basin Platform, West Texas, 1001–1002
Eocene and Miocene Associations, Middle East, 1010–1014
evaporite-sealed platform and reefs, Devonian, Canada, 1017–1021
exploration paradigms, bedded evaporite hydrocarbon association, 1030–1031
Ghawar Field, Saudi Arabia, 990–998
Jurassic Arab Formation, Arabian Gulf, 985–990
Jurassic Smackover Fm., Gulf of Mexico, 1002–1009
North Ward-Estes Field, Texas, 1025–1028
peritidal muddy carbonates, evaporitic mudflat seals, 979–983
platform carbonates, bedded saltern seals, 983–985
quality tied to bedded evaporite seal type, 1021
recognising bed dissolution, 1034–1035
recognising depositional differences, 1031–1034
Rotliegende Sands of Northern Netherlands and North Sea, 1028–1030
Silurian Pinnacle Reef Fields, Michigan Basin, 1014–1017
Slaughter-Levelland Trend, West Texas and New Mexic, 998–1001
Yates Field, West Texas, 1021–1025
Retsof mine, USA, solution mining, 1344–1345
Riftia pachyptila, 936
Rio Tinto Borax Group, 1197, 1207
Ripon Area, UK, gypsum-karst related subsidence
catastrophic collapse, 699
Edlington and Roxby formations, 699–700
groundwater pumping, 699
hydrogeological flow units, 699
sinkhole variation, 699–700
subsidence features, 697
Ure terrace, 700
watertable level fluctuations, 698–699
Rock salt. See also Halite
cycle, conceptual model of, 512
density, 496
diffusion mechanism map, 497
effective vs. differential stress diagram, 504
impurities effect, 501
level of neutral buoyancy, 496
micro and macro scale flow texturing, 509
microstructural domains, 511–512
microstructural process, 499, 500
physical properties, 496
power law behaviour, 497
seismic velocity, 512
thermal conductivity, 505
triaxial deformation experiments, 499–500
viscosity, 497
Rock’s inherent ductility, hydrocarbon, 969
Rocky Mountain Foldbelt, USA, 1075–1076
Rodinia/Gondwana supercontinent(s), 432–433
Roho, 540
Roho/listric weld system, 540
Roho salt system, 550
Roof deposition/salt burial, 529–530
Roof-edge thrust, 547
Rotation recrystallization, 500
Rotliegende regional aquifer, 758
Rotliegende Sands of Northern Netherlands and North Sea, 1028–1030
Ruby, 1431
in SE Asia, 1431–1433
Rum Jungle
magnesites in, 1467
tourmalines, 1467–1468
S
Sabkha nodules and crystals, 62
Sabkhas
Abu Dhabi
intertidal facies (lagoon-edge muds), 220–222
intertidal facies/strandline sands, 219–220
island shoal and bank facies, 215–217
subtidal facies, 217–219
supratidal facies, 222–223
anhydrite nodules, 210
classification, 211
continental sabkhas
alluvial fan-ephemeral saline lake, 256–277
Basin and Range Playas, USA, 257
Bristol Dry Lake, California, 259–261
Death Valley Playa, California, 261–262
Deep Springs Lake, California, 257–258
ephemeral stream floodplain-dune field-saline lake, 277–289
perennial stream floodplain-perennial saline lake, 289
Sabkha Yotvata, Israel, 256–257
Saline Valley Playa, California, 258–259
definition and terminology, 210–211
Eastern Saudi Arabia, 231–240
eolian
salt-pans (marshes) and diapirs, 299–301
sea-margin sabkha, 291–294
sheets of eolian sabkhat, 294–299
Gulf of Suez, 240–241
holocene models, limitations of, 249–251
Kuwait
Al-Khiran Sabkha, 237–240
Kadmah Bay/Kuwait Bay, 234–237
lacustrine
depositional characteristics, 251–256
groundwater transport, 253–254
saline mudflat, 252–253
saline pan, 254–256
marine coastal
beach-dune and fluvial sabkhat, 242–249
carbonate-hosted, 212–231
hydrology and hydrogeochemistry, 223–231
siliciclastic-hosted, 231–240
siliciclastic sediment, 212
Nile Delta
Eastern Mediterranean Coast, northern Sinai, 244–246
Western Nile Delta Coast, Mediterranean, Egypt, 242–244
Rann of Kutch, 247–249
Shatt el Arab Estuarine Sabkha Iraq, 246–247
Southern Arabian Gulf, 212–231
subtidal sedimentation
open marine sedimentation, 217–218
restricted marine (khor) sedimentation, 218–219
world distribution, 207–209
Umm Ash Shurabyat, Saudi Arabia, 298
Yotvata, Israel, continental sabkhas, 256–257
Sagging, 623
St. Francis dam collapse, 703
Salada Mediana, Spain
sodium sulphate, 1234
Upper Miocene Kirmir Formation, 1233, 1234
Salado Formation, 1295–1297, 1349, 1351–1354
Salar de Atacama, Chile
evaporation level in, 102
lithium in, 1267–1269
Salar de Surire, Chile, borate deposits, 1207
Salar de Uyuni, Bolivia
borate deposits, 1207
lithium deposits, 1269
Salarium argentum, 1255
Salars of South America
Salar de Atacama, Chile, 271–273
Salar de Uyuni, Bolivian Altiplano, 267–271
Salar Grande, Central Andes of Chile, 273–277
Salar surface, 178–180
Salda Lake, Turkey, perennial saline lakes, 338–340
Salina de Ambargasta, Central Argentina, 287–289
Salinas
coasts of Australia
carbonate salinas, 306–312
gypsum salinas, 312–314
halite salinas, 314–316
coasts of Middle East
Late Pleistocene Salinas, Egyptian Red Sea Coast, 319–321
Ras Muhammad Pool, Southern Sinai, 318–319
Solar Lake, Gulf of Elat, 316–318
South American salinas and dolomite, 323–324
Saline basins
degradation hydrology and playa capture, 175–176
dry mudflat/sandflat, 165–166
evaporite saline mudflat, 163–165
fluctuating waterables indicators, 169
remote sensing, 177–185
stokes surfaces, 169–175
unconfined meteoric waterables, 168–169
Saline giants. See Basinwide evaporites
Saline pans
Saline realm, high temperature, 1603–1605
Saline Valley Playa, California
continental sabkhas, 258–259
Salinity
of basinal brines, 1485, 1486
and brines, 1487–1488
Salinity-driven convection, 789
Salt
advance mechanisms for salt canopies, 547
allochthon, evolution of, 527
basin, evolution of, 595
basins in Gulf of Mexico, 489
beds, building blocks of
deepwater evaporites, 397–399
evaporite mudflats, 394, 396
saltmire, 396–397
breakout, 524–525
buoyancy, 572
cake (See Sodium sulphate)
collapse depressions, 1078
creep
in Eminence, Mississippi, 1373
factors, 1372–1373
ground subsidence, 1375–1376
minimising subsidence from, 1377
in Tersanne, France, 1373
distribution in Gulf of Mexico, 553
dykes and sills in, 1612–1616
inflation, deflation, welds and basal (subsalt) shear zones, 526
plug, 528
primary evaporitic
gypsum beds, 39–44
halite beds, 44–48
laminites, 54–58
pedogenic and wind reworked, 48–54
reefs, 58–60
pumping, 525
as sheets, allochthons and breakouts, 523–526
sheets, emplacement of, 525, 526, 527, 528
solution mining (see Solution mining)
squeezing, 591
stock canopy system, 550
strength, 501, 502
structures, 493, 494
brain plain sediments and, 591
description, 506
diapir stage, 506–507
evolution of, 516, 517
internal complexity, 506–509
landscape relief around active, 585
in Moab area of southeast Utah, 573, 574
sediments and, 587–589
systems
crystal size and stress-strain indicators, 509–511
density, viscosity, strength & buoyancy, 496–505
flow textures and rates, 506
internal complexity, 506–509
microstructural domains, 511–512
thermal effects, 505
temperature effects in, 1613
welds, 531–533, 540–547
classification of, 531
formation of, 531–533
welds, loading detachments and growth faults, 538–540
Salt caverns
energy liquids/compressed air storage, 1324–1329
gas storage, 1321, 1325, 1327–1329, 1366, 1378
ground subsidence problems, 1375–1376
hydrocarbon in, 1325–1327
liquefied petroleum gas, 1325, 1327
monitoring/minimizing collapse, 1377
natural/anthropogenic subsidence, 1377–1378
plugging, 1378–1379
problems with hydrocarbons storage, 1366
Barber’s Hill explosion and collapse, 1368–1369
Brenham explosion, 1365–1368
Hutchinson explosion, 1370–1371
Menzengraben potash mine, East Germany, 1371–1372
Mineola Propane fire, 1369–1370
Weeks Island, Louisiana, 1363–1365
West Hackberry explosion, 1365
salt creep, 1372–1374
salt falls vs. roof collapses, 1374–1375
and solution mining (see Solution mining)
surface indicators of breached caverns, 1376–1377
waste disposal, 1329
nonradioactive, 1330
radioactive, 1330–1331
Winsford Mine, Cheshire, 1324
Salt deflation, 531–533
Salt deformation, representative strain rates and speeds of, 498
Salt-detached basins, 558, 559
Salt diapirism
features of, 609–610
mud diapirism vs., 607, 608
Salt diapirs, 612–613
classification, 494
definition, 493
Salt dissolution
bedded solution-collapse breccias
Belle Roche breccia, 647
chalky dolomite, 644
clasts, 645
lower Visean Belle Roche breccia, 646
breccia extent
hydrology and texture, 650–653
stratiform breccias, 649–650
diapiric solution breccias
Flinders ranges, 655–657
Gulf Islands, 654
Hormuz formation, 655
outcropping and subcropoing areas, 653, 654
rock flour, 653
vs. salt ablation breccias, 657–659
Sclerogluma, 657
evaporite dissolution breccia, 642–644
partial (see Partial salt dissolution)
Rauhwacke horizons (see Rauhwacke horizons)
Salt domains, 566
Salt extrusion, 526, 573–582
plug-fed extrusion, 526–529
Salt falls vs. roof collapses, 1374–1375
Salt-folded inverted basins, 565
Salt-folded minibasin, 540, 541, 542
Salt-folded rift basins, widening of, 560
Salt-generated underpressure, 808–809
Salt glaciers, 498
Salt hydraulics, 506
Salt inflation, types of, 526
Salt-lubricated extension, 520–521
Salt-maintained overpressure
allochthon basins, 802
Ara stringer, 800–801
black staining, 799, 800
convective heat flow, 804
hydrofracture, 798
Permian halite, 796
seismic valving and pumping, 802–803
stringers and rafts, 798, 799
Tengiz oil field, 796, 797
ture pressure seal, 795
Salt-nappe system, 550
Salton Sea geothermal system (SSGS), 1437–1439
Salton Trough, 1437
Salt-pan (marshes) and diapirs, 299–301
Saltpetre, 1284, 1285
Salt Range region, Pakistan, 563
Salt-related traps, Tarim Basin, China, 1076–1078
Salt-roof thrust, 547
Salt tectonics
autochthonous, 548–550
contractional
downbuilt and reactivated diapirs, 568–573
gravity gliding, 554–560
inverted basins, 565–566
shortening, 566–568
thin-skinned fold and thrust, 560–565
geological principles, 493
in Northern Gulf of Mexico, 494, 495
style, 551
Salt-tongue systems, 550
Salt valleys, Moab region, 637–638
Salt gumbos, 533–536
San Andres Formation, Permian Basin, 416
Sandstone-hosted deposits, Central Andes, 1525–1529
Salt glaciers, 498
Salt hydraulics, 506
Salt inflation, types of, 526
Salt-lubricated extension, 520–521
Salt-maintained overpressure
allochthon basins, 802
Ara stringer, 800–801
black staining, 799, 800
convective heat flow, 804
hydrofracture, 798
Permian halite, 796
seismic valving and pumping, 802–803
stringers and rafts, 798, 799
Tengiz oil field, 796, 797
true pressure seal, 795
Salt-nappe system, 550
Salton Sea geothermal system (SSGS), 1437–1439
Salton Trough, 1437
Salt-pan (marshes) and diapirs, 299–301
Saltpetre, 1284, 1285
Salt Range region, Pakistan, 563
Salt-related traps, Tarim Basin, China, 1076–1078
Salt-roof thrust, 547
Salt tectonics
autochthonous, 548–550
contractional
downbuilt and reactivated diapirs, 568–573
gravity gliding, 554–560
inverted basins, 565–566
shortening, 566–568
thin-skinned fold and thrust, 560–565
geological principles, 493
in Northern Gulf of Mexico, 494, 495
style, 551
Salt-tongue systems, 550
Salt valleys, Moab region, 637–638
Salt gumbos, 533–536
San Andres Formation, Permian Basin, 416
Sandstone-hosted deposits, Central Andes, 1525–1529
Santa Rita gold deposit, Brazil, 1649
San Vicente Zn-Pb deposit, Peru
burial temperatures, 1567
calcites from, 1567
location, 1565
mining activity in, 1566
schematic cross-section, 1565
sphalerite and galena, 1566–1567
stratigraphy, 1566
Sar-e-Sang region, Afghanistan, meta-evaporites in, 1423
Saturn-spar gypsum, 79
Scandinavian Caledonides, meta-evaporites, 1468–1470
Scapolite
Br/Cl ratios, 1407
calcium carbonate and, 1402, 1405
definition, 1401
distribution, 1401–1402
dolomite, 1441
meta-evaporites in Rajasthan, India, 1470–1473
minerals, 1405
and scapolitization, 1401–1408
sodium chloride and, 1402, 1405–1407
structure, 1401, 1402
worldwide examples, 1403–1404
Scapolitisation, 1646
scapolite and, 1401–1408
worldwide examples, 1403–1404
Schoizohaline salinity cycles, 837, 961
SCLM. See Sub-continental lithospheric mantle (SCLM)
Salt capacity of evaporites
allochthons, 972
bedded evaporites, 971
biodegradation, 970
density/buoyancy, 970
environments favouring seal continuity, 973–976
hydrocarbon migration and trapping, south Oman salt basin, 975
marine carbonate reservoir, 975
oil re-entrapment, 970
salt permeability/brine permeation measurement, 970, 971
Seal type and ultimate recoverable reserves, 965
Searles lake, California
borate salts, 1212, 1213
bromine, 1282
sodium carbonate, 1242
sodium sulphate, 1219, 1236
Searles Valle Minerals, Inc., 1237
Seasalt production, 1257, 1260, 1261
Seawater chemistry
Phanerozoic dilemma
MgSO4-depleted potash evaporites, 147
MgSO4-enriched potash evaporites, 148–149
Precambrian
calcium sulphate textures, 158
evaporite occurrences and mineralogies, 154
gypsum, 156
nahcolite, 157
oxygen, sulphur and metal levels, 155
sulphate concentrations, 155–156
Precambrian-Cambrian transition, 159–162
Secondary evaporite
depositional textures, 11–12
intrasediment salts, 60–62
shallow mineralogic re-equilibration, 65–69
sulphate evaporites, 69–74
syndepositional karst, 62–65
Sediment(s)
caprock formation (diagenesis of salt), 602–607
carbonate patterns, 592–595
distribution of, 593
and evolving salt structures, 587–589
and flowing salt, 585–587
as metal sources, 1490–1493
salt basin evolution, 595
shale diapirism complications, 607–614
siliciclastic patterns, 589–592
subsalt sediments, 602
suprasalt carbonate sedimentation, 597–601
suprasalt clastic sedimentation, 596–597

Sedimentary Exhalative (SedEx) deposits, 1482, 1499. See also Pb-Zn deposits
age distribution, 1576
Atlantis II Deep, 1576
distribution, 1574
evaporite-associated, 1572–1576
in Fe-carbonate haloes/hosts, 1590–1593
Irish-type deposits, 1572
location, 1575
low temperature, 1583–1584
mid-Proterozoic maximum, 1576
model, 1573
vs. MVT deposit, 1533–1534
Proterozoic Pb-Zn deposits, 1576, 1577
resource plot for, 1574
Zn-Pb-Ag deposits, 1534

Sediment-hosted Cu, 1525
Sediment-hosted stratiform copper (SSC) deposits, 1507
classifications, 1508, 1509
halokinetic associations, 1510
Kupferschiefer copper deposits, 1510–1514
redox interface, 1533
resource plot, 1509
salt associations, 1509–1510
Sediment-loaded minibasin, 540
Sedom cave
caprock carapace, 689
mass balance calculation, 690
passage development, 690
sinkholes, 690
Sedimentary Exhalative (SedEx) deposits, 1482, 1499. See also Pb-Zn deposits
age distribution, 1576
Atlantis II Deep, 1576
distribution, 1574
evaporite-associated, 1572–1576
in Fe-carbonate haloes/hosts, 1590–1593
Irish-type deposits, 1572
location, 1575
low temperature, 1583–1584
mid-Proterozoic maximum, 1576
model, 1573
vs. MVT deposit, 1533–1534
Proterozoic Pb-Zn deposits, 1576, 1577
resource plot for, 1574
Zn-Pb-Ag deposits, 1534

Sediment-hosted Cu, 1525
Sediment-hosted stratiform copper (SSC) deposits, 1507
classifications, 1508, 1509
halokinetic associations, 1510
Kupferschiefer copper deposits, 1510–1514
redox interface, 1533
resource plot, 1509
salt associations, 1509–1510
Sediment-loaded minibasin, 540
Sedom cave
caprock carapace, 689
mass balance calculation, 690
passage development, 690
sinkholes, 690
Seepiophila jonesi, 936, 937
Seismic valing, 802
Sekko ore, hydrothermal anhydrite in, 1656
Selenitic gypsum, 79
Self-convecting fluid system, 791
Sepiolite, 82
Sequence stratigraphy
basinwide evaporites, 452–455
chronostratigraphic correlation, 444–447
first and second order changes, 445–446
greenhouse earth, platform evaporites, 451–452
icehouse and greenhouse conditions, 446
icehouse and greenhouse eustasy, 448
marine-fed platform evaporites, 447
marine-margin platform evaporites, 448–451
sealevel and salt sequence, 447–448
sigmoidal/slug model, 445
in Silurian Salina Group, 483–491
in Zechstein, 477–483
Shale diapirism, complications of, 607–614
Shale sheaths, 505
Shallow allochthons, 612
Shallow drilling, 582–583
Shallow mineralogic re-equilibration
deep burial, 68
limpid dolomite in mosaic halite, 68–69
porosity loss, 66–68
Shatt Al Arab delta, 212
Shatt el Arab Estuarine Sabkha, Iraq, 246–247
Shorite, 116
Siberian Traps, 1608
Sicilian Basin, 466
Sigsbee canopy, 551
Sigsbee Escarpment, 529, 530
Sigsbee Scarp, 523, 541, 542
Sijes Formation, 1207–1208
Siliciclastic patterns, sediments, 589–592
Silicified evaporites
abiological processes, 725
anhydrite pseudomorphs, 722
bacterial degradation of organic matter, 725
chalcedony, 721
eamples, 720–721
Italian cherts, 726
magadite nodules, 725–726
moganite, 727
precipitation, 724
quartz nodules, 723, 724
silicified-calcitized anhydrite nodule texture, 722
Sills in salt, 1612–1616
Silurian evaporites, Michigan Basin, USA, 483–487
Silurian Pinnacle Reef Fields, Michigan Basin, 1014–1017
Single drill pads, solution mining, 1320–1322
Sinkholes. See also Dolines
Bayou Corne, Louisiana, 1357–1358
Cargill Saltworks, Kansas, 1346–1347
Detroit River brinefield, USA, 1347–1348
in Grand Saline, Texas, 1358–1359
in Hutchinson region, 1347
JWS, New Mexico, 1351–1354
Old Belvedere Spinello, Italy, 1335–1337
in Panning Sink, Kansas, 1355
Wink Sink, USA, 1349–1355
Slaughter-Levelland Trend, West Texas and New Mexico, 998–1001
Slave Point formation, 776
Sleaford Mere on Eyre Peninsula, algal tufas of, 307
Smackover Fm., Gulf of Mexico, 1002–1009
Snowball Earth model, 160
Society Cliffs Formation, 1563–1564
Soda ash. See Sodium carbonate
Soda Lakes, Nevada, 115
sodium carbonate deposit, 1243
Sodalite, 1425
Sodian phlogopite, 1421
Sodian phyllosilicates and talc, 1421–1424
Sodium carbonate
in African Rift, 1249–1251
in ancient Egypt, 1238
Chaganur lake deposit, 1248
character and extraction history, 1238–1243
in China, 1247–1249
Green River Basin, Wyoming, 1242–1245
in Lake Magadi, 1250
lavas at Oldoinyo Lengai, 1618
minerals, 1238
mummification process, 1239–1240
in North America, 1243–1247
occurrences of, 1240–1242
phase chemistry of, 114
Piceance Creek Basin, 1244–1247
production, 1250–1251
salts, 763
solution mining, 1322–1324
Solvay process, 1239–1240
in USA, 1242
uses, 1193
world production of, 1239–1240
Sodium chloride and scapolite, 1402, 1405–1407
Sodium hydroxide (Lye), 1086
Index

Sodium, salinity, 1486
Sodium sulphate
 Canadian brine extraction, 1221–1225
 character and extraction history, 1214–1221
 chemistry, 1216
 in China, 1238
 deposits, 1216–1220
 Great Salt Lake, USA, 1237
 in Karabogazgol, Kazakhstan, 1225–1229
 in Laguna Del Ray, Mexico, 1229–1231
 minerals, 1215
 Searles lake, California, 1219, 1236
 Spanish glauberite mines, 1231–1233
 in Turkey, 1233–1236
 uses, 1193
 US production of, 1236–1237
 world production of, 1220–1221
Solar-heated brine concentration, 1–2
Solar Lake, Gulf of Aqaba, 187
Solar Lake, Gulf of Elat, 316–318
Solikamsk mine collapses, Russia, 1343–1344
Solubility, evaporite salts vs. limestone, 616–617
Solution dolines, 622–623
Solution mining
 advantage, 1310
 bamboo drilling technology, in China, 1310, 1312
 blanket management, 1319, 1321
 blinding and phase chemistry, 1322–1324
 Boies nahcolite bed, 1322
 Bryan Mound salt dome, Texas, 1374
 cluster well pads, 1320–1322
 disadvantage, 1310
 history, 1310–1312
 lithology effects cavity shape, 1318–1322
 MWD techniques, 1322
 NedMag, Veendam in Netherlands, 1317–1318
 potash operations, 1316–1318
 problems with cavities, 1333
 Anpeng trona salt mine, China, 1362–1363
 Barycz and Wieliczka site, Poland, 1337–1341
 Bayou Corne, Louisiana, 1357–1358
 Cargill saltworks, Kansas, 1346–1347
 Detroit River brinefield, USA, 1347–1348
 Gellenoncourt saltworks, France, 1341–1342
 Gorham oil field, Kansas, 1355–1357
 Grand Saline sinkhole, Texas, 1358–1359
 ground collapse, Tusla, 1342–1343
 Haoud Berkaoi oilfield, Algeria, 1359–1360
 Lake Peigneur, Louisiana, 1360–1362
 Ocnele Mari Brinefield, Romania, 1332–1335
 Old Belvedere Spinello brinefield, Italy, 1335–1337
 Panning Sink, Barton County, Kansas, 1355
 Permian Basin, USA, 1349–1355
 Retsof mine, USA, 1344–1345
 Solikamsk and Bereznki mine collapses, Russia, 1343–1344
 Windsor brinefield, Ontario, 1347
 process, 1313
 in reverse-circulation method, 1313
 salt caverns and (see Salt caverns)
 single well, 1316, 1320–1322
 Szechuan region, China, 1311
 trona, 1322–1324
 Tully method, 1315
 variable point injection, 1316
 waste components, 1310
 well and cavern design, 1312–1315
 well styles, 1315–1316
 Solution mining of potash
 brine solution injection, 1100–1101
 Moose Jaw (Belle Plaine), 1100
 sylvite precipitation, 1100
 three-pipe-in-one-string solution method, 1100
 Solution recovery brine in Utah, USA, potash evaporites, 1133–1137
 Cane Creek mine, 1136
 ditch water levels, 1134
 Moab Utah brine extraction operation, 1136
 Mosaic Potash Company in Belle Plaine, Saskatchewan, 1137
 natural brines, 1135
 solar pan concentration, 1133
 solution mining, 1136
 sylvite harvest ponds, 1134
 Solution-reprecipitation creep, 500–501
 Solution-transfer creep, 500
 Solvay process, 1239–1240, 1257
 Source-fed allochthonous fringes, 552
 Source-fed thrusts, 528, 530–531
 Source rock
 biomarkers indicating hypersalinity, 897–901
 catagenesis, 837
 definition, 837
 eogenesis, 837
 evaporitic
 accumulation, 842
 basin setting 1, 842, 852
 basin setting 2, 852–854
 basin setting 3, 854–855
 basin setting 4, 856
 basin setting 1a, 842, 856
 basin setting 1b, 852
 distribution of, 856
 dominant depositional styles, 851
 Phanerozoic time, 841–842
 selected, 843–850
 "feast or famine" style, 837, 904
 mesohaline, 838
 metagenesis, 837
 organic enrichment, 841, 902–903
 South Alligator Valley deposit, Australia, 1636
 South America
 borate salts in, 1207–1210
 Neogene borate-rich salar deposits in, 1207
 nitrates in, 1284
 Salinas and dolomite, 323–324
 Southern Arabian Gulf sabkhas, 212–231
 Southern North Sea
 extension and conversion structures, 567, 568
 salt structures in, 566, 567
 South Oman Salt Basin, 591
 Sparry burial anhydrite, 757, 761
 Speleothemic sulphates, 712
 Spika Formation, 1468–1469
 Squeeze effect, 779
 Squeeze mining method, 1318
 SSC deposits. *See* Sediment-hosted stratiform copper (SSC) deposits
 Stable isotope measurements, authigenic calcite cements, 780, 781
 Stairra deposit, Queensland, 1635–1636
 Staveley Formation, meta-evaporites in amphibolite, 1459–1461
 Stepped counter-regional system, 540, 550
 Stevensite, 82
 Strain
 and flow rates, 498
 markers, 509
Strategic Petroleum Reserve (SPR) program, 1325
Stratiform breccias, 649–650
Stratigraphic evolution
early Oligocene, 384
Matuyama magnetic chron, 388
Paleocene and Eocene, 385–387
Phanerozoic, 388
quaternary period, 384
Stratigraphic traps, 1080
Stratigraphy, 1621
Stress field, in Nile Delta, 503–504
Strike-slip faults, 547, 548
Stromatolites
cyanobacteria, 21–22
intertidal, 16
lacustrine, 16
laminae of, 27
microbial layers, 20–23
Subaerial salt glaciers, 589
Subaqueous salts. See Perennial saline lakes; Salinas
Sub-contontinental lithospheric mantle (SCLM), 1627, 1629–1630
Subgrains, 509
Subhercynian foreland basin-fill, 504
Submarine salt glaciers, 589
Subsalt reservoirs, compressional evaporite provinces, 1068
Subsalt sediments, 602
Subsidence troughs
Black Hills, South Dakota, 636–637
greenhouse effect, 628
Delaware Basin, West Texas, 631–634
Holbrook Anticline, Arizona, 634–636
Hutchison salt, Kansas, 630–631
subcrop salt dissolution, 628
Subsurface non-evaporitic sediments, 498
Subsurface organic-sulphate reactions
bacterial sulphate reduction
activities of, 947
in aerobic/anaerobic interface, 946
bioepigenetic limestone, 946–947
cements and oil biodegradation, 948
Desulphovibrio and Desulphotomaculum, 945
diagnosis stage, 949
metabolic process, 945
sulphate-reducing bacteria, 946
temperature, 945
hydrogen sulphide (H2S), 953–956
sulphate of potash (SOP), 1088
Tarnish Basin, China, 1079
Tartus Basin, Troodos Larnaca Culmination, 469
Tachyhydrite
carnallite and, 1274
description, 1276–1278
occurrences, 1274–1275
TAG mound type deposits, 1660–1664
Talc
metavaporitic mineralisation, 1424
sodium phyllosilicates and, 1421–1424
and tourmalines, 1423
Tank-track advance/fronial rolling, 524
Index

Tata Chemicals Magadi Ltd, 1250
Tectonic stresses, 795
Tectonic stresses, by overpressure, 795
Tennant Creek style deposits, 1641, 1643
Tepees
 Permian Basin, West Texas, 35
 ridges, 36, 37
 saline-tepees, 36
 stacked sequence, 35
 Tansill formation, 35
Tersanne, France, salt creep effect in, 1373
Tertiary evaporite
 depositional textures, 10, 12
 fibrous gypsum and halite, 76–80
Tertiary foreland basin, 564–565
Tertiary salt welds, 540
Textures
 borate salts, 1207
 dynamic metamorphism, 1382
 sulphur, 1295–1297
Thenardite, 1216
Thermal effects, salt flow, 505
Thermal maturation, 837
Thermoboric-thermohaline fluids
 fluid movement, 773–774
 natural hydrofracturing, 774
 thermal properties, 777
Thermochemical sulphate reduction (TSR), 1512, 1525
 BT vs. DBT values, 952, 953
 efficiency of, 949
 Jialingjiang Formation, 953, 954
 Khuff Formation, 950
 low salinity subsurface water, 950–951
 post-diagenesis, 953
 pre-diagenesis, 952–953
 reactants and sulphur generation product, 953
 Smackover Formation, 951, 952
Thermohaline suprasalt convection, 791
Thin-skinned fold, 560–565
Thrombolites
 biolithification of, 24
 Evolution and distribution of, 29
 Thrust advance, 530
 Thrust belts, 560–565
dénocollement, 562
dynamic/regional metamorphism, 1394–1401
Lufilian foldbelt, Central Africa, 560
taper angle, 560
Thumb Mountain Formation, 1555, 1557, 1562
Thylacoleo carnifex, 287
Thyroid-stimulating hormone (TSH), 1282
Tiered allochthon plays, deepwater realm, 1043–1048
Timor Sea, 779–781
Ticinal. See also Borate salts
 definition, 1195–1196
 description, 1196
Ticinalayu, Argentina, borate deposits, 1198, 1207
Tonalite, trondhjemite, and granodiorite (TTG) production, 1390
Torrens Lake, Australia, 861
Total dissolved solid (TDS) boundary, 1485–1486
Total Organic Carbon (TOC)
 and carbonate proportion, 918, 919
 modern saline settings, 857, 858
Tourmalines
 aluminium borosilicates, 1412
 boron isotopic composition, 1416, 1417, 1424, 1432
 characteristics, 1413
 composition, 1413
dravitte-uvite series, 1413
lattice structure of, 1412
with marine evaporites, 1414
meta-evaporitic settings, 1413–1414
mineralization characteristics, 1418
Rum Jungle geochemistry, 1467–1468
in Sullivan deposit, 1416, 1417
talc and, 1423
and tourmalinisation, 1412–1420
Tourmalinite, 1412
 mineral, 1412
 worldwide examples of, 1420
Transvaal Sequence, South Africa, 1649
Trap styles, 1079
Triassic Chinle Formation, 1518
Triassic evaporites, 781, 820–821, 833–834
Triassic extensional faults, 566–567
Triaxial deformation experiments
 carnallite, sylvite and rock salt, 499–500
Trona, 1238. See also Sodium carbonate
 in African Rift, 1249–1251
deposits, 114–116
 evaporites in Lake Magadi, 115
 in North America, 1243–1247
 solution mining, 1322–1324
Trump method wells, solution mining, 1315
Truncations (unconformities), 587
Tsavorite
 genetic model, 1433
 nodules of, 1433–1434
 structure, 1434
 and tanzanite, 1433–1435
TSH. See Thyroid-stimulating hormone (TSH)
Tubeworm carbonates, 941
Tufa
 annual growth rates, 26
 Big Soda Lake, Nevada, 26
 mound and pinnacles, 332–334
 reef mounds, 307
Tully method wells, solution mining, 1315
Tumuli, 627
Turkey
 borate salts in, 1192, 1197, 1202–1207
 colemanite in, 1197, 1198
 mirabilite in, 1234, 1236
 sodium sulphate in, 1233–1236
Turtles, 520–521
Turtle-structure anticlines, 520
Tusanj site in Tuzla
 solution mining, 1342
Tuz Golu, Turkey, 340–342
Tuz Lake, Turkey (Tuz Gölü), perennial saline lakes, 340–342
Two Way Time (TWT) structure map, 583, 585
Tyrell Lake in Victoria, acid groundwater in, 128–129

U
Ukrainian Dniepr-Donets Basin (DDB), 572, 573
Ulexite, 1202
 nodules, 1204
 in Turkey, 1197, 1198
Umm Ash Shurabyat, Saudi Arabia, Sabkhat, 298
Umm as Samim sabkha, in Oman, 295
Underpressure, 794
Untersee Lake, East Antarctica, conical stromatolites in, 27
Upper Convective Layer (UCL) of Atlantis II Deep, 1505
Upper Kama Potash Region, Cis-Urals Russia, ancient potash evaporites, 1161–1165
Upper Mexican Ridges (UMR) unit, 556
Upper Red Formation, 578, 580
Upper Rhine Graben, France, ancient potash evaporites, 1141–1144
Uraniferous calcretes, 1593–1595
Uranium ore, 1638
Urmia Lake, NW Iran, perennial saline lakes, 342–344

Vadose caves
- Miocene epikarst, Madrid Basin, Spain, 682–684
- Modern Gypsum Karst, Saudi Arabia, 686–687
- Modern karst in Cretaceous Gypsum, Texas, 684–686
Van Lake, Turkey, perennial saline lakes, 335–338
Van’t Hoff plots, 106
Variable point injection, solution mining, 1316
Vein textures and inclusion studies, 779
Vena del Gesso basin, 462–463
Vent anhydrites, 1601
Vescocaya cordata, 936

VHMS deposits. See Volcanogenic-hosted massive sulphide (VHMS) deposits
Viscaria copper deposit, 1646, 1649
Visean Belle Roche breccia, 646
Vitrinite, 839
Vitrinite reflectance, 1547

Volcanogenic-hosted massive sulphide (VHMS) deposits, 1574
formation, 1653–1654
gold in, 1605
hydrothermal anhydrite
- chimneys, 1665
- chloritization, 1663
distribution, 1654–1655
at mid ocean and back-arc spreading centres, 1660–1664
plate tectonic settings, 1666
at sediment-covered spreading centres, 1664–1666
sulphur isotopes, 1663
TAG mound, 1660–1664
mineralisation, 1655–1656
in subduction-related island-arc settings, 1656–1660
Vuggy carbonates, 940–941

W
Walton Ba-Cu-Pb-Zn-Ag deposit, 1550
Walton-Magnet baryte deposit, 1543
Warramunga Group sediments, Australia, 1641, 1642
Waste disposal, salt caverns, 1329
nonradioactive, 1330
radioactive, 1330–1331
Water-based drilling fluids, 807–808
Water level changes
- Dead Sea, 336, 356–357
- Great Salt Lake, USA, 325
in Lake Urmia, Iran, 343
Lake Van, Turkey, 336
Mono Lake, USA, 331
Water-salt interactions, 827–829
Watt Mountain shale, 776
WCSV fluids, 1173
potash geology, 1169–1173
Weeks Island, Louisiana, salt caverns, 1363–1365
Welded basins, 541, 542

Welded-listric basins, 542
Welded listric (Roho) basins, 541
West Canadian Potash (Devonian), ancient potash evaporites, 1168–1169
Western Hematites, 1635
Western Mining, 1626
Western Nile Delta Coast, Mediterranean, Egypt, 242–244
West Hackberry explosion, salt caverns, 1365
Westhazel General Petroleums Pool of west-central Saskatchewan, Canada, 1080

Wet salt
- creep and frictional strengths, 501
- specifics deformation of, 500
- weakness of, 502
Whiteschist, 1421–1423
Wieliczka site, Poland, solution mining, 1337–1341
Williston Basin, 783
Willyama Supergroup, meta-evaporites, 1461
Broken Hill Block, 1464–1466
Olary Block, 1462–1464
Windsor brinefield, Ontario, solution mining, 1347
Windsor Formation, 1549
Wink Sink, USA, solution mining, 1349–1355
Windsor Formation, 1549
Wolfspring fields, 1081
Wollogorang Formation, 1581–1582
Wormy carbonate cement, 937
Wucheng, China, trona, 1247

Y
Yaninee Lake in South Australia, acid groundwater in saline, 128
Yas Island diapirs, 593, 594
Yates Field, West Texas, 1021–1025
Yilgarn Craton, West Australia, acid saline lake system, 130, 131
Yilgarn deposit, Australia, 1593–1595
Yinmian Formation, 1518–1520
Yorkshire deposit, halite in, 1423
Yudomski event, 159, 160

Z
Zabuye Lake, China
- lithium, 1271–1273
- Zagros deformation front (ZDF), 582
Zagros Foldbelt, Iran, 1068–1073
Zagros front, 574–576
Zagros/Hormuz region, Arabian Gulf, 640–642
Z3 - Boulby Potash, UK, 1155–1159
ZDF. See Zagros deformation front (ZDF)
Zechstein evaporites, England
potash from, 1154
stratigraphic evolution in, 477–483
transition depth, 74
Zechstein salt
in Germany, 1319–1320
potash salt horizons in, 1612
structures, 496, 504
Zeolites, 1297
in agriculture, 1299
facies of, 1386
geological occurrence, 1300
Lake Lewis, Central Australia, 1304–1305
properties, 1298
in saline settings, 1299–1304
usage and production, 1298–1299