Index

Symbols
{311}s, 41
3D-ICs, 123, 124
µ-Raman spectra, 204
µ-Raman spectroscopy, 193, 208

A
A-Si/c-Si nanostructures, 108
A-Si:H solar cells, 276
Aberration effects, 228
Absorption, 219
Absorption coefficient, 158
Activation, 238
Activation energy, 27, 38
Activation rates, 156
Adiabatic annealing process, 3
AES, 22
Ag, 175
Agglomeration, 131, 250
Al, 175
Amorphisation, 8, 36, 52
Amorphous layer, 27
Amorphous material, 10
Amorphous semiconductor surface layers, 2
Amorphous silicon, 45, 129, 263
And rollable displays, 290
Angle, 224, 225
Annealing, 5, 140, 194, 297
Anomalous Hall effect, 28
Arc lamps, 7
Arsenic, 8
ASAMA, 167
Atom beam sputtering, 112
Atomic force microscopy, 178
Auger electron spectroscopy, 301

B
B, 180
Background radiation, 216, 220
Backside annealing, 156
Bandpass and spectral pyrometers, 214
Beam profile, 149
Beam shaping, 152
Beam transformation, 147
Beam transformation unit, 146
Bendable media, 273
Blinding of the pyrometer, 221
Boron, 8, 160
Boron-interstitial-clusters, 241
Bottom-up recrystallization, 208
Broadband pyrometers, 213
BSI, 164
Bulk-Si wafer, 131

C
C doping, 253
C-doped silicon, 253
Calibration procedure, 222
Carbon, 47
Carbon ion implantation, 11
Carrier density, 67
Carrier depletion, 250
Carrier wafers, 160
Catalytic chemical vapor deposition, 175
Cell size, 19
Cellular structure, 79–81, 83, 85, 87, 88, 90
Channel mobility, 247
Charge carrier density, 60
Clusters, 71
CMOS, 156, 198, 230
CMOS integration, 254
Co-doping, 242
Co-implants, 47
CO₂ laser, 237
Coercive field, 30
Coercivity, 116
Coincident site lattice (CSL) boundary, 132
Collision cascade, 36
Comparing pyrometers, 215
Composite-structure, 278
Compound semiconductor, 192, 194
Compressive stress, 184
Concentration-enhanced diffusion, 242
Contact, 250
Contact resistance, 239
Continuous manufacturing, 281
Continuous wave (CW) lasers, 5
Cooling rate, 11
Cooling rates, 303
Cover layers, 63
Cr, 175
Cross section TEM, 5
Cross-sectional TEM, 114
Cryogenic temperatures, 49
Crystal defects, 41
Crystal template, 37
Crystalline solar cells, 156, 165
Crystallization, 5, 81, 140
Crystallographic orientation, 129, 132
Curie temperature, 17

D
Damage, 36
Damage annealing, 244
Damage engineering, 243
Deactivation, 42, 44, 244
Defect, 97
Defect clusters, 98
Defect engineering, 47, 48
Defects, 241
Deformation, 114
Dendritic crystal growth, 11
Dendritic grain growth, 10
Depth of focus, 147
Desorption, 118
Detector response, 221
Device wafer, 160
Dielectric characteristics, 251
Diffraction rings, 25
Diffractive beam splitter, 165
Diffusion, 65, 73, 119, 156, 193
Diffusivity, 157
Dilute ferromagnetic semiconductor, 297
Diluted magnetic semiconductor, 297
Diode laser, 141, 237
Direct-diode, 141
Directional polarized emissivity, 224
Dislocation loops, 41
Disorder, 117
Dissolution, 116
Distribution coefficient, 39, 45
Dopant, 62
Dopant activation, 147, 156, 286
Dopant deactivation, 248
Dopant diffusion, 239
Dopant redistribution, 5, 44, 286
Dopant solubility, 7
Dopant-defect clusters, 42
Doping, 68, 225
Doping elements, 8
Drying, 140
Dwell time, 147
Dynamic annealing, 49

E
E-beam lithography, 206
EDX, 24
Effective channel length, 255
Effective oxide thickness, 251
EFTEM, 24
Electrical activation, 241
Electron backscattering diffraction, 182
Electron backscattering diffraction (EBSD), 130
Electron beam heating processing, 286
Electron beams, 7
Electron diffraction pattern, 182
Electron mobility, 151, 202
Electron spin resonance, 180
Electron-beam annealing, 284
Electron-beam-evaporated, 182
Electron-phonon (e-p) coupling, 109
Electronic energy, 109
Electronic subsystem, 109
Electronics, 139
Electrons, 7
Embedded, 30
Emissivity, 213, 223
Emitter, 160
End-of-range, 43
End-of-range (EOR) defects, 243
Energy density, 157
Enthalpy, 177
Enthalpy based model, 127
EOR defect, 49
Epitaxial growth, 123, 127, 196
Equilibrium solubility, 39
ERDA, 118
Etching, 22
Excimer, 166
Excimer laser, 123, 129, 289
Index

Excimer laser annealing, 174, 273
Explosive crystallization, 9, 173
Extended defects, 79
Extension, 239

F
Facet, 134
Faceted boundary, 99
Fast crystallization, 80, 82, 99
Field of view, 226, 227
Field-effect-transistor, 50
Fieldstop, 160
Filter design, 218
FINFET, 51, 238, 246, 263
Finite-element method, 125
FLA, 69, 193, 287
Flash discharge lamps, 1
Flash lamp, 3, 7, 75, 216, 232, 283
Flash lamp annealing, 3, 61, 65, 173, 191, 203, 234, 300
Flash-assisted RTP, 235
Flat-panel display, 263
Flat-top, 166
Flexible electronic products, 281
Flexible electronics, 271, 290
Flexible future, 291
Flexible polymers, 287
Flexible printed LAEs, 282
Flexible substrates, 272
Fluence, 118, 174
Fluorine, 47
FPD, 141
Free-form, 143
FRTA, 235
Functional films, 148
Furnace annealing, 283

G
GaAs, 4, 204
GaAs nanocrystals, 195
GaAs:Mn, 16
Gallium, 58, 62, 63
Gate dielectric, 251
Gate first, 250
Gate last, 250
Gate leakage, 251
Gaussian, 167
Ge, 4
Ge channel, 254
Ge dots, 93
Ge/Si heterostructures, 94
Ge:Mn, 16
Germanium, 50, 58, 60, 62
Grain boundaries, 8, 181
Grain size enlargement, 8
Grains, 130
Graphite heaters, 7
Growth velocity, 9

H
HAADF, 24
Hall, 67
Hall resistance, 16
Halo doping, 246
Halo implant, 246
Halogen lamp, 7, 216, 287
Heat diffusion, 156
Heat-flow calculation, 306
Heating process, 151
Hetero-nanostructures, 206
Heterojunction, 202, 205
Heterojunctions, 201
Heterostructures, 199
High-K/metal-gate, 250
High-mobility channels, 253
Homogeneity, 143
Homogeneous heating, 287
Homogenizing, 147
Hot wire, 215
Hydrogen, 176
Hydroxyl group, 218
Hysteresis, 28

I
I–V characteristics, 205
I–V curve, 150
IGBT, 156
III–V compound semiconductor, 198
III–V nanocrystal, 208
III–V nanostructures, 191, 203
III–V QD formation, 197
III-Vs, 50
Illumination, 144
Image sensors, 156
Implantation, 32, 58, 61, 75, 282
Impurities, 20
Impurity band, 310
InAs, 191, 199
InAs quantum structures, 201
Incoherent light sources, 7
Indium tin oxide, 179
Inexpensive, 272
Information processing, 15
Inorganic semiconductors, 272
InP, 195
InP NCs, 202
InSb, 196
Instabilities, 84
<table>
<thead>
<tr>
<th>Page</th>
<th>Index</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Integration, 250</td>
</tr>
<tr>
<td></td>
<td>Interface instability, 81</td>
</tr>
<tr>
<td></td>
<td>Interface layer, 252</td>
</tr>
<tr>
<td></td>
<td>Interface morphology, 82</td>
</tr>
<tr>
<td></td>
<td>Interface solid-melt, 89</td>
</tr>
<tr>
<td></td>
<td>Interface state density, 251</td>
</tr>
<tr>
<td></td>
<td>Interstitials, 43, 48</td>
</tr>
<tr>
<td></td>
<td>Inverse pole figures, 183</td>
</tr>
<tr>
<td></td>
<td>Ion beam, 114</td>
</tr>
<tr>
<td></td>
<td>Ion implantation, 8, 191, 192, 239, 297, 298</td>
</tr>
<tr>
<td></td>
<td>Ion track, 112</td>
</tr>
<tr>
<td></td>
<td>Ion-implanted semiconductors, 289</td>
</tr>
<tr>
<td></td>
<td>Ions, 7</td>
</tr>
<tr>
<td></td>
<td>Islands, 87</td>
</tr>
<tr>
<td></td>
<td>Isothermal annealing process, 3</td>
</tr>
</tbody>
</table>

J

Junction leakage, 244, 250

L

Lambertian radiator, 224
Lamp modulation, 219
Lamp-based annealing, 218
Large-area, 281
Large-scale electronics, 272
Laser, 139, 216
Laser annealing, 213, 230, 289, 305
Laser micromachining, 290
Laser pulse, 84
Laser RTP, 152
Laser treatment, 89, 91, 93, 94
Laser-assisted annealing, 283
Latent heat, 112
Lateral growth, 133
Lattice temperature, 109
Lens arrays, 144
Lenslets, 144
Line beam, 142
Line scan, 166
Liquid phase, 20, 96
Liquid phase crystallization, 150
Liquid phase recrystallization process, 199
Liquid-phase epitaxial regrowth, 303
Liquid-phase epitaxy, 173
Liquid-phase nucleation, 177
Liquid-phase recrystallization, 90
Liquid-solid interface, 21
Local vibration modes, 204
Loop control, 212
Low-cost, 271, 290
Low-K dielectric, 263
Low-temperature processing techniques, 275
Low-thermal tolerance, 287
LT-MBE, 17

M

Macroelectronics, 271, 290
Magnetic semiconductors, 15, 299, 310
Magnetoresistance, 28, 308
Magnetotransport, 27, 308
MBE, 80, 93, 99
Mean radiation power, 227
Measurement errors, 220
Measurement uncertainties, 228
Melt depth, 157
Melting point, 97, 175, 202
Melting point depression, 96
Melting temperature, 21, 113
Metal nanoparticles, 107
Metal-oxide-semiconductor device, 39
Metastable solubility, 39
Micro-lens, 144
Microelectronics, 149
Microsecond, 156
Microstructural properties, 194
Microstructure, 5
Microwave photoconductivity decay, 180
Mill-second thermal process, 300
Millisecond Annealing, 213, 229
MIT, 68
Mo, 176
Molecular monolayer doping, 52
Monte-Carlo simulations, 311
Morphology, 31
Ms heat treatment, 286
Multi-mode, 144
Multi-pulse FLA, 183
Multiple reflections, 222

N

N-type doping, 243
Nanocrystalline, 65, 70, 74
Nanodimensional, 110
Nanodots, 94
Nanofluidic, 32
Nanoislands, 88, 89, 92, 94, 95
Nanonet, 18
Nanonetworks, 31
Nanoparticle, 142
Nanoparticle melting, 96
Nanopyramids, 201
Nanosecond, 159
Nanowires, 32, 263
Nd-YAG laser, 5
Ni-SiO2 granular films, 112
NiSi, 250
Nitrogen, 48
NMOS, 254
Non-contact based methods, 212
Nuclear energy loss, 114
Nucleation, 9, 128

O
OLED, 141
OLEDs, 278
Optical reflectance, 179
Optical transmittance, 276
Optoelectronic, 190
Organic semiconductors, 278
Ostwald ripening, 112
Overheating, 9
Oxide growth, 225
Oxygen, 63

P
P, 180
P-type doping, 241
Parasitic resistance, 239
Particle beams, 7
Particle shape, 115
Patterning technologies, 281
Pattern effect, 260
Peeling, 175
Pelletron accelerator, 114
Percolating, 25
Periodic structures, 178
Perturbation, 20
Perturbation theory, 90
Phase diagram, 21
Phase field model, 128
Phase separation, 95, 98
Phase transition, 177
Phase transitions, 79
Phase-field model, 127
Phonon mode, 197
Phosphorous, 160
Photoresist, 263
Photovoltaic, 140
Photovoltaic effect, 181, 205
Photovoltaics, 278
Piping defects, 250
PLA, 30
Plan-view, 24
Planck's thermal law, 215
Plasma doping, 51
Plasma enhanced chemical vapor deposition (PECVD), 129
Plasma implantation, 243
Plasmonic light trapping, 150
PMOS, 254
Poly-crystalline silicon, 38
Poly-Si, 130
Polycrystalline, 9
Polycrystalline Si, 173
Polymer electronics, 279
Polymer foil, 275
Polysilicon gate, 249
Preamorphization implant, 242
Precipitates, 24, 41, 99
Precipitation, 116
Preheat control, 228
Process uniformity, 258
Process window, 255
Processing, 145
Productivity, 148
Profile, 146
Pulse annealing, 1
Pulse duration, 125, 287
Pulse shape, 287
Pulsed energy beams, 285
Pulsed heating, 232
Pulsed laser, 85, 156, 284, 286
Pulsed laser annealing, 17, 304
Pulsed laser recrystallization, 95
Pyrometer, 256
Pyrometry, 211

Q
Quality, 145
Quantum dots, 97, 99

R
Radial distribution, 111
Raman spectra, 182
Random nucleation and growth, 38
Rapid thermal annealing, 71, 174, 200, 231, 299
Rapid thermal annealing (RTA), 7, 284
Ratio pyrometers, 215
RBS (Rutherford backscattering), 5
RBS/channelling, 5
Real time temperature measurement, 216
Recrystallisation, 18, 37, 44, 52, 91, 196, 283, 301
Recrystallisation rates, 38
Recrystallisation velocity, 4, 45
Reel-to-reel, 278
Relative contribution of thermal radiation, 220
Relaxation, 254
 Reliability, 251
Remanence ratio, 116
Resistance, 73
Ripple pyrometry, 219
Roll-to-roll (R2R) processing, 275
Ruby laser, 2

S
Sato, 223
Saturation, 220
Scan overlap, 258
Scanned, 285
Scanned laser, 284
Scanned laser annealing, 235
Scanning, 166
Secondary grains, 133
Secondary ion mass spectrometry, 179
Secondary phases, 30
Seed, 126
Segregation, 18, 46, 79, 80, 87–89, 94, 97
Segregation parameter, 19
Selective emitters, 156
Selective-area diffraction (SAD), 133
Self-organized, 32
Semiconductor, 58, 60
Sensitivity, 220
Shadow effect, 225
Shape transformation, 111
Sheet resistance, 27, 308
Short time annealing, 211, 297
Short-channel effects, 239, 247
Si, 4
Si rich silicon nitride, 110
Si technology, 285
Si-nanoparticles, 118
Si-nanostructures, 116
Si$_{1-x}$Ge$_x$ alloy layers, 87
Si/Ge and Si/GeSn layers, 93
Si/Ge layers, 85
Si/SiO$_2$ interface, 208
SiC, 4, 264
Sidewall, 135
SiGe, 253
SiGe alloy, 79, 87, 88, 90, 253
SiGe channel, 254
SiGe dots, 95
SiGe/Si heterostructures, 82, 99
SiGe/Si layers, 86
Silicide, 239, 250
Silicon, 123, 190, 198, 223
Silicon chip formation, 275
Silicon interstitials, 241
Silicon nitride, 195
Silicon wafers, 272
Silicon-based electronics, 272
Silicon-based macroelectronic devices, 273
Silicon-based TFTs, 275
Silicon-on-insulator, 7, 246
SIMS, 162
Single-crystalline, 126
Size of Source, 227
Size scaling trend, 275
Slip, 262
Snowplough effect, 45
Soda lime glass, 175
SOI, 126
SOI wafers, 206, 208
Solar cell, 150, 173
Solar cells, 263
Solid phase epitaxy, 240
Solid phase nucleation, 10, 173, 178
Solid phase regrowth, 4
Solid state lasers, 162
Solid-solubility limit, 242
Solidification, 10, 82, 84, 85, 90, 127
Solidification velocity, 136
Solubility, 52
Solubility limit, 303
Solute trapping, 303
Source and drain regions, 39
Source/drain, 238
Specific heat capacity, 174
Spectrometry, 5
Spectrum, 213
Spike annealing, 231
Spike anneals, 231
Spintronics applications, 31
Spot of detection, 226
SQUID, 23
SQUID magnetometer, 114
SQUID magnetometry, 302
SRP, 162
SSRM, 28
Stability, 18
Stefan-Boltzmann-Law, 214
Step-and-repeat, 166
STI patterns, 261
Stitching, 258
Stitching effects, 259
Strain integration, 253
Strain relaxation, 254
Stretchable electronic devices, 280
Strip heater crystallisation, 11
Strip heaters, 8
Structural changes, 79, 91
Structural defects, 80, 81
Sub-second annealing, 299
Superconducting, 30, 58, 59
Superconductivity, 69, 74, 76
Supercooled, 21, 82
Supercooled melt, 81
Supercooling, 81
Superparamagnetic, 111
Supersaturation, 299
Surface, 62
Surface heating, 231
Surface temperature, 256