Appendix
Systemic Thinking Self-Assessment

Instructions

Rate the degree of your agreement with the following assertions, on a scale of 1-5, with 1 representing complete disagreement and 5 representing complete agreement. There is no wrong answer here. The purpose of this set of questions is to serve as a self-assessment as to the degree to which you think systemically.

Questions

1. When faced with a complex problem, I have a general idea of how to approach it. ____
2. Understanding a complex problem is more important than solving it. ____
3. Complex problems cannot be optimized. ____
4. Consideration of multiple perspectives adds to, rather than detracts from, a problem analysis effort. ____
5. An appropriate theoretical foundation is essential to any approach to understanding a complex problem. ____
6. Problem stakeholders merit careful consideration and analysis. ____
7. It is necessary to limit the number of measures I consider for a given problem. ____
8. Feedback is essential to maintain stakeholder motivation within a problem. ____
9. It is important to establish a boundary between a system and its environment. ____
10. The underlying complexity of a problem is important in determining how to deal with it. ____
11. There is a wrong time to intervene in a problem. ____
12. Transitioning from a system’s current state to a desired state is neither a trivial nor straightforward endeavor. ____

Total Score ____
Did I pass?

As you may have deduced, the higher your total score, the more systemic of a thinker you can consider yourself. Each question is addressed in varied capacity throughout the book. There is no optimal, right, or target score. Rather, it is the hope of the authors that your evaluation increases as you progress through the book. We invite you to consider how your score (and your perspective) has changed as you read the book.
Index

A
Abstraction. See context
Abstract mechanisms, 173, 193
information, 55, 69, 71, 73, 75, 111,
161–163, 178, 180, 181, 209
methods, 38, 179
Activity, 11, 25, 31, 57, 61, 92–95,
98, 99, 136, 141, 175, 199, 213,
221–224
Aleatory uncertainty quantification,
187, 192
Analysis, 7, 10, 13–15, 17, 18, 23–25, 28–30,
32, 36, 39, 40, 41, 43–45, 47, 53, 56,
58, 64, 66, 70, 81–84, 86, 89, 92,
94–97, 100, 104, 107, 110, 113, 115,
119, 120, 121, 155, 161, 163, 165, 181,
183, 185–188, 191, 192, 194, 202, 209,
211, 213, 219, 220–225, 227, 229,
230, 232, 234
Anchoring and adjustment heuristic
See heuristics
Attribute. See output
Availability heuristic. See heuristics
Axiom. See systems theory

B
Basins of stability. See operational axiom
Bias, 3, 16–19, 32, 161, 187
Boundary, 13, 38, 44, 46, 101, 121, 149, 155,
160, 162–169, 178, 182–184, 193,
200, 209, 214, 217, 226, 227, 229, 230,
232, 234
Boundary shifting, 193
Bounded rationality, 187, 190

C
Centrality axiom, 54, 57
communication, 29, 53, 54, 57, 58, 72,
91, 143, 145, 160, 178, 179, 185, 209,
210, 225
control, 27, 28, 32, 33, 53, 54, 57, 58,
62, 65, 68, 72, 132, 134, 139–143,
145–147, 149, 157, 168, 210–214
emergence, 23, 28, 54, 57, 65, 105, 211
hierarchy, 52, 54, 57, 58, 68, 69, 101,
104, 111, 113, 130, 133, 140, 141,
149, 211, 212
Chaotic. See complexity
Circular causality. See viability axiom, 67
Circumstances. See context
Classical decision making (CDM).
See decision analysis, 186
Closed systems. See entropy
Cognitive/need-to-know-based theories
of motivation, 127
Communication. See centrality axiom
Complementarity. See contextual axiom
Complex. See complexity, 182
Complex systems, 23, 25, 39, 42, 43, 53,
63–65, 72, 115, 155, 156, 160, 163,
179, 185, 188, 189, 191
Complexity
chaotic, 182, 184, 213, 214
complex, 4, 9, 10, 13, 23–25, 28, 32,
37, 39, 40, 42, 43, 45, 47, 53, 54, 58,
63–65, 68, 69, 71, 72, 75, 81, 86, 95,
96, 103, 104, 107, 111, 113, 115, 117,
118, 146, 155–157, 156, 160, 164, 179,
182–186, 188–192, 199, 205–208,
211–214, 223, 234

P. T. Hester and K. M. Adams, Systemic Thinking, Topics in Safety, Risk, Reliability and Quality 26, DOI: 10.1007/978-3-319-07629-4, © Springer International Publishing Switzerland 2014
complicated, 18, 39, 92, 110, 117, 182, 184, 190
hierarchy of complexity, 212
simple, 23, 25, 29, 39, 58, 67, 82–84, 90, 93, 113, 117, 144, 146, 155, 182, 184, 220, 221
Complicated. See complexity
Conditions. See context
Conjunction fallacy. See heuristics
Constructivism, 42, 43
Content-based theories of motivation, 126
Context
abstraction, 6, 104, 111, 158, 200, 207
circumstances, 26, 32, 54, 55, 59, 155, 157, 158, 166, 169, 180, 202, 203, 207, 227
conditions, 7, 26, 41, 42, 61, 65, 66, 105, 106, 134, 136, 137, 140, 155, 157, 158, 166, 168, 169, 178, 182, 185, 208, 209, 213, 214, 227
contextual elements, 156, 159, 160, 163, 227
cultural lens, 156
culture, 42, 101, 140, 141, 158
factors, 17, 26, 28, 54, 55, 59, 70, 111, 140, 143, 148, 155, 157, 158, 166, 169, 189, 190, 206, 216, 223, 227, 232
patterns, 11, 57, 130, 137, 138, 155, 158, 166, 169, 182–185, 189, 191, 208, 213, 215, 227
problem context, 4, 33, 155, 157
proceduralized context, 163
values, 18, 84, 90, 91, 94, 96, 98, 100, 103, 104, 113, 139, 147, 155, 157, 158, 161, 166, 169, 191, 212, 223, 227
Contextual axiom, 54, 59, 62, 165
complementarity, 26, 43, 59, 81, 106, 165
darkness, 59, 70, 89, 165, 220
holism, 43, 59, 157
Contextual elements. See context
Contextual lens. See context
Contextual understanding. 27
Control. See centrality axiom
Control theory model, 146, 148
Critical systems heuristics, 38, 167
Culture. See context
Cybernetics. See systems theory
Cyclic progression, 201, 202
Decision analysis, 103, 104, 185, 186, 191, 192
classical decision making (CDM), 186
judgment and decision making (JDM), 186, 187
naturalistic decision making (NDM), 186, 190
organization decision making (ODM), 186
Decision analysis techniques, 185, 187
Design axiom, 55, 69
minimum critical specification, 69, 70, 110
pareto, 69, 71, 73, 115
requisite parsimony, 69, 111, 146
requisite saliency, 69, 70, 105, 112
DMSC. See dynamic model of situated cognition
Dynamic equilibrium. See operational axiom
Dynamic model of situated cognition, 14, 15, 187, 189
Economic theory of the firm, 187, 190
Emergence. See centrality axiom
Engagement priority. See stakeholder engagement priority
Entropy, 69, 71, 119, 200, 202, 208–211, 214
closed systems, 60, 202, 208, 210
open systems, 52
Environmentally-based theories of motivation, 126
Equifinality. See goal axiom
Equipment. See physical mechanisms
Evolution, 35, 48, 91, 199, 200, 205, 206, 207, 210, 211, 216
Expert judgment elicitation, 187, 192
Facilities. See physical mechanisms
Factors. See context
Feedback. See viability axiom
Fields of science, 4, 55, 56
Finagle’s laws on information.
See information axiom
Finite causality. See goal axiom
Force field diagram, 227
Formulation. See problem formulation

D
Darkness. See contextual axiom
G
General systems theory. See systems theory
Goal, 55, 60, 63, 107, 146
Goal axiom, See multifinality
equifinality, 60, 61, 209
finite causality, 42, 60, 63, 104
multifinality, 60, 61
purposive behavior, 55, 60, 61, 115, 125, 146, 201
satisficing, 41, 62, 60, 62, 115–117, 190
viability, 37, 55, 60, 62, 65, 67, 146, 200, 207, 211
Growth/actualization-based theories
of motivation, 127

H
Hard perspective, 28
Hedonic/pleasure-based theories
of motivation, 127
Heuristics, 16, 17, 19, 187, 190–192
anchoring and adjustment heuristic, 18
availability heuristic, 17
conjunction fallacy, 18
recognition heuristic, 18
representativeness heuristic, 17
Hierarchy. See centrality axiom
Hierarchy of complexity. See complexity
Holism. See contextual axiom
Homeorhesis. See operational axiom
Homeostasis. See operational axiom
Human mechanisms, 173
knowledge, 14, 56, 57, 65, 161, 162, 168, 175–178, 180, 181, 187, 227
manpower, 175, 231

I
Ill-structured. See mess
Information. See abstract mechanisms
Information axiom, 55, 71, 75
finagle’s laws on information, 71–73, 161, 162
information redundancy, 71
redundancy of potential command, 71
Information redundancy. See information axiom
Interdisciplinary, 36, 44

J
Judgment and decision making (JDM).
See decision analysis

K
Knowledge. See human mechanisms

L
Legitimacy. See stakeholder attributes
Life cycle, 157, 199, 200, 202
Living systems theory. See systems theory

M
Machine age, 23, 25, 28, 33, 35, 37, 38, 40, 42, 47
Man-made systems, 31, 57, 60–62, 68, 199, 200
Manpower. See human mechanisms
Material. See physical mechanisms
Mathematical systems theory. See systems theory, 52
Maturity, 46, 199, 203, 204, 211, 212, 216, 217, 229, 230, 232
Measure of effectiveness. See outcome
Measure of performance. See output
Measurement, 16, 43, 45, 52, 174
Messes, 9, 25, 26, 28, 30, 31, 33, 35, 37–41, 43, 44, 47, 72, 75, 96, 106, 111, 117, 126, 149, 155, 160, 163, 169, 170, 173, 177, 179, 180, 183, 185, 193, 194, 199, 200, 207, 209, 211, 213, 219, 229, 233
Mess-level, 219, 221, 222, 226, 227
Messy, 23–25, 27, 30, 32
Meta-methodology, 219
Meta-perspective, 219, 225, 227, 229, 230, 232, 233
Methodology for systemic thinking, 45

Methods. See abstract mechanisms

Metrics, 15, 161, 162, 167

Minimum critical specification. See design axiom

Money. See physical mechanisms, 174

Motivation
acquired needs theory, 131, 140
attribution theory
cognitive-dissonance theory, 135
drive-reduction theory, 129
equity theory, 136, 137
ERG theory, 141
expectancy theory, 138, 139
goal setting theory, 143
hierarchy of needs theory, 130
instinct theory, 127
motivator-hygiene theory, 140
opponent process theory, 142, 143
path-goal theory, 132, 133
reinforcement theory, 131
reversal theory, 144, 145
self-determination theory, 141
social comparison theory, 132
social exchange theory, 134
social learning theory, 137, 138, 146
teach X, theory Y, 128, 134, 135

Multidisciplinary, 4

N

Naturalistic decision making (NDM). See decision analysis

O

Objective. See outcome

Observation, 3, 8–10, 12–16, 18, 19, 43, 62, 161

Open systems. See entropy, 208

Operational axiom, 55, 63, 67, 115, 193
basins of stability, 63, 215, 229
dynamic equilibrium, 41, 63, 65, 210, 211
homeorhesis, 6, 41, 63, 65, 129, 135, 136, 211
redundancy, 67, 70–72, 92, 111, 163, 193
relaxation time, 63, 64, 183, 213
self-organization, 43, 52, 63–65, 105, 207, 210, 211, 214, 316
suboptimization, 40, 63, 66, 83

Organization decision making (ODM). See decision analysis, 186


P

Pareto. See design axiom

Patterns. See context

Perfect understanding, 27, 41, 60, 63

Philosophical systems theory. See systems theory

Physical mechanisms
equipment, 174
facilities, 174
material, 174
money, 135, 174, 231
time, 27, 31, 61, 63, 74, 120, 174, 204

Popularity, 92–95, 98, 99, 113, 221–224

Power. See stakeholder attributes


Problem context. See context

Problem formulation, 25, 26, 32, 33, 157, 165

Problem understanding, 30, 103, 121

Problem-stakeholder relationship, 148

Proceduralized context. See context

Process-based theories of motivation, 126

Proposition. See systems theory

Prospect theory, 187, 191

Punctuated equilibrium, 206

Purposive behavior. See goal axiom

R

Recognition heuristic. See heuristics

Recognition primed decision, 187

Recursion. See viability axiom

Reductionism, 42, 43, 59, 75

Redundancy. See operational axiom

Redundancy of potential command. See information axiom
Relaxation time. See operational axiom
Representativeness heuristic. See heuristics
Requisite hierarchy. See viability axiom
Requisite parsimony. See design axiom
Requisite saliency. See design axiom
Requisite variety. See viability axiom

S
Satisficing. See goal axiom
Self-organization. See operational axiom
Sensemaking. 179–181, 193
Simple. See complexity
Simple system, 23, 25, 39, 67, 155
Situation awareness, 187, 189, 192
SMP. See stakeholder management plan
Social systems theory. See systems theory
Soft perspective, 28
Stakeholder analysis, 47, 81, 83, 97, 103, 222, 225
Stakeholder attitude, 86, 97
Stakeholder attributes, 84, 85, 88
legitimacy, 84, 87, 88, 97, 168
power, 11, 24, 33, 54, 55, 72, 84, 87, 88, 92, 97, 140, 141, 145, 164, 167, 175
urgency, 84, 87, 88, 97
Stakeholder class, 85, 97
Stakeholder classification, 84
Stakeholder engagement priority, 81, 83, 89, 94, 96, 98, 101
Stakeholder influence, 90, 91
Stakeholder involvement, 86, 87
Stakeholder management plan, 81, 95, 96, 100, 101, 225
Stakeholder strategies, 88
Stakeholder typology, 85
Strategies for addressing uncertainty, 187, 192
Suboptimization. See operational axiom
Synthesis, 36, 43, 44, 72, 206
Systematic thinking, 35, 37, 38, 40, 41, 44, 48
Systems age, 23, 25, 26, 28, 33, 35, 37, 39, 42, 48, 156, 211
Systems approaches, 4, 24, 28, 35, 38, 48
Systems errors, 3, 9, 14
type I, 7, 8, 10–12, 14
type II, 7, 8, 10
type III, 4, 5, 8–11, 32, 220
type IV, 6, 7, 9, 10, 41, 216, 229
type V, 6, 7, 9, 10, 216, 229
type VI, 8, 10, 14
type VII, 9–12
Systems principles. See systems theory
Systems theory, 35–37, 47, 51–54, 56, 75
cybernetics, 52, 53, 145, 146
general systems theory, 51, 52
living systems theory, 52
mathematical systems theory, 52
philosophical systems theory, 52, 53
social systems theory, 52, 53
systems principles, 6, 75

T
TAO, 3, 4, 9, 10, 11, 12, 19, 30, 199, 219, 223
Taxonomy of systems errors. See systems errors
Teleological explanation, 125
Time. See physical mechanisms
Transdisciplinary, 44, 56
Transformation of stakeholders, 89
Type I. See systems errors
Type II. See systems errors
Type III. See systems errors
Type IV. See systems errors
Type V. See systems errors
Type VI. See systems errors

U
Urgency. See stakeholder attributes
Utility theory, 187, 191

V
Values. See context
Viability axiom, 67
circular causality, 53, 67, 68, 149
feedback, 15, 41, 53, 54, 67, 68, 71, 72, 143, 146, 148, 149, 155, 162, 214, 225, 226, 232
recursion, 67, 69, 212
requisite hierarchy, 67, 149
requisite variety, 68, 184, 185
Viability. See goal axiom

W
Weighting, 113, 114
What is, 8, 14, 35, 51, 67, 70, 90, 110, 115, 165, 166, 176, 182, 189, 219, 225, 227, 229, 232, 233
What ought-to-be, 219, 226, 227, 229, 232, 233
Wicked. See mess