Index

A
Adiabatic transport, 37
Anisotropic ferromagnetic proximity, 70–72
Anomalous Hall effect (AHE), 27
Axion electrodynamics
 Euler–Lagrange equations, 81, 82
 Maxwell’s equations modification, 82, 83
Axion field, 80

B
Band inversion, 103
Berry curvature, see Kubo Hall conductivity
Berry phase
 Berry connection, 30
 Berry curvature, 31
defined, 31
derivatives, 31
eigenstate, 29
magnetic monopole, 32–35
time-dependent phase factor, 29
vector potential, 30, 31 (see also Zak phase)
Bismuth chalcogenides
 coupling inverted energy levels, 2, 3
crystal structure, 2
electrical properties, 1
electron spectrum and band inversion, 3–5
external electric and magnetic fields, 1
quintuple layers, 1
semiconductors, 1
spin-momentum locked fermions, 14–17
surface electron state, 5–7
thin film (see Thin film)
top-bottom representation, 17, 19
Bloembergen-Rowland (BR) coupling, 139, 141
Bloembergen-Rowland (BR) interaction, 117, 130–136

C
Circular photogalvanic effect, 146
Conduction electrons, 117–120
Current-induced spin polarization, 21, 22

D
Device applications
 FETs, 149
 optoelectronics, 152
 phase-locked oscillators, 151
 photodetector, 148, 149
 STO, 151
Dirac electrons and holes, 107
Dirac fermions, 107, 115
Dirac model, 107
Dirac plasmon excitations, 149
Domain wall, 74

E
Electric field-induced magnetization, 81
Electron spectrum and band inversion, 3–5
Electrostatic gating, 143, 149, 150

© Springer Nature Switzerland AG 2020
V. Litvinov, Magnetism in Topological Insulators,
https://doi.org/10.1007/978-3-030-12053-5
F
Field-effect transistors (FETs), 144, 146, 149, 150
Finite size effects, 110

G
Gapless Dirac fermions, 20
Gapped Dirac fermions, 16
Gapped Fermions, 130–136
Gauge-invariant electromagnetic field tensor, 79
Generic two-band model, 64, 65

H
Hall conductivity
accidental deneracy of magnetic subbands, 39
Bloch functions, 38
intrinsic AHE, 39
Kramers degeneracy, 38
Kubo formula, 37
SI and TR particles, 38
spin–orbit interaction, 39
spin–orbit-induced source, Berry field, 40
TR-symmetric system, 38
2D-materials, 40
Hall effect (HE)
AHE, 27
anomalous resistivity, 27
Bloch amplitudes, 28
electron systems, 29
geometry, 26
Lorenz force, 26
Onsager reciprocity relations, 26 (see also Quantized HE)
spin–orbit coupling, 27
total current and magnetization, 27
Heterojunctions
cubic III-V semiconductors
band alignment, 145, 146
circular photogalvanic effect, 146
interface band structures, 146
group IV semiconductors, 144
band alignment, 145
Schottky barrier, 145
II-VI semiconductors, 146
TI and semiconductors, 144
Wurtzite III-V semiconductors
applications, 146
electrical properties, 147
Hilbert space topology, 25, 29, 30, 47

I
III-Nitrides, 96–99
Indirect exchange interaction
conduction electrons, 117–120
RKKY model, 120, 121
semiconductors, 122, 123
surface fermions, 123–128
topological surface states, 117
Inverse spin-galvanic effect, 20–23
Inversion asymmetric TI films
Newmann function, 129
vicinity of surfaces, 128
voltage controlled magnetic ordering, 129, 130

K
Kubo Hall conductivity
Chern number, 64
generic two-band model, 64, 65
Hamiltonian, 62
Matsubara Green function, 63
temperature factor, 64

L
Lateral heterostructures, 73, 74
Levi-Civita symbol, 79

M
Magnetic atoms, 111, 114, 115
Magnetic devices
phase-locked oscillators, 151
STO, 151
STT, 150
Magnetic field-induced electrical polarization, 81
Magnetic gaps
independent surfaces, 56, 57
proximity-induced topological phase transition, 57–60
Zeeman energy, 56
Magnetic tunnel junctions (MTJs), 150
Magnetoelectric effect, 81
electrical polarization, 81
magnetization, 81
Matsubara Green function, 63
Maxwell equations
4-current, 80
least action principle, 80
Minkowski space, 79, 80
three-dimensional vector form, 80
vector form, 79
Maxwell’s equations modification, 82, 83
Microscopic theory
III-Nitrides, 96–99
QW geometrical parameters, 95
zinc-blende III-V quantum wells, 96

O
Ohmic contacts, 144

P
Parallel magnetic field, thin film, 65–67
Perpendicular magnetic field, thin film, 67–70
Photoconductive detector, 148, 149
Photodetector
broadband optical absorption, 148
p-n heterostructure, 148
types, 148
Photoemission spectroscopy measurements, 113
Proximity coupling, 75, 76
Proximity ferromagnetism, 56

Q
Quantized HE
Chern theorem, 41
integer, 41–43
quantum AHE, 43–45
z_2 topological index, 44–51
Quantum AHE, 60–62
Quantum phase transition, 65–67
Quantum wells
centrosymmetric Bi$_2$Se$_3$-based, 99
Hamiltonian, 100–102
spin-momentum locked states, 99
spin-split QW spectrum, 99
zero field spin splitting, 102–104
Quintuple layers, 111

R
Rashba effect
cubic and wurtzite III-V semiconductors, 89
in normal semiconductors, 89–95 (see also Microscopic theory; Quantum wells)
topological invariants, 89
Rashba spin splitting, 108
Ruderman–Kittel–Kasuya–Yosida (RKKY), 109, 120, 121, 137–139

S
Schottky barrier, 144, 145
Semiconductors, 122, 123
Skyrmion topology, 64, 65

Spin-electron (s-d) interaction
consistent approach, 107
Dirac electrons and holes, 107
effective surface model, 107
fermions and magnetic impurity
electron momentum, 113
Hamiltonian, 113
magnetic atoms, 114, 115
photoemission spectroscopy measurements, 113
position-dependent s-d interaction, 115
spin structure, 114
metals
electron scattering amplitude, 108
indirect exchange, 108
RKKY interaction, 109
s-d/s-f interaction, 108
superconducting and ferromagnetic
proximity effects, 107
TI films, 107
electron-hole symmetry, 110
finite size effects, 110
inter-band matrix elements, 110
inter-band transitions, 111
magnetic atom position, 111
magnetic interaction, 109
quintuple layers, 111
s-d parameters, 111
single-band plane waves, 109
spin-flip electron scattering, 112
Spin Hall effect (SHE), 28
Spin-momentum locked fermions, 14–17
Spin-orbit torque (SOT), 75, 150
Spin-splitting, see Quantum wells
Spin texture, 136
Spin-transfer oscillator (STO), 151
Spin-transfer torque (STT), 75, 150
Spiral proximity field, 72, 73
Surface electron state
crystalline topological insulator, 7
Hamiltonian, 5
in-plane Bloch waves, 5
Tamm–Shockley surface, 7
wave function, 6
zero boundary condition, 6
Surface fermions, 123–128

T
Thin film
parallel magnetic field, 65–67
perpendicular magnetic field, 67–70
surface Hamiltonian, 11–14
wave functions, 7–11
<table>
<thead>
<tr>
<th>Topological insulator (TI)</th>
<th>spatial inversion symmetric film, 58, 59</th>
</tr>
</thead>
<tbody>
<tr>
<td>based microwave sources, 151</td>
<td>Torque and proximity coupling, 75, 76</td>
</tr>
<tr>
<td>based optoelectronic applications, 152</td>
<td></td>
</tr>
<tr>
<td>channel in field effect transistor, 149</td>
<td></td>
</tr>
<tr>
<td>heterostructures, 144, 146</td>
<td></td>
</tr>
<tr>
<td>Topological invariants</td>
<td></td>
</tr>
<tr>
<td>Chern number, 34</td>
<td></td>
</tr>
<tr>
<td>Hilbert space, 25</td>
<td></td>
</tr>
<tr>
<td>Topological magnetoelectric effects</td>
<td></td>
</tr>
<tr>
<td>(TME), 83</td>
<td></td>
</tr>
<tr>
<td>axion field gradient, 83, 85</td>
<td></td>
</tr>
<tr>
<td>chiral edge current, 84</td>
<td></td>
</tr>
<tr>
<td>dielectric TI surface, 83</td>
<td></td>
</tr>
<tr>
<td>Hall conductivity, 84–86</td>
<td></td>
</tr>
<tr>
<td>magnetic monopole, 83, 84</td>
<td></td>
</tr>
<tr>
<td>QAHE Hall current, 85</td>
<td></td>
</tr>
<tr>
<td>QAHE setting, 85</td>
<td></td>
</tr>
<tr>
<td>QHE setup, 86, 87</td>
<td></td>
</tr>
<tr>
<td>Topological phase transition</td>
<td></td>
</tr>
<tr>
<td>spatial inversion asymmetric film, 59, 60</td>
<td></td>
</tr>
</tbody>
</table>

| V | |
| Valence Berry curvature, 62 | |

| W | |
| Wurtzite quantum well (W-QW), 94, 95 | |

Z	
Zak phase	
Chern theorem, 36	
Fourier transformation, 37	
integration path, 36	
one-electron Hamiltonian, 36	
Zero field spin splitting, 102–104	
Zero magnetic spin-splitting, 89	
Zinc-blende quantum wells (ZB-QW), 91–94	