Index

B
- Bounded real lemma (BRL), 54, 55, 58, 60, 87, 89, 127, 143, 145, 167, 176, 220, 222, 230, 242

C
- Clock-driven, 191
- Convex programming, 250

D
- Data package dropout, 247
- Data packet dropout, 12, 189–191, 193, 194, 196, 209, 210, 215, 216
- Delay-dependent, 125, 127, 134, 135, 140, 150, 157, 162, 220, 222, 228, 230, 231, 234, 236, 242, 247
- Delay-independent, 125, 140, 157, 158, 160, 162, 228, 230, 233–235, 239, 240, 247
- Delay-partitioning, 220, 227, 228, 230, 247
- Delayed measurement, 217

E
- Elimination lemma, 13, 14
- Energy-bounded, 3, 25, 52, 54, 61, 62, 174, 246
- Energy-to-peak filter design, 63–66
- Energy-to-peak filtering, 4, 246
- Energy-to-peak filtering problem, 63, 250
- Energy-to-peak performance, 67
- Energy-to-peak performance criterion, 63
- Entire frequency (EF), 219, 222, 228, 230, 235–238, 240

F
- FF RBL, 247
- Finite frequency (FF), 11, 15, 219, 220, 247, 249
- FF H_∞ performance, 230
- FF H_∞ filter design, 231, 233–235
- FF H_∞ filtering problem, 12, 221, 242
- FF H_∞ performance, 221, 222, 224
- FF BRL, 220, 222, 230, 231, 242
- FM model, 247
- Fornasini–Marchesini (FM) model, 12, 165–167, 172, 174, 181
- Free weighting matrix, 12, 129, 246
- Frequency weighting function, 219
- Frequency-domain inequality (FDI), 224–226, 229
- Full-order filter, 220

G
- Gaussian white noise, 3, 25, 52, 246
- Generalized Kalman–Yakubovich–Popov (GKYP) lemma, 12, 15, 219, 220, 222, 226, 229, 242, 247

H
- H_2 filter design, 31, 33–35, 41, 43, 44, 68, 71, 111, 113
- H_2 filtering problem, 28, 39, 250

H. Gao and X. Li, *Robust Filtering for Uncertain Systems*, Communications and Control Engineering, DOI: 10.1007/978-3-319-05903-7, © Springer International Publishing Switzerland 2014
H_2 performance criterion, 28, 39, 84
H_2 filter design problem, 33
High frequency (HF), 15, 220, 235, 240
H_∞ filtering, 3
H_∞ performance criterion, 87
H_∞ filter design, 58, 60, 62, 74, 77, 115, 116, 172, 179, 200, 204
H_∞ filtering, 246
H_∞ filtering problem, 3, 4, 54, 250
H_∞ performance criterion, 127, 167, 194
Homogeneous parameter-dependence form, 109
Homogeneous polynomial, 12, 101, 105, 134, 136, 153, 156, 171
Homogeneous polynomial parameter-dependence form, 83, 119

I
Induced L_∞ filtering, 5
Induced l_∞ filtering, 5

J
Jensen inequality, 15, 227

K
Kalman filter, 2–4, 34, 35, 39, 45, 47, 70, 71
Kalman filtering theory, 2, 44, 189

L
L_1 filtering, 5
l_1 filtering, 5
Limited communication capacity, 190, 193, 200, 204–206, 208, 216, 247
Linear matrix inequality (LMI), 3, 4, 13, 250
Linear time-invariant (LTI), 26, 27, 53, 245
Linearly parameter-dependence form, 96, 98
Linearly parameter-dependent approach, 97–100, 108, 120, 246
Linearly parameter-dependent Lyapunov function, 9
Logarithmic quantizer, 192
Low frequency (LF), 15, 220, 235, 237–239
Lyapunov equation, 28, 40, 48, 65
Lyapunov function, 8
Lyapunov–Krasovskii functional (LKF), 128, 146, 196, 227, 228, 246

M
MATLAB, 4, 234
Measurement quantization, 12, 190, 191, 194, 196, 210, 215, 216
Middle frequency (MF), 15, 220, 235, 239
Missing measurement, 216
Multiple delays, 127, 221

N
Networked control system (NCS), 145, 190, 193, 200, 204–206, 247, 249
Newton–Leibniz formula, 129, 197
Nominal system, 28, 31, 33, 34, 39, 41, 43, 44, 54, 55, 58, 63, 64, 84, 222
Nonlinear matrix inequality (NLMI), 13, 25, 55, 63, 66, 134, 171
Norm-bounded uncertainty, 5, 6, 195, 196

P
Parameter-dependent approach, 206, 208, 222, 245, 246, 248
Parameter-dependent LMI, 9, 48, 60, 86, 89, 91, 94, 128, 130, 145, 149, 150, 167, 168, 177, 178
Parameter-dependent Lyapunov equation, 48, 65
Parameter-dependent Lyapunov function, 8
Parameter-dependent stability condition, 9
Parseval’s theorem, 229
Peak-to-peak filtering, 5
Polyhedral domain, 26, 53, 126, 144, 166, 175, 191
Polynomially parameter-dependent approach, 104, 106, 109–111, 135, 154, 157, 158, 172, 180, 246
Polynomially parameter-dependent Lyapunov function, 11
Polytopic uncertainty, 5, 6, 51, 60, 79, 154, 158, 222
Projection lemma, 12, 13, 119, 120, 163, 220, 242, 246, 247

Q
Quadratic approach, 6, 25, 49–52, 60–62, 66–68, 204–206, 222, 245, 248
Quadratic approaches, 245
Quadratic Lyapunov function, 6, 8, 9, 58, 59, 245
Quadratic stability, 6
Quadratic stability condition, 6, 7, 9
Quantization, 189, 190, 192, 193, 195, 200
Quantization level, 189, 192
Quantized measurements, 217
Quantizer, 191, 192, 209

R
Reciprocal projection lemma, 119
Riccati equation, 35, 45
Robust H_2 filter design, 50–52, 97, 98, 104, 106, 108, 111, 113
Robust H_2 filtering problem, 27
Robust H_2 performance, 27
Robust H_2 performance analysis, 49, 86
Robust H_∞ filter design, 60, 62, 98–100, 109–111, 115, 135, 137, 154, 157, 158, 205, 206, 208
Robust H_∞ filtering problem, 4, 54, 127, 140, 145, 167, 176, 193
Robust H_∞ performance, 54, 167, 176
Robust H_∞ performance analysis, 60, 89
Robust energy-to-peak filter design, 67, 68
Robust energy-to-peak filtering problem, 62
Robust energy-to-peak performance, 62
Robust energy-to-peak performance analysis, 66
Roesser model, 12, 165, 174, 176, 179, 180, 183, 247

S
Sampler, 191, 192
Sampling instant, 191, 192
Sampling period, 191, 209
Schur complement, 13, 28, 33, 40, 50, 58, 65, 130, 133, 148, 149, 198–200, 203, 226

Single-input–single-output (SISO), 67, 68, 86
Slack matrix, 9, 10, 14, 83, 84, 87, 93, 100, 119, 120, 149, 162, 169, 177, 246, 247

T
Time-varying, 126, 144, 145
Time-varying delay, 125, 139, 140, 143, 162
Time-varying uncertainty, 6
Transmission delay, 12, 189, 192, 247
Two successive delay components, 195, 196, 200
Two-dimensional (2-D), 11, 165, 166, 174
2-D BRL, 167, 176, 247
2-D H_∞ filter design, 172, 174, 179, 180
2-D system, 11, 12, 165, 166, 174, 180, 185, 242, 245–247, 249

U
Uncertainty in signals, 3
Uncertainty in systems, 2
Unit simplex, 26, 144, 166, 175

Z
Zero-order hold (ZOH), 191