Glossary

Action rate “g(Y/X)” Indicates the variation of Y for each unit of variation of X.

Active variable, *X*_t In the general model of the control system, any variable *X* capable of modifying Y. See Levers.

Apparatuses See *Chain of control*.

Archetypes Models or patterns that occur continuously, also known as generic structures. “One of the most important, and potentially most empowering, insights to come from the young field of systems thinking is that certain patterns of structure recur again and again. These "systems archetypes" or "generic structures" embody the key to learning to see structures in our personal and organizational lives” (Senge 2006, p. 93).

Causal loop diagram (CLD) Model of a system built following systems thinking using arrows to indicate the direction of the causal relationships among the variables. A CLD consists of a system of loops in which all variables are linked by arrows, without there being an initial and a final variable. All the variables are connected. By connecting a number of variables and determining the direction of variation we can build models of every dynamic system, keeping in mind that we must zoom in order to analyze the processes in more detail, in order to identify and connect other important variables.

Chain of control The fundamental “machines” or “apparatuses” that represent physical control systems and whose functioning produces the dynamics in the active and passive variables and determines the variance.

- **EFFECTOR**: produces a variation in *X*_t into the corresponding variation in *Y*_t.
- **DETECTOR** (sensor or comparator): measures the value of *Y*, compares this with the objective *Y*[*] (or the constraint *Y*^{/C_1}), and determines the deviation *E(Y)*.
- **REGULATOR** (or compensator): “activates” the lever *X* taking account of *E(Y)*.
- **INFORMATION TRANSMISSION**: represents the “real” chain of control that produces the “formal” control system.

Control apparatuses See *Chain of control*.

Control discipline This is based on the hypothesis that control systems occupy a preeminent place among all types of systems. Even though we are not
accustomed to “seeing them,” they are all around us, and only their presence makes our world, life, society, and our very same existence possible, producing an ordered and livable world, erecting barriers against disorder, and guiding the dynamics of the system toward equilibrium states. The control discipline teaches us how to recognize control systems, build models, simulate their behavior, and use these to improve our knowledge and our behavior. I would propose naming the control discipline as the Sixth Discipline, or the control discipline of the individual, the collectivity and the organizations in the ecosystem; this is the discipline of the present and future of our world.

Control objective Each specific value, Y^*, or each trajectory of values, Y^*_t, however formed, which are set as values that the objective variable, Y_t, must achieve or maintain. The control objective can also mean the constraint which is not to be exceeded or the limit to be respected. If Y^* is a vector of values, $[Y^*]$, then the control system is multi-objective and the system manager must establish a control policy. The objectives can be both quantitative and qualitative.

Control process See control system (concept).

Control system (concept) Any set of apparatuses, logical or technical (algorithm or machine, rule or structure, etc.), which, for a set of instants, perceives $E(Y)_t$, calculates and assigns the values X_t, and produces the appropriate Y_t to gradually eliminate, when possible, the error $E(Y)_t = Y^* - Y^*_t$ at instant t^*. The control system is repetitive and functions by means of action (X acts on Y) and reaction (E (Y) acts on X through Y), activating a closed-loop or feedback control. With a certain number of iterations on the control lever, it tries to achieve the objective (goal-seeking systems) or to respect the constraints or limits (constraint-keeping systems) by gradually eliminating the deviation $E(Y)$. Control systems have a logical structure and a technical structure. The former consists of the logical relationships between variables, always arranged in one or more balancing loops in order to develop feedbacks between $[X]$ and $[Y]$; the latter is formed by the chain of control.

Control system (logical structure) The general model of a control system is a balancing loop, which consists of the elements shown in the model.
Control system (technical structure) The set of apparatuses that constitute the physical control systems. See Chain of control.

Control variable Synonym for lever.

Cybernetic control system An automatic control system guided toward a fixed (or even variable) objective determined by an outside governor, but guided by a manager within the chain of control.

Delay Abnormal or unexpected length of action of X on Y. There are three types of delay:

- **Action delay** (or response delay), which slows the response of Y to an impulse from X; this depends on the effector.
- **Detection delay** (or informational delay), which acts on our perception and on the measurement of the error.
- **Regulation (decisional) delay**, which occurs when the regulator does not respond promptly to the error.

Deviation See Error, E.

Direction of the causal link The arrow that indicates which variable is the cause and which the effect in a causal relation typical of systems thinking. The cause variable ($X = \text{input}$) is written at the tail of the arrow; the effect variable ($Y = \text{output}$) at the head (first arrow). If the causal link shows the opposite direction (second arrow), then X is the effect and Y the cause.

\[X \rightarrow Y \quad X \leftarrow Y \]

Direction of the variations This indicates the concordance in the signs of the variations between two variables, X and Y, which are linked in the same direction. Variations of X are linked to those of Y in the same direction (\rightarrow) if Y increases/diminishes when X increases/diminishes (first arrow). Variations of X are linked to Y’s variations in the opposite direction (\leftarrow) if Y diminishes/increases when X increases/diminishes, thus presenting the opposite sign of variation (second arrow).

\[X \quad \rightarrow \quad Y \quad \leftarrow \quad X \quad \leftarrow \quad Y \]

Discipline Following Peter Senge: “A discipline is a developmental path for acquiring certain skills or competencies. [...] To practice a discipline is to be a lifelong learner. You “never arrive”; you spend your life mastering disciplines” (Senge 2006, p. 10).

Distance See Error, $E(Y)$.

Disturbances, D In the general model of the control system, each variable, D_t, external to the system, that alters the values of Y, regardless of the values of X. Disturbances can affect all the apparatuses that make up the control chain.
Error, $E(Y)$ (distance, deviation, gap, variance) In the general model of the control system, the variable “$E(Y)_t = \Delta(Y)_t = Y^*_t - Y_t$,” which represents the distance or deviation between the values of the objective Y^*_t and those of “Y_t.”

Feedback control systems Control system in which the control of Y_t is achieved through decisions to vary X_t over a succession of repetitions of the control cycle.

Feedforward control systems, also called decision or one-shot control systems Control system which try to reach the objective through a single cycle, and thus through a single initial decision made based on precise calculations; however, when an error is detected in the attempt to achieve Y^*_t the manager cannot correct this through other regulating decisions to eliminate the error. They are typically systems that “fire a single shot” to achieve the objective.

Forrester, Jay Founder of system dynamics, in his fundamental work industrial dynamics (1961).

Gap See Error, E.

Goals In the general model of the control system, any specific value, Y^*, or any trajectory of values, Y^*_t, however defined, that must be reached and possibly maintained by the control variables. If Y is a vector $[Y^*]$, then the control system is a multi-objective system and the manager must establish a policy of control. Goals can be quantitative or qualitative.

Governance of the control system The process through which a subject, the governor, determines the objective Y^* or the vector $[Y^*]$ that management must achieve.

Interfering control systems Two or more control systems interfere with each other if they are interrelated, so that the values of Y_A of a control system A determine and are determined by the values of Y_B of other interfering control systems. The interference can also occur in both directions.

iThink, Stella See simulations softwares.

I/O systems See type of control systems.

Levers In a control system, each control variable, X, which—through some process—acts on the variable to control, Y, in order to eliminate $E(Y)$. If X is a vector of variables $[X]$, then the system is multi-lever and the manager of the system should establish a strategy for the control.

Loop A closed causal chain formed by a circular link between two variables, X and Y, which can be linked by two opposite directions with respect to the causal link. Loops can be basic, when there are only two variables, or compound, when more than two variables are joined in a circular link. There are only two basic types of loop: reinforcing loops $[R]$, which produce a reciprocal increase or reduction—in successive repetitions of the system’s cycle—in the values of the two variables having reciprocal causal links; and balancing loops $[B]$, which maintain relatively stable the values of the connected variables.
Manager of the control system The subject that maneuvers the control system in order to achieve the goals established by the governance, by adjusting the control levers and deciding on the strategy and policy to be adopted. The subject can be external to the control system or internal to the system itself, replacing some apparatus.

Multi-lever control systems See type of control systems.

Multi-objective control systems See type of control systems.

Objective variable, Y Synonym for variable to control.

ON/OFF systems See type of control systems.

Open causal chain Connection among a succession of several variables entailing some causal link.

$$X \xrightarrow{s/o} Y \xrightarrow{s/o} Z$$

Passive variable, Y_t Synonym for variable to control.

Period of control The number of intervals, over the typical time frame of the system, which are necessary to stably achieve the objective in the absence of outside disturbances.

Pluri-lever Synonym for multi-lever.

Pluri-objective Synonym for multi-objective.

Policy (in control) In multi-objective systems, policy represents the order of priority in achieving different objectives.

Powersim See simulation softwares.

Problem solving (PS) The process through which we seek the solution of any problem. The PS can be interpreted as a control system, because a problem can be interpreted as an error or deviation, $E(Y)$, between two states—current (Y) and desired (Y^*)—of a variable, Y (which we assess as useless or harmful) and that we want to eliminate or reduce as far as possible by acting on the variables X that can change Y. In PS, solving the problem means designing the control system in order to identify the lever X_t, which, by producing the values Y_t—taking into account the states of nature, D_t—enables you to eliminate $E(Y)$. Notice that the deviation is not the problem but the symptom that is revealed. The problem lies in the malfunctioning of the system that generates the symptom.

Reaction rate “$h(X/Y)$” Indicates the variation in X for each unit of variation in Y; usually “$h = 1/g$” if the system is perfectly symmetrical to the control.

Reaction time “$r(X/Y)$” (time to eliminate the error) Indicates the speed with which the control system moves toward the objective; a reaction time of $r = 1$ indicates an immediate but sudden control; a reaction time $r > 1$ makes the control slower but smoother.

Regulation In a broad sense, this is synonymous with control. In a strict sense, it is a process that assigns values to the control levers, based on the deviation and the reaction rate.

Senge, Peter He is considered to be the popularizer of systems thinking, with his fundamental text: *Fifth Discipline: The Art and Practice of the Learning Organization* (Senge, 1990).
Simulation softwares Software programs (simulation tools) created to simulate the behavior of systems with a high number of variables. I would mention:

- Powersim (www.powersim.com).
- MyStrategy and SYSDEA (www.strategydynamics.com/mystrategy/).
- Vensim (www.vensim.com).
- Excel Software (www.excelsoftware.com/).

Sixth discipline See control discipline.

Stock and flow diagram (SFD) or level and flow structure (LFS) System dynamics theory assumes that a dynamic system can normally be viewed as composed of stock or level variables and of flow or rate variables that change the amount of stock. The flow variables that increase the stock (in various ways to be defined) can be considered as inputs; those that decrease it, as outputs. Several simulation softwares are based on this logic.

Strategy (in control) Control with two independent control variables always implies a strategy that defines an order of priorities regarding action on the control “levers.”

Symptom In problem solving, understood as a process of control, this indicates the meaning that the manager gives to the deviation $E(Y)$.

System (from a systems thinking perspective) Systems thinking defines a “system” as a unitary set of interconnected variables possessing its own autonomy, which is capable of producing emerging macro-dynamics that do not coincide with any of the micro-dynamics of the individual variables or their partial subsystems.

System dynamics The technique for translating the qualitative models (causal loop diagrams) into quantitative (stock and flow diagrams) ones that, by quantifying the initial values of the temporal variables and specifying the variation parameters, are able to generate the dynamics of those variables. This technique was developed as industrial dynamics by Jay Forrester in the 1960s.

Systems archetypes See Archetypes.

Systems thinking Discipline that recommends that we observe the world as a system of dynamic systems, recursive and repetitive—often with memory—each composed of interacting and interconnected variables. Systems thinking was presented by Peter Senge in The Fifth Discipline: The Art and Practice of the Learning Organization (Senge, 1990). Systems thinking does not only represent a specific technique for constructing models but also a mental attitude, an approach, a logic, and a language. The systems are represented through qualitative models called causal loop diagrams.

Systems thinking laws There are two fundamental laws that derive from systems theory:

1. The Law of Structure and Component Interaction: in order to understand and control the dynamics in the world it is necessary to identify the systemic structures that make up this world. Corollary: in observing a dynamic world, the “ceteris paribus” assumption is never valid.

2. Law of Dynamic Instability: expansion and equilibrium are processes that do not last forever; they are not propagated ad infinitum. Sooner or later stability is disturbed. Sooner or later the dynamics are stabilized.
Type of control systems (CSs) Minimal typology:

- **Artificial** and natural CSs; Control systems designed and constructed by man are artificial or manmade control systems.
- Manually controlled systems, automatic CSs, or cybernetic systems. Systems which involve continuous manual control by a human operator are manually controlled control systems; control systems which incorporate the manager in their chain of control can be defined as automatic control systems.
- **Quantitative** CSs; the control is quantitative if the variable Y_t represents a quantitative measure and the objective is a value that Y_t must reach (set reference) or a set of values to be achieved (track reference).
- **Qualitative** CSs; systems in which both the variable Y_t and the objective Y^* are qualitative in the broadest sense of the term (objects, colors, flavors, forms, etc.).
- **Attainment** CSs; I shall define attainment control systems as those control systems that act to “attain” a quantitative objective, independently of the control context.
- **Recognition** and identification CSs; a general class of qualitative control system where the qualitative variable to control, Y_n, represents an “object” that the system scans in order to recognize or identify a “model-objective,” Y^*.
- **Steering** CSs (also called “two-way” systems); systems acting to achieve the objective through positive or negative adjustments of Y_t that converge toward Y^*, independently of the initial value of Y.
- **Halt** CSs (also called “one-way” systems); systems in which Y^* is by nature a non-exceedable limit or constraint.
- **Collision, anti-collision, and alignment** CSs. Two interfering systems whose objectives are dynamic and tend to coincide are defined as “collision systems.” If the objectives tend not to coincide they are defined as “anti-collision systems.” If the objectives maintain a constant distance they are defined as “alignment systems.”
- **Goal-seeking** CSs. Those in which Y^* represents a quantitative objective: to achieve a result, or to attain or maintain operating standards.
- **Constraint-keeping** CSs, in which Y^* represents a constraint to respect or a limit not to be exceeded; these are usually halt systems.
- **Regulator** CSs, where Y^* (objective or constraint) is a specific value (goal, constraint, or limit) that Y_t must reach and maintain over time.
- **Tracking** CSs, or path systems, where Y^* (goal, constraint, or limit) is a trajectory, that is, a sequence of values, Y^*_t, however formed, which Y_t must follow.
- **Multi-lever** or pluri-lever CSs, if the control is via a vector of levers $[X]$; if $[X] = X$, the system is single lever.
- **Independent levers** CSs; multi-lever systems whose levers can be adjusted independently; dependent lever systems, if the levers allow only variations in the opposite direction.
- **Multi-objective**, or pluri-objective CSs; if the control is a vector of objectives $[Y^*]$; if $[Y^*] = Y^*$, the system is single objective, in which case $[Y^*]$ must be equivalent to $[Y]$.
- **Independent objectives** CSs; multi-objective systems whose objectives can be achieved independently; bound objective systems if a goal impedes the achievement of other goals.
- CSs with or without delays.
- CSs of direct or indirect control; a control system is direct if X and Y vary in the same direction “s”; otherwise, it is indirect.
- Autonomous, or interfering CSs; interfering systems are those whose values of Y are influencing each other.
- CSs with fixed or variable objectives (or systems of pursuit); in the former, the variable must achieve a passive constant, Y^*; in the latter, the target Y_t^* represents a variable that depends on “t,” Y and/or on X.
- On/off CSs. Halt systems that achieve Y^* by activating [on] the X_t lever for a set time, T^*, until the system stops [off], only to start up again when the disturbances, D, once again produce an error of a set amount, ΔE^*.
- I/O CSs. Particular steering systems that try to achieve the objective Y^* by “turning on” [I] the X lever once or several times and for a given length of time, which is decided on each occasion by the manager, in order to obtain a fixed value ΔY, after which the lever is “turned off” [O], thereby eliminating $E(Y)$. The lever is once again turned on when D produces another error.
- Tendential CSs. In these systems Y_t represents a time series (for example, the scores over time in an archery competition by participants trying to improve their performance) which, through some statistical procedure (trend, moving average, etc.), aims to ensure that Y_t tends toward a value-objective, Y^*, through a statistical measure.
- Combinatory CSs. Systems in which each Y_t represents a synthetic value, $[Y_{tN}]$, derived from the combination (to be specified in some manner) of the values of a vector of N variables, each of which is controlled by its own control variable.

Variable to control Any variable Y controlled by X in order to achieve a value Y^* set as an objective.

Symbols (minimal)

X_t Values of the control lever
Y_t Values of the variable to be controlled
Y^* Fixed objective
Y_t^* Variable objective
D_t External disturbance values
$\Delta(Y)_t = Y^* - Y_t$ (or $E(Y)_t$) Deviation, gap, error for systems $[s \rightarrow o \rightarrow s]$
$\Delta(Y^*)_t = Y_t - Y^*$ (or $E(Y^*)_t$) Deviation, gap, error for systems $[s \rightarrow s \rightarrow o]$
$g(Y/X)$ Action rate
$h(X/Y)$ Reaction rate
$r(X,Y)$ Reaction time
References

1 We know nothing at all. All our knowledge is but the knowledge of schoolchildren. The real nature of things we shall never know (Albert Einstein).

As this book deals with Control Systems considered from various points of view, a complete bibliography may appear to be boundless. Here I have only listed the works cited in the book. All the sites mentioned have been visited in April 2014. In order to make it easier for the reader to directly examine the sources, I have tried, whenever possible, to indicate those sources available online.
References

Spelta, A. M. (1602). History written by Antonio Maria Spelta, citizen of Pavia (original: *Historia d’Antonio Maria Spelta, Cittadino Pavese*), Pavia: Pietro Bartoli, MDCII (Library of the University of Pavia).

References

Wilson, R. H. (1934). *A scientific routine for stock control*. Bell telephone system technical publications: Monographs

Zuradelli, C. (1888). The towers of Pavia (original: Le torri di Pavia), Pavia: Tipografia F.lli Fusi (Library of the University of Pavia).
Index

A
- Achilles and tortoise, 143–145
- Adaptation, goal attainment, integration and latency pattern maintenance (AGIL) paradigm
 - adaptation, 398
 - goal attainment, 398–399
 - integration, 399
 - latency pattern maintenance, 399
- Ashby’s law, 219
- Attainment and recognition control systems.
 - See Quantitative and qualitative control systems
- Autopoiesis
 - organization
 - agents, alignment, 388, 389
 - environmental disturbances, 392
 - networks, 387
 - social systems
 - bureaucratic-administrative apparatus, 333
 - control systems, 335–336
 - “instruction and education”, 335
 - macro variables, 332
 - maintenance, 334
 - operational apparatus, 332
 - organizational bureaucratic apparatus, 333
 - “public health”, 334–335
- Awareness dimension, knowledge
 - conscious knowledge, 453
 - primary consciousness, 455
 - psychology, 454–455

B
- Bateson’s model
 - differences, transformer
 - conscious cognitive systems, 456
 - equality, notion, 459
 - first-level differences, 458–459
 - higher-order differences, 459–460
 - Mind and nature: A necessary unity, 455–456
 - “mind-processor of knowledge”, 457
 - primary differences, 457–458
 - dimensions, construction
 - analogies, 461
 - basic dimensions, 460
 - color dimension, 461
 - denomination process, 462–463
 - determination process, 463
 - objects and concepts, 462
 - second-level dimensions, 461
 - visual sensor, 461–462
- Biological clocks, 106, 302–303
- Biometric systems, recognition and identification
 - attainment and recognition, 139
 - automated fingerprint system, 141
 - behavioral characteristics, 139–140
 - DNA recognition system, 141
 - fingerprint recognition, 140
 - pattern recognition techniques, 140–141
 - physiological features, 139
- Brain dimension, knowledge
 - central nervous system, 453
 - connectionist functioning, hypothesis, 452
Brain dimension, knowledge (cont.)
 feature nodes, 453
 functionalism and connectionism, 454
 “interactive activation model”
 of reading, 452
 letter nodes, 452–453
 neuroscience, 453
 word nodes, 452
Buddhism, “Four Noble Truths”
 “Noble Eightfold Path”, 549
 pluri-lever control system, 547–548
 suffering, 548–549

C
Cataclysm, 226
Catholicism, principles
 eternal life, 546
 pluri-lever control system, 546, 547
 remedy for sin, 546
 sin, 545–546
 Ten Commandments, 546–547
Causal loop diagrams (CLDs), 54
Change management as a control system,
 85, 362
Change management in complex world
 control process, 363
 learning process, 361
 moving, 362
 multi-layer control, 366
 permanent strategy, 366
 refreezing, 362
 rotation speed, 364
 social and organizational values, 365
 social environments, 361
 social, political, and economic
 processes, 360
 symptomatic and permanent solutions,
 366–367
 unfreezing, 362
Chaos and chaotic dynamics
 deterministic chaos, 550
 multi-agent systems, 550
 quadratic function, chaotic/non-chaotic
 dynamics, 549–551
 tent map, 550
CLDs. See Causal loop diagrams (CLDs)
Cognition and learning
 “advanced” mental activities (see Mental
 activities, advanced)
 “Batesonian mind”, 498–499
 complementary material, models
 concrete and abstract models, 509
descriptive and operational models, 510
deterministic and stochastic models, 510
iconic and formal models, 509–510
lexical or specialist language
 models, 508
objects and relations models, 509
qualitative and quantitative models, 511
scale and analogic models, 510–511
static and dynamic models, 511
declarative proposition or statement, 498
determination process, 499
explanation process (see Explanation
 process and operational closure,
 knowledge)
Gregory Bateson’s model, 451
human mind, technical definitions
 (see Mind, technical definitions)
intelligent cognitive systems
 autoiopetic system, 503–504
 The Fifth Discipline, 506
formal communication processes, 504
functionalism, 504
gravity, mental model, 507
meaningful semic representations, 505
mental and formal models, 505–508
Mental Models: Towards a Cognitive
 Science of Language, Inference
 and Consciousness, 506
mental representations, 506
Newton’s First Law of Motion, 507
observer system, 504
physical symbol system, 504
signs and operators, 505
knowledge, dimensions (see Knowledge,
 dimensions)
MP13, 479
recognizing objects, 477–479
signification process (see Signification
 process)
technical descriptions and definitions,
 475–476
truth and falseness, 498–499
understanding, concept, 477
verification and falsification, 498
Collision, anti-collision and alignment
 systems, 122
Combinatory automaton for simulating
 buzzing
 control panel, 371–372
descriptive model, 372, 373
internal control, 374
micro control, 374–375
simulation, 373–374

Index
Complex adaptive systems (CAS). See Social systems as CAS, Rings operation

Connections and interferences, single-lever control systems
reciprocal, 80
temperature dynamics, showers, 80–83

Construction of models on systems thinking
arms escalation, 15, 16
balancing loops, 14
burnout, stress, 17
cause and effect, 13
dynamic systems, 18
identification, causal chains, 13
job satisfaction, 17
law of market, perfect competition, 15
marketing strategy, 16
ordinal systems, 18
reinforcing loops, 14
Ring connection, price and supply, 15
struggle for life, 16

Continuous single-lever control system
with delay
learning process, 69
recursive equations, 64, 65
shower temperature control
1 delay and 2 reaction times, 67, 68
without delay, 65, 66
shower temperature regulation, mixer, 65
simulation model, 68
strange behavior, 67

Continuous single-lever control system
without delays
elementary logical structure, 56
inputs, 57
numerical progression, dynamics of variables, 58
reaction time, 59
sound control, 57

Control of a mobile platform, 194–195

Control of coexistence
ascending/descending institutions, 330–331
autopoiesis, 326
detectors, 329
effectors, 330
governance institutions, 330
homeostatic systems, 327
individuals groups, 326
institutions, layers, 330
monarchies and dictatorial regimes, 332
network of Rings, 328
regulators, 330
social and economic rules, 328
social institutions structure, 328
social system, 327
socioeconomic political system, 328–329

Control of combinatory systems
accumulation, 349
diffusion, 350–351
external controls, 348
harmful behavior, 347
macro and micro controls, 350
macro behavior, 349
minimum activation density, 349–350
necessitating factor, 348
recombining factor, 349

Control process
control problem, 47
“world of interacting variables”, 46

Control system
concept, 48
heuristic model, 51
interferences, 80
logical structure, 49
regulation, 55
technical structure, 49
typology, 567–568

Control system for global warming
albedo effect, 287
artificial auxiliary levers, 289
balancing loops, 284
Daisyworld effect, 288
greenhouse gases, 284
reinforcing loops, 284
Senge’s model, 285
social alarm, 286
structural lever, 287

Control systems for survival as psychophysical entities
aspirations, 297
cognitive system, 295
HPCT, 301
PCT, 299–300
physiological needs, 297
quality and quantity, 296
self-actualization, 297
teleonomy, 297–299

Control systems, typology, 567–568

Control system with on-off lever
home environments, 62
model, automatic air conditioner, 63
non-automatic system, 63–64

Cybernetic systems
Archimede’s force, 136
container, 137
floating ball regulator, 136
flyball governor, 137
Cybernetic systems (cont.)
 kilogram of water, 137–138
 manual and automatic control systems
 (see Manual and automatic control systems)
 mechanical, 135
 pendulum clocks, 138
 typical CI-PO impulse system, 137
 UTC/GMT calculation, 138
 water level, 137
 Watt’s centrifugal regulator, 134–135

D
 Daisyworld dynamics
 first and second, 305–307
 simulation, 305
 temperature variations, 305
 Dashboards and balanced scorecard.
 See Performance management control systems
 Decision/one-shot control systems, 96–97
 Delays and disturbances in control system
 complete model, single-lever control system, 75
 definition, 76
 movement, Mars probe, 77
 normal functioning times, 77
 premature occurrence, 77
 types, 75
 Demand, supply and price
 “cobweb theory”, 199
 control system, 199
 “disturbance D” column, 200
 “disturbance S” column, 200
 “g_D” and “g_S” action rate, 199
 simulation, control system, 199, 200
 Walras’ classical theory, 197
 Derivative control systems, 54
 Design and realization of control systems, 74–75
 Discipline of control systems
 climate variables, 522
 change management, 7
 consequences, processes, 7
 continuous improvement, 528–529
 controlling infectious diseases, 528
 cybernetics, 526
 digital control, 528
 emergent algorithm, 530
 holonic hierarchy (holarchy), 524–525
 holonic network, 529–530
 improvements, 527–528
 levels, 524
 “logical models”, 6
 macro-level control, 525
 micro control system, 525
 modus operandi, 5, 8
 multi-objective system, 523–524
 The Necessary Revolution, 7
 open hierarchic system, 529
 preexisting immune system, strengthening, 527–528
 recognition, 521
 Rings action, 521
 robotic control systems, 528
 self-organizing systems, 7
 “six” disciplines, learning organizations, 40–42
 strategies and policies, 525–526
 structural levers, 526–527
 “superiority” of systems, 4
 systems thinking, language, 521
 variables, repetitive and recursive systems, 522, 523
 Discrete single-lever control system without
 delay, sound control with a level scale, 60–62
 Domestic environment, Rings operation
 automatic systems, 267
 computers, 263
 control systems, transport, 265–266
 discipline of control, 262
 intervention, 263–264
 remote control, 265
 three-layer system, 264–265
 Dual-lever control system with independent
 levers
 automatic control systems, 160
 “badly designed”, 162
 biological control system, 162
 body temperature, 164
 Botswana’s salt pans, 163–164
 “cold threshold” of $E(W)_7 = 3^\circ C / C_14$, 161–162
 control strategy, 159
 description, 158
 dual-lever temperature control, 158, 159
 effective salt density (D_t), 162–163
 governor-manager, 158
 “hot threshold” of $E(W)_{24} \approx 5^\circ C$, 162
 logical structure, 158
 management theory, 160
 manual control systems, 160
 shower controlled by two independent faucets, 160, 161
 term strategy, 159
 Dual-lever control system with mutually-
 dependent levers
bathtub control dynamics, 157, 158
control system, 158
and independent, 155
inflow lever, 156
input lever X2, 156
interdependent levers, 158
monolayer and multilayer systems, 154
opposite direction, 155
output lever X1, 155–156
pluri-/multi-lever systems, 154
reaction times, 154
single-lever control systems, 154
speed and section, 158
value of the levers, 154
water faucet, 155
water level dynamics, 155
Dynamics of interacting populations, Rings
regulation, 312–318

E
EBIT control
economic and productive
transformation, 418
economic efficiency, 400
financial transformation, 402
general models, 419
multi-level and multi-objective, 422
NOPAT, 416
operational control, 422
Rings, 421
roi, 418
Economic order quantity (EOQ), 446
Economic value added (EVA), 416–417
Economic value of the firm (EVF), 415–416
Ecosystems
birth and death rates, 321–322
complex oscillatory dynamics, 319–320
dynamics, populations, 320, 321
irregular, probably chaotic and dynamics,
320–322
prey and predators, 318–319
Ecosystems, Rings regulation, 318–322
Effectiveness and efficiency of control systems
Ashby’s law, 219
control domain, 219
cybernetics, 218
environmental/external control actions, 220
eye system, 220
levers, 218
manual reflex camera, 221
undersized and oversized, 220
utility, 218
Engineering definition of control systems
feedforward, 96, 97
model, feedback, 98, 99
non-symmetrical (see Non-symmetrical systems)
open and closed loop, 98
EVA. See Economic value added (EVA)
EVF. See Economic value of the firm (EVF)
Explanation process and operational closure
classical scientific explanations, 514
common explanation, 513
contingent explanations, 513–514
irreversible ignorance, 512
phenomenon F (explanandum),
511–512, 517
procedural scientific explanations, 514–515
reversible ignorance, 512
systemic scientific explanations, 515
teleological explanation, 516
Explorative systems
Center for Space Observation, 142
description, 142
explorative activity, 142–143
External macro environment, Rings action
causal factors, 274
cloud formation, 277
control action, 275
gog formation, 278
“natural” control systems, 273–274
temperature and humidity, 275
weather cumulus clouds and thermals, 276
External microenvironment, Rings operation
control system, solid urban waste, 270
ergie savings, 269
liquid waste treatment control, 271
natural gas, 269–270
overhead control system, 268
particles control system, 272
particulate matter, 271
public lighting level and quality, 268–269
residential centers, 270
F
Feedback control systems, 48, 96, 99
Feedforward control systems
advantages, 97, 98
system of command/commands, 96
Fifth Discipline, The Five Basic Rules of
Systems Thinking
construction, coherent and sensible
models, 8
fifth rule, 12
first rule, 9
fourth rule, 11–12
Fifth Discipline, The Five Basic Rules of Systems Thinking (cont.)
second rule, 9–10
third rule, 10–11

Fixed-and variable-objective systems
control lever systems, 119–120
evolving systems, 118, 119
exogenous reasons, 118–119
function of E(Y), 119
Malthusian dynamics, 145–149
single-lever system, 120, 121
systems of pursuit, 120
variables X, and Y, 118

Flying in a hot air balloon, 189–190

From systems thinking to system dynamics
basic loops/Rings, 19–20
definition, 19
dynamics, reinforcing loops, 22
recursive functions, 22
simulation, variation functions, 20
structure, reinforcing and balancing “rings”, 21

Fundamental variables, social systems
autopoietic process, 339–340
constraint, 338
control and preserve languages, 336–337
economic variables, 340
GDP, 341
health and births, 339
inflation, 341
regulation and control levers, 340
traditions and violence, 336

Homeostasis. See Organizations
HPCT. See Hierarchical Perceptual Control Theory (HPCT)

Human aspects, control
active control, 535
behavioral variables, 536
conceptual and innovative behavior, 535–538
fallibility, 531–532
internal homeostatic constraints, 530–531
learning capacity, 532–535
multi-lever and multi-objective systems, 536
natural resistance, 536
new control systems, 536
passive control, 535
self-control, 536–538
unstable processes, 536

Human body, Rings action
articulations series, 292–293
autopoiesis and cognition, 290
description, 289
holonic control system, 292
living systems, 290
physiological routines, 294
postural control systems, 291

Holarchies, control systems
ascendental observational perspective, 133–134
bottom-up perspective, 131
control of global warming, 134
“downstream”, 129
dynamics, 131, 132
energy-providing companies, 129
filtering principle, 130
hierarchical levels, 129
holarchy, 129

impulse control systems
capacity g2, 165
CI–PO functioning, discrete levers
and no disturbances, 165, 166
CI–PO functioning with disturbances, 165, 167
continuous input–continuous output
(CI–CO) systems, 169
continuous input–point output, 165
dual-lever control systems, 164–165
PI–CO functioning without disturbances, 165–166, 168
point input–continuous output, 165

Index
section s_2, 165
security level, 165–166
velocity of v_2, 165
water tanks and shower operate, 164
Industrial robots and movement systems, 195–197
Integral control systems, 54–55
Intelligence and learning dimension, knowledge
artificial intelligence, 454
knowledge, content, 453

K
Key performance indicators (KPI), 438
Knowledge, dimensions
awareness (see Awareness dimension, knowledge)
brain (see Brain dimension, knowledge)
Gregory Bateson’s theory, 453
human mind (see Mind, technical definitions)
telligence and learning, 453, 454
methodological in nature, 452
mind dimension (see Bateson’s model)
object, description (see Objects)
scientific explanations, 500
sense of sight, 452
written language, 452

L
Languages and signs. See also Cognition and learning
autoopoietic systems, 492
categories, 496–497
classes, 497
communication process, functions, 494–495
content language, 493
functional signs, 498
mental operations, 497
ordering signs, 497
performativity, 495
propositions, 496, 500
punctuation, 498
semic code, 495–496
semiological and linguistic study, 491, 495
semiotics, 491–492
signifier of signs, 500
technical description, 496
Theory of Society, 492–493
Law of dynamic instability
model, 29
prey-predator populations, 33–34
Richardson’s model, 30, 32–33
simulation, 29, 30
test, simulation, 29, 31
Life environments
autoopoiesis, social systems, 332–336
change management in a complex world, PSC model, 360–367
combinatory automaton for simulating buzzing, 371–374
control of coexistence, 326–332
control of combinatory systems, 347–351
description, 309–310
ecosystems, 318–322
fundamental variables, social systems, 336–341
macro biological environment, 310–312
models and classes of combinatory systems, 368–371
populations dynamics, 312–318
qualitative dynamics of populations, 322–326
rings operating in social systems as CAS, 355–360
rings within collectivities as combinatory systems, 341–347
the tragedy of the commons, 351–355
two modern tragedies of the commons, 374–381
The Living Company: Habits for Survival in a Turbulent Business, 392
Logical structure of control systems
change management process, 85
CLD, 54
closed-loop/feedback, 55
connections and interferences, single-lever, 80–83
continuous single-lever, with delay
(see Continuous single-lever control system with delay)
continuous single-lever, without delays
(see Continuous single-lever control system without delays)
control problem, 47, 48
decision-making process, 83, 84
delays and disturbances, 75–77
derivative, 54
design and realization, 74–75
direct and inverse Control, 93
discrete single-lever, 60–61
elevator, 88–90
Logical structure of control systems (cont.)
engineering model, feedback, 98, 99
explicit/implicit objective, 53–54
feedforward, 96–97
functions, dynamics of system, 50
hot and cold air conditioner, 94
integral, 54–55
interfering showers simulation, powersim, 95
logical (see Logical structure of control systems)
management and governance, 72–74
non-symmetrical (see Non-symmetrical systems)
one-shot/decisional systems, 54
On-Off lever, 62–64
open-loop, feedforward, 55–56
performance, 86
problem solving, 83, 84
process, 46–47
proportional, 54
searching for street, page and word, 89–91
shower, delays, 92–93
simulation tools, 87–88
standard model, one-lever, 48, 49
strengthening and precision, 78–79
the technical structure of a single-lever l, 69–72
trajectories of car and boat, 90–92
variables, model, 48–49

M
Macro biological environment
biological community, 310–311
collectivities, 310
combinatory/simplex system, 311
organization, 312
Macro management control
business profit organizations (firms), 411–412
directional (managerial) objectives, 412
entrepreneurial transformation, 414–415
EVA or residual income, 416–417
EVF, 415–416
NOPAT, 416
operational control, 413–414
strategic control, 413
“technical transformations”, 412
Magic Ring in action
attention, 260
custom systems
global warming, 283–289

survival as psychophysical entities,
295–302
Daisyworld dynamics, 304–307
domestic environment, 262–267
external macro environment, 273–278
external microenvironment, 268–273
human body, 289–295
planetary rings: “Gaia” and Daisyworld,
278–283
postural control systems, 261
regulate biological clocks, 302–303
ubiquitous presence, 259
water cycle, 303–304
Malthusian dynamics. See Fixed-and variable-objective systems
Management and governance, control systems
cybernetic system, 73
normal and modern shower, 73
regulation mechanism and process, 72
system objective, 74
temperature, 73
Management control
decision-making and responsibility units, 408
definition, 407
entrepreneurial transformation, 409
manager, role, 410
objectives (effectors), 407–408
operational units (detectors), 407–408
performance makers, 409
and performance management, 407–411
stock, productivity and quality, 425–430
strategic planning, 408
Manual and automatic control systems
cybernetics, 108–109
designed and constructed by man, 106
distinction, 105–106
engineering view, 106
GPS-guided rudder, 107–108
human intervention, 106–107
manager within the chain of control, 107
natural systems, 109
speed and direction, 110
technical structure, 109–110
Mental activities, advanced
classification, 501
empirical law (norm or generalization), 502
legalization, 501–503
set formation, 501
systematization, 501
theorization, 503
Micro management control
custom charts, 430
corporate objectives, “pyramid”, 426
design quality, 429–430
design (or intrinsic, productive) quality, 428
environmental (or context) quality, 428
functional (or market) quality, 428
labor productivity, 427
marketing function, 428
operational control, 425–426
productive efficiency, 426–427
product quality, 427
quality circles, 429
stocks, 426–427
value analysis, 428–429

Mind, technical definitions
elementary, 480–481
extensive, 481
functional, 481, 482
genetic, 481–482
historical-geographic, 481, 482
instrumental, 481, 482
modal, 481, 482
operational, 481, 483
ostensive, 481
structural, 481, 482
teleological, 481, 483

Mix of N components, 193–194

Model of the organization as an efficient system of transformation (MOEST)
business profit organizations, 399–400
control levels (institutional/strategic/operational), 406
economic and financial values, 403–404
financial leverage, 407
operational plans and budgets, 405, 406
organizational control, 407
organizational levels (technical/managerial/institutional), 406
performance indicators, 404
profit organization’s autopoiesis, 406
“technical” transformations, 400, 401, 406

Models and classes of combinatory systems
accumulation, 369
diffusion, 370
heuristic models, 368–369
improvement and progress, 371
micro and macro behaviors, 368
order, 370–371
pursuit, 370

MOEST. See Model of the organization as an efficient system of transformation (MOEST)

Multi-layer control systems
body temperature, 176, 177

Multi-objective control systems
car velocity, 177, 178
characterization, 175–176
driver-manager, 177–178
extraordinary levers, 179
first-level error, 174
levels of control, 209
logic of, 176
and multi-lever, 175
plan of action/routine/consolidated strategy, 180
priority of actions, 179
reinforcement, 178
role of strategy, 179
second-level error, 174
“theories of action”, 180

Multi-level control systems
action rate, 174
attainment control system, 171
dual-lever, 169
Euclidean distance, 172
four-dimensional control system, 174
geometric degrees with central focus point, 197
holonic-like process, 172
horizontal plane, 169–171
independent, 208
mix of N components, 193–194
mutually dependent, 208
natural strategy, 169, 171
N-dimensional space, 171–172
“non-normal” conditions, 171
spontaneous, 169
supplementary lever, 171
temperature of liquid, 169–171
three-dimensional space, 174
x, y, z, and w, levers, 172–173

control levers, 445–446

car velocity, 177, 178
characterization, 175–176
driver-manager, 177–178
extraordinary levers, 179
first-level error, 174
levels of control, 209
logic of, 176
and multi-lever, 175
plan of action/routine/consolidated strategy, 180
priority of actions, 179
reinforcement, 178
role of strategy, 179
second-level error, 174
“theories of action”, 180

Multi-objective control systems
adjustment of the indicators, 204
alternating objectives, 181–182
apparent and improper, 181
control of speed and altitude indicates, 183
definition, 209
description, 180–181, 201
direct comparison procedure, 202–203
first approximation indices, 203–205
general model, 186
governor-manager, 185, 205
Multi-objective control systems (cont.)
interferences, 181
logic of, 202
M interfering single-objective
systems, 182
outside visibility, 185
passenger-manager, 184
passengers-managers, 184
pilot-manager, 183–184
plane’s velocity, 185–186
pseudo-cardinal scales, 202
rear-seat passenger, 184
safety, 184
systematic comparison, 203
cost and quality, 444
length and quality of work, 442
production of projects, 442
product-launching project, 443–444
scheduling and time programming, 442
single graph technique (PERT/CPM), 442–443
temporal economic control, 443

N
Net operating profit after tax (NOPAT), 416
Non-symmetrical systems
calculation
action rate, 102
optimal value, 98
determination, control period, 102
dynamics, temperature control, 101
minimal asymmetrical form, 100

O
Objects
analogical generalization, 472–473
base mental operations, 463
concepts, 474
connotative or intensive, 472
denomination process, 466
denotative or extensive, 472
description, 470–471
differences and dimensions, 465–466, 469
equality, 468
generalization of dimensions, 467
height dimension, 467
imaginary, 471
observation
cognition, 483
landscape (scenario), 484–485
mental representations, 483–484
technical description, 484
understanding, 483
observed dimensions, 467–468
observed universe (UN), 464, 469
perception modes, 465–466
qualitative/quantitative determination, 464
separate and united, 470
simple and composite, 469–470
technical descriptions and definitions,
464–465, 471–474
unitary, 463, 466
vectors, 464
width dimension, 467

Observation and design
control process, structural causes
cataclysm, 226
chain of control, 225–226
detecting error, 227
potency, 225
risks failing, 224
transmission channels, 226
transmission network, 226
velocity, 225
effectiveness and efficiency of control
systems, 218–221
four-lever system, 215
goal/punctual objectives, 212
human aspects of control, 211–212
logical structure, 212
multi-lever and objective control
systems, 211
observers/designers, 215
pathologies of control, 235–243
physical structure, 212
preference matrix, 252–254
problem solving and control systems,
243–247
problem solving and leverage effect,
247–252
quantitative and qualitative objectives, 213
recognizing systems, 214
“shifting the burden”, 227–235
static and dynamic objectives, 212–213
strengtheners, turbos and multi-levers,
221–224
symptomatic and structural control,
216–218
tracking control system, 212
Operational Rings, objectives
cash flow, 422–423
EBIT, 418, 419, 422
entrepreneurial transformation, 423
managerial transformation, 424
MOEST, 425
multi-objective control system, 421, 422
operational processes, 425
production costs (PC), 418–420
return on equity (ROE), 417–418
return on investment (ROI), 417, 418
sales revenues (SR), 418–421
VBM, 424–425
Optimal strategies and policies
automatic systems, 188
cost of control levers, 187
description, 187
formulation, 186
governor and manager, 186
human behavior, 189
manager-photographer, 188
metrics procedures, 188–189
optimal policy, 187
pseudo-cardinal scales, 188
stereo volume, 186
The Organization as a Living System, 392
Operations
action control, 388
agents and organs, 385
attractiveness landscape, 434, 435
autopoiesis (see Autopoiesis, organization)
autopoietic machine, 387–388
balanced scorecard (BSC) (see Performance management control systems)
cognitive, intelligent and explorative system, 429–436
cooporation and coordination, 431–432
dashboards (see Performance management control systems)
definition, 384
elements, 384
entrepreneurial and managerial transformation, 431
explorative agent, 434
feedback control, 431
homeostasis, 387
individual motivations, 385
institutional learning, 433
intelligent cognitive agent, 434
macro management (see Macro management control)
macro processes, 386, 390–391
management control (see Management control)
micro management (see Micro management control)
micro processes, 385, 390
multi-objective control systems, 442–446
network of microprocesses, 385–386
operational Rings (see operational Rings, objectives)
organizational control, 388
organizational learning, 432
organization-enterprise, 435–436
performance control, 388, 391–392
performance management (see Performance management control systems)
personnel control, 388
planning and budgeting processes, 433
production or consumption, 383
responsibility centers, 432
results control, 388
ROE and ROI, 434
self-control, 388, 389
stakeholders, 385, 393
structural control systems, 388, 389
structural coupling, 389–390
systems of achievement, 436
systems of improvement, 436, 437
task control, 432
telemony (see Teleonomy, organization)
transformation (see Transformation, organization)
VSM (see Viable System Model (VSM))
Wilson’s formula, 446–448

P
Parallel/serial connections, control systems
composition of X, 125, 127
decomposition of Y*, 125, 126
description, 125
downstream and upstream system, 128
geographic divisions, 126
parallel control system, 125, 126
partial systems, 128
serial control, 128
Pathologies of control
air pollution, 236
archetype, 235
eroding goals and degradation, quality, 237–238
eroding individual goals and discouragement, 236–237
error assessment, habitual latecomer, 243
insatiability, victory, 239–240
performance standards, 235
“persistence”, 239, 240
Pathologies of control (cont.)
“strengthening goals/insatiability”, 238–239
underestimation, 241–242
PCT. See Perceptual Control Theory (PCT)
Perceptual Control Theory (PCT), 299
Performance management control systems
balanced scorecard (BSC)
perspectives and measures, 441
shareholder value, 439–440
strategic control, 440–441
weights and measures, 440
compliance control, 411
centre of administrative control, 411
dashboards
higher hierarchical levels, 436–437
key performance indicators (KPI), 438
organizational dashboard, graph, 439
real time, 437
definition, 410
“illusion of control”, 411
PID control system. See Proportional-integral-derivative (PID) control system
Planetary Rings: “Gaia” and Daisyworld
biological masses, 282–283
black daisies (BD), 281
Coriolis effect, 279–280
fair-weather cumulus clouds, 278
Gulf Stream Rings, 279
invisible control systems, 278
thermal equilibrium, 280
two-lever temperature control system, 283
white daisies (WD), 281
Populations dynamics
control system, Volterra’s equations, 314–315
ecosystem, 313
equilibrium, 317–318
exogenous control, 318
factors, 312–313
food chain, 313
populations, upper limits, 318, 319
predator population, 318
prey and predator, 314
quantitative and qualitative dynamics, 312
Volterra–Lotka equations, 316
Populations, societies and collectivities (PSC) model. See Change management in a complex world
Possible control systems discipline, 522–530
Preference matrix
“head of family”, 254
young decision maker, 253, 254
Problem solving and control systems
attainment and restoration, 246
deterministic, probabilistic and uncertain, 246–247
implementation, 245
isolated and recurring problems, 246
nature/rational adversaries, 247
solution, 243–244
Problem solving and leverage effect
balancing loop, 251
definition, 247–248
simulation, 250
strengthening loop, 250–251
structural map, 249
systemic levers, 250
system thinking, 251
Proportional-integral-derivative (PID) control system, 53
Q
Qualitative dynamics of populations
natural and external Rings, 325
phenotypic traits, 322–323
predators, 323
selfish gene, 323
survival machines, 324
Qualitative dynamics of populations over time, Rings regulation, 322–332
Quantitative and qualitative control systems
analogic procedure, 150–151
attainment control systems, 110–111
control problem, 111–112
conventional procedure, 151
definition, 110
diagnostic procedure, 151
direct and indirect qualitative determination, 150
macroscopic/microscopic living being, 151–152
model-objective (Y*), 113–114
recognition-identification, 114–116
sensor organs, 114
Sommelier, 113
R
Reinforcing loop
arms escalation, 25, 26
rabbit explosion, 25, 27, 28
Religion
Buddhism (see Buddhism, “Four Noble Truths”)
Catholicism (see Catholicism, principles)
definition, 543
multi-lever model, 544–545
“state of perfection”, 544
structural control, 544
variables, 544
Richardson’s model, 30, 32–33
Rings allowing the process
description and comparing objects, 468–471
from objects to concepts, 471–474
Rings within collectivities as combinatory systems
description, 341–342
factors, 342–343
“fashion spreading”, 344
global information, 342
macro behavior, 342
micro and macro behavior, 342
modus operandi, 343
systems of accumulation, 346
systems of diffusion, 346
systems of improvement and progress, 347
systems of order, 346–347
systems of pursuit, 346
“wheel ruts”, 345–346
Risk management as control system
described by levers, 225
capacity/potency derives, 225
description, 224
“Shifting the Burden” ARCHETYPE, 227–235
transmission channels, 226
roi, roe and der control
financial and economic efficiency, 402
objectives of operational Rings, 417–425

Signification process
communication process, 486
denomination process, 486–487
extensive common denomination, 487–488
identified sign, 490–491
intensive common denomination, 487
mental objects, 485–486
objects-signs-vowels, “university”, 488
proper denomination, 487
sememe of sign, 488, 489
semic code, 488, 489
signifier of sign, 488–490
Sixth discipline. See Discipline of control systems, systems thinking
Social systems as CAS, Rings operation characteristics, 357
combinatory systems, 360
complex evolving system, 358
description, 355
individual adaptation, 358
social learning, 358–359
structural disturbance influences, 356
variable organizational nature, 356
Stakeholders, organizations
description, 385
outcomes, 393
Standard gamble method, 205–208
Steering and halt control systems
algedonic alerts, 117–118
characteristics, 116
“fine tuning”, 117
objective Y*, 116–117
“one-way” control systems, 138
parking, 138, 139
pouring champagne, 139, 140
“precise regulation”, 117
risotto, 139
Sommelier, 139
Stock and Flow Diagram (SFD), 87–88, 95
Strengtheners, turbos and multi-levers
amplifying intervention, 223
auxiliary lever, 223
bicycle’s amplification mechanism, 224
capacity, 221–222
environmental actions, 223
Submerging in a submarine, 190–193
Symptomatic and structural control
causal structure, 218
description, 216–217
levers, 217
tiredness, 217

Systems archetypes
behavioral archetypes, 39
local and individual preference, 37
short-term, local and individual
preference, 38
“short-term preference archetype”, 35, 36

Systems thinking, control systems
archetypes (see Systems archetypes)
arms escalation, 25, 26
construction of models, 12–18
definition, 3
dynamics (see From Systems thinking
to system dynamics)
fifth discipline (see Fifth Discipline,
The Five Basic Rules of Systems
Thinking)

T
“Team learning”, 41

Teleonomy, organization

cognition and learning, 392–393
macro control, 393–394
macro processes, 387–388, 390–391
regulation, 392

Tendential and combinatory control systems
dynamics, 123, 124
individuals values, 124
logic, 124, 125
short typology, 122
statistical techniques, 123
unknown and uncontrollable disturbance
factors, 123

Tragedy of commons
appropriators, 352, 376–377
archetypes, 351–352, 378
combinatory systems, 351
conflicts and manage scarcity, 355
external macro control, 353
functioning of measures, 381
global regulators, 379–380
non-sustainability, appropriation,
374–375, 379
pollution, 380
residential centers, 379
sustainable development, 374
whale hunting process, 353–354

Transformation, organization
economic or market transformation, 400, 402
entrepreneurial transformation, 402–403
financial transformation, 402
managerial transformation, 403
MOEST (see Model of the Organization as
an Efficient System of
Transformation (MOEST))
physical productive transformation, 400
types of control systems, 567–568

V
Value-based management (VBM), 424–425

Variant structure control systems
composite or multi-lever strategies, 556
elementary form, 551–552
global strategies, 556–557
“in series” dual-lever, 553–554, 555
multi-layer transformation system, 557–559
neural networks, 556
“parallel” dual-lever, 553
production systems, 555
simple strategies, 556
single-lever, 552–553
transformation systems, 554–555

VBM. See Value-based management (VBM)

Viable System Model (VSM)

AGIL paradigm (see Adaptation, goal
attainment, integration and latency
pattern maintenance (AGIL)
paradigm)

autopoietic systems, 395
control, 397
decision making, 393
environment, 397
intelligence or research information,
environment, 397

multi-lever and multi-objective control
system, 398
operational processes, 395–396
organizational closure, 395
policy, 397
Recursive System Theorem, 399
synthesis, 395, 396
viability, definition, 395
VSM. See Viable System Model (VSM)

EOQ calculation, 446–447
impulse control system, 447–448
storage cost, 446
supply cost, 446
Water cycle, 303–304

W
Warehouse based on Wilson’s formula

Z
Zeno’s paradox, 143–145