Introduction

less than five million people: This and subsequent global population estimates in this chapter come from the U.S. Census Bureau, Population Division (2010), Historical Estimates of World Population, in International Programs, assessed online at: www.census.gov/ipc/www/worldhis.html.

or they targeted fish that were harder to catch or farther away: McClenachan, L., M. Hardt, J. Jackson, and R. Cooke (2010), Mounting evidence for historical

entire estuaries and coastal ecosystems were devastated by 1900: Lotze, H.K., H.S. Lenihan, B.J. Bourque, R.H. Bradbury, R.G. Cooke, M.C. Kay, S.M. Kidwell, M.X. Kirby, C.H. Peterson, and J.B.C. Jackson (2006), Depletion, degradation,

a few dozen in the 1950s to more than four hundred today: Diaz, R.J., and R. Rosenberg (2008), Spreading dead zones and consequences for marine ecosystems. *Science* 321: 926–929.

Page 3

estimate past changes and understanding those changes in a social and historical as well as scientific context: Jackson et al. (2001); Roberts (2007); Bolster, W.J. (2008), Putting the ocean in Atlantic history: Maritime communities and marine ecology in the Northwest Atlantic, 1500–1800. *American Historical Review* 113: 19–47.

Page 4

for degraded coral reefs, and for estuaries and coastal seas around the world: Jackson et al. (2001); Pandolfi et al. (2003); Lotze et al. (2006).

Page 5

Oviedo cataloged not just these big animals, but also fish, sponges, lobsters, conchs, and sea cucumbers: Oviedo, F. de. (1535), *General and Natural History of the Indies*. Seville, Spain.

heretofore, scientists assumed there were fewer than twenty nesting sites: McClenachan et al. (2006).

restoring both the turtle populations and the seagrass ecosystems: McClenachan et al. (2006).

the recent global decline of large predatory fish: Myers and Worm (2003).

the collapse of the Newfoundland cod fishery after five hundred years of commercial fishing: Vickers, chapter 7, this volume.

Chapter 1

the weight of big, carnivorous fishes was only 3 percent of the entire fish community around the main Hawaiian Islands, but was 54 percent in the remote Northwest Hawaiian Islands, and even more around Palmyra Atoll: Friedlander, A.M., and E.E. DeMartini (2002), Contrasts in density, size, and biomass of reef fishes between the northwestern and the main Hawaiian Islands: The effects of fishing down apex predators. *Marine Ecology Progress Series* 230: 253–264.

“in those twenty leagues, the sea was thick with turtles so numerous it seemed the ships would run aground on them and were as if bathing in them”: Jackson, J.B.C. (1997), Reefs since Columbus. *Coral Reefs* 16(supplement): S23–S32.

“It is affirmed that vessels which have lost their latitude in hazy weather have steered entirely by the noise which these creatures make in swimming”: Jackson (1997).

Page 17

Ram Myers and Boris Worm showed this in their analyses of existing, accessible data sets that had previously been ignored: Myers, R.A., and B. Worm (2003), Rapid worldwide depletion of predatory fish communities. *Nature* 423: 280–283.

Page 18

Page 19

Chapter 2

Page 21

Page 22

using a number of historical vignettes: Tuchman (1984).

overexploitation was followed by the collapse of one species after the other, and the subsequent expansion of the fishing fleets into more distant or deeper fishing grounds: Pauly et al. (2002); Pauly, D., J. Alder, E. Bennett, V. Christensen, P. Tyedmers, and R. Watson (2003), The future for fisheries. *Science* 302: 1359–1361.

Page 23

Figure 2.1 Watson, R., and D. Pauly (2001).

Page 24

Page 25

depended by a factor of 10 within one to twenty years of being accessed by that fishery: Myers and Worm (2003).

necessary for a stock to generate a harvestable surplus yield: Schaefer (1954, 1957).

“fishing down marine food webs” is far more pervasive than originally estimated: Pauly, D., and M.-L. Palomares (2005), Fishing down marine food web: It is far more pervasive than we thought. *Bulletin of Marine Science* 76(2): 197–211.

Page 26

Figure 2.3 Watson, R., A. Kitchingman, A. Gelchu, and D. Pauly (2004), Mapping global fisheries: Sharpening our focus. *Fish and Fisheries* 5(2): 168–177.

Page 27

Page 28

which presently cover only about 0.7 percent of the area of the world’s ocean: Wood, L., L. Fish, J. Laughren, and D. Pauly (2008), Assessing progress towards global marine protection targets: Shortfalls in information and action. *Oryx* 42(3): 340–351.

Page 29

time stream comparisons can have a huge impact on the apparent best policy or project: Koopmans (1960); Heal (1997).

the recent collapse of northern cod off Newfoundland: Ainsworth and Sumaila (2005).

the choice of discount rate and discounting approach is both empirical and ethical: Tol, R.S.J. (1999), Time discounting and optimal emission reduction: An application of FUND. *Climate Change* 41: 351–362.

Page 30

reestablish the natural barriers to fishing that technological progress has removed: Pauly et al. (2002).

the interest of future generations as well as the present generation: Ainsworth and Sumaila (2005); Clark (1973); Sumaila (2004); Sumaila and Walters (2005).

Chapter 3

Page 36

single ideas, data points, observations, factoids, or reports are what change the world: Olson, R. (2009), *Don’t Be Such a Scientist: Talking Substance in an Age of Style*. Washington, DC: Island Press.

Page 37

Page 38

Figure 3.2 illustrates this point. IMDb.com, Inc. (Nd.), *Box Office Figures*, online at: http://www.boxofficemojo.com

Page 39

he recounts the gigantic surge in sales it brought them: Bardley, T. (2008), Super Political Ads Don’t Stake Up to Super Bowl Ads. *ABC News/Politics*, aired February 4, online at: http://abcnews.go.com/Politics/story?id=4240705&page=1

Page 40

Page 41

“Those who cannot remember the past are condemned to repeat it”: p. 284, vol. 1 in Santayana, G. (1905), *The Life of Reason; or, the Phases of Human Progress*, New York: Charles Scribner’s Sons.

Chapter 4

Page 48

Page 49

reproductive failure in 1949 and 1950 precipitated the collapse of the stock: Murphy (1966).

Page 50

Proposed annual anchovy harvests of 200,000 to 1,000,000 mt: chapters 9–10 in McEvoy (1986).

“the annual anchoveta catch can be maintained indefinitely at 9.3 million metric tons”: Schaefer (1970).

Page 51

“Nor can the virtual absence of the sardine from the waters off Alta California be considered an unnatural circumstance”: Soutar and Isaacs (1974).

Figure 4.2: Baumgartner, Soutar and Ferreira-Bartrina (1992).

“Fluctuations of populations must be related to these very large alternations of conditions”: Isaacs, J.D. (1976), Some ideas and frustrations about fishery science. *California Cooperative Oceanic Fisheries Investigations Report* 18: 34–43.

the average anchovy was 54 percent heavier during periods when sardine scale deposition was low: Lasker and MacCall (1983).

a figure presented by Kawasaki, reproduced here in figure 4.3: Kawasaki, T. (1983), Why do some pelagic fishes have wide fluctuations in their numbers?: Biological basis of fluctuation from the viewpoint of evolutionary ecology. p. 1065–1080 in *Proceedings of the Expert Consultation to Examine Changes in Abundance and Species Composition of Neritic Fish Resources*.

regime shift: sensu Isaacs (1976), though they did not use the term.

Figure 4-3: Kawasaki (1983).

worldwide decadal scale variability of anchovies and sardines: Lluch-Belda, D.,

if sardine abundance recovered to at least 20,000 short tons (18,144 mt): Wolf, P. (1992), Recovery of the Pacific sardine and the California sardine fishery. *California Cooperative Oceanic Fisheries Investigations Report* 33: 76–86.

anchoveta catches were returning to pre-1972 levels: Chavez, F.P., J. Ryan, S.E. Lluch-Cota, and M. Niquen C. (2003), From anchovies to sardines and back: Multidecadal change in the Pacific Ocean. *Science* 299: 217–221.

stock and recruitment relationship were developed for both the Pacific sardine: Jacobson, L., and A.D. MacCall (1995), Stock-recruitment models for Pacific sardine (*Sardinops sagax*). *Canadian Journal of Fisheries and Aquatic Sciences* 52: 566–577.

recruits per spawner were about twice as high during favorable environmental conditions as they were during unfavorable conditions: Jacobson and MacCall (1995).

Japanese sardine achieved a remarkable twentyfold increase in recruitment during favorable environmental conditions: Wada and Jacobson (1998).

“They increase off California and Peru when those regions warm and become less productive”: Chavez et al. (2003).

Stock and recruitment relationships described by Jacobson and MacCall in 1995: Jacobson and MacCall (1995).

Chapter 5

Seasonal quotas can be reached shortly after the fishing season opens: Fréon, P., M. Bouchon, C. Mullon, C. García, and M. Ñiquen (2008), Interdecadal variability

Page 60

Landings declined sharply and remained persistently low: MacCall, this volume.

Page 61

Page 62

large-scale changes in Pacific climate that persist for decades at a time: Baumgartner et al. (1992); Schwartzlose et al. (1999); Chavez, F.P., J. Ryan, S.E. Lluch-Cota, and M. Ñiquen C. (2003), From anchovies to sardines and back: Multi-decadal change in the Pacific Ocean. *Science* 299: 217–221; MacCall, this volume.

these highly productive, variable, and relatively well studied fisheries: for a

Page 63

the capacity to extract several times the number of fish that existed in the wild: Fréon et al. (2008).

Figure 5.3: Schertzer and Prager (2007).

Page 64

an adverse effect on recruitment in future years: Pauly (1987).

increases the probability of high recruitment when spawning biomass is low: MacCall, A.D. (1979), Population estimates for the waning years of the Pacific sardine fishery. *California Cooperative Oceanic Fisheries Investigations Report* 20: 72–82.

recruitment increases with greater population size and spawning: Hilborn and Walters (1992).

until a threshold is reached and the relationship breaks down: Barrowman, N.J., and R.A. Myers (2000), Still more spawner-recruitment curves: The hockey

Figure 5.4: Castillo, R., M. Gutiérrez, S. Peraltilla, and N. Herrera (1998), Biomasa de recursos pesqueros a finales del invierno de 1998 Crucero BIC Humboldt José Olaya, de Paita a Tacna. *Informe Instituto del Mar del Perú* 141: 136-155; Ñiquen and Bouchon (2004).

emphasized variations in productivity: Chavez et al. (2003).

emphasized flow patterns on basin scales: MacCall, this volume.

sardines were more abundant than anchovies: Chavez et al. (2003).

Page 67

complicates stock assessments and understanding of recruitment dynamics: McFarlane et al. (2002).

the Kuroshio Current, California Current, and Peru-Chile Current: Schwartzlose et al. (1999); Fréon et al. (2005).

move south toward Chilean waters: Ñiquen and Bouchon (2004); Gutiérrez et al. (2007).

but migrations occur between them: Pauly (1987).

show a more wide-ranging swimming behavior: McFarlane et al. (2002).

may be due to the existence of a separate stock: McFarlane et al. (2002).

important to commercial and recreational fisheries: Fréon et al. (2005).

Page 68

to maintain availability of small pelagics as food for these species: Smith, P.E., personal observation.

and has not recovered along with the anchoveta: Jahncke, Checkley Jr., and Hunt Jr. (2004).

Page 69

much has been learned from sedimentary records: Field et al. (2009).

vary out of phase at other timescales, generally on decadal timescales: Baumgartner et al. (1992).

Figure 5.5: Field et al. (2006).

commercially extinct by the late nineteenth or early twentieth century: Field, J.C., R.C. Francis, and A. Strom (2001), Toward a fisheries ecosystem plan for the

have not been well sampled compared to eggs: Smith, P.E., N.C. Lo, and J. Butler (1992), Life-stage duration and survival parameters as related to interdecadal population variability in Pacific sardine. *California Cooperative Ocean Fisheries Investigations Report* 33: 41–49.

Page 72

population distribution and abundance preceding commercial catch records: Field et al. (2009).

specific links between marine populations and climatic changes: Hsieh et al. (2005).

prevented action from being taken: Shertzer and Prager (2007).

Page 73

although new combinations of species may occur: Field et al. (2006).

coupled with other anthropogenic activities and stresses: Jackson et al. (2001).

Page 74

Adaptability is all the more important in the face of climate change: Hsieh et al. (2005).

Page 75

Page 78

Chapter 6

Page 79

Page 80

Page 81

but was a precondition to it: Rivinus, E.F., and E.M. Youssef (1992), *Spencer Baird of the Smithsonian*. Washington, DC: Smithsonian Institution Press.

could reduce valuable populations of pollock, cod, and haddock that entered coastal waters to feed: Connor, S. (1878), *Address*. Augusta: Sprague, Owen and Nash.

Page 82

the perversion of standards by which the “natural” ocean had come to be evaluated: Jackson et al. (2001); Knowlton, N., and J.B.C. Jackson (2008), Shifting baselines, local impacts, and global change on coral reefs. *PloS Biology* 6: e54.(doi:10.1371/journal.pbio.0060054).

“fishing down the food web” had been abetted by the shifting baseline syndrome: Pauly, D., V. Christensen, J. Dalsgaard, R. Froese, and F.C. Torres Jr. (1998),

Page 85

Page 86

in other public and private collections: Archives with significant fishing collections in Massachusetts include: National Archives Regional Administration, Waltham [NARA]; Peabody Essex Museum, Salem [PEM]; Marblehead Historical Society, Marblehead; Baker Business Library, Harvard University, Cambridge; Beverly Historical Society, Beverly. In Maine, collections include: Penobscot Bay Marine Museum, Searsport; and Old Berwick Historical Society, South Berwick. The
Smithsonian Library, Washington, D.C.; and the G. Blunt-White Library, Mystic Seaport Museum, Mystic, Connecticut, also house fisheries records, and some documents are scattered among local historical societies, museums, libraries, and private collections. Because manuscripts are cataloged differently in different archives, citations below are idiosyncratic. Archivists who know the collection are indispensable and should be consulted from the first. A full archival citation will be given for fishing logs quoted herein.

Page 87

TORPEDO: TORPEDO log, Captain Larkin West, 1852. (NARA Waltham RG36, Box 88: F530a).
IODINE: IODINE log, Captain Thomas Boden, 1856. (NARA Waltham RG36, Box 71: F486b).
PETREL: PETREL log, Captain Calvin Foster, 1854. (NARA Waltham RG36, Box 81: F512c).

Page 88

Figure 6.2: DOVE log, Captain John Woodbury, 1852 (NARA Waltham RG36, Box 62, F467a).
HENRY: HENRY log, Captain Simeon Beckford, 1855. (NARA Waltham RG36, Box 69: F482d).

Page 89

disastrous state following the American Revolution: p. 149–158 in Sabine (1853).

the Collector of Customs in the vessel’s home port: p. 169 in Sabine (1853).

as the fraction of total fish he had caught: p. 166 in Sabine (1853).

Page 90

SARAH: SARAH log, Captain Charles Trask, 1852. (NARA Waltham RG36, Box 91: F537).
FRANKLIN: FRANKLIN log, Captain Samuel Nelson, 1852. (NARA
Waltham RG36, Box 67: F474i).
(NARA Waltham RG36, Box 63: F468a).
ESSEX: ESSEX log, Captain Abraham Trott Jr., 1852. (NARA Waltham
RG36 Box 64: F471a).
HENRY: HENRY log, Captain Elisha Pride, 1852. (NARA Waltham
RG36, Box 69: F482b).
what had traditionally functioned, at least from the fishermen’s perspective, as
a maritime common: Leavenworth, W.B. (2006), Opening Pandora’s Box: Trad-
tition, competition and technology on the Scotian Shelf, 1852–1860. p. 29–49 in
Starkey, D.J., and J.E. Candow, editors, Studia Atlantica: Proceedings of the 7th Con-
ference of the North Atlantic Fisheries History Association [NAFHA] . Hull UK and
Nordurslod IS: NAFHA.

Page 91
BELLE: BELLE log, Captain Benjamin Gentlee, 1854. (NARA Waltham
RG36, Box 56: F452b).
J. PRINCE: J. PRINCE log, Captain George Elliot, 1852. (NARA Waltham
RG36, Box 72: F490a).
LODI: LODI log, Captain Oren Eldridge, 1852. (NARA Waltham RG36,
Box 74: F496c).

Page 92
were also the most complete between 1852 and 1859: Sources of data for the
Beverly Scotian Shelf fleet; the Newburyport and Frenchman’s Bay fleets are as fol-
lows: NARA Waltham Record Group [RG] 36, Customs District Records: Salem/Beverly MA District logs-Record #441A-538; fishing agreements-Record
#9-13; Frenchman’s Bay ME District logs and agreements Record #104, 105.
James Duncan Phillips Library, Peabody Essex Museum: Newburyport MA logs-
In the 1850s the Scotian Shelf consisted of Browns Bank, LeHave Bank, Sable
Island Bank, Middle Bank, and Banquereau: Garcia, S., and T. Farmer, editors
.oceansatlas.org/servlet/CDSServlet?status=ND0zNDQwJmN0bl9pbmZvX3ZpZ
Xdjc2l6ZT1jdG5faW5mb192aWV3X2Z1bGwmNj1lbiYzMz0qJjM3Ptvw~; Garcia, S., and T. Farmer, editors (2000), LME #8: Scotian Shelf. Large Marine
Ecosystems of the World, online at: http://www.edc.uri.edu/lme/Text/scotian-shelf
.htm
conform to the boundary dividing U.S. and Canadian territorial waters: Halli-
day, R.G., and A.T. Pinhorn (1990), The delimitation of fishing areas in the North-
Page 93

Page 94

Figure 6.4: ANGLER log, Captain Nathan Buck Jr., 1853. (NARA Waltham RG 36, Box 55, F448).

Page 95

the number of Beverly vessels fishing on the Scotian Shelf declined by half and the entire Beverly cod fleet by 55 percent: Rosenberg et al. (2005); Leavenworth (2006).

Page 96

CLARA M. PORTER: CLARA M. PORTER log, Captain Solomon Woodbury, 1853. (NARA Waltham RG36, Box 61: F462a).

price increased by about 25¢/quintal from the year before, and exports increased as well: p. 354–357 in O’Leary (1996).

Page 97

LODI: LODI log, Captain Samuel Wilson, 1857. (NARA Waltham RG36, Box 74: F496f).

ROBERT: ROBERT log, Captain R.C. Dennis, 1857. (NARA Waltham RG36, Box 84: F518f).

SUSAN CENTER: SUSAN CENTER log, Captain Thomas Gayton, 1857. (NARA Waltham RG36, Box 86: F526f & g).

precisely at the time that catches were declining: Leavenworth (2006).

Page 98

RICHMOND: RICHMOND log, Captain Abram A. Fisk, 1854. (NARA Waltham RG36, Box 82: F516d).
Wilson expressed greater enthusiasm for boats: LODI log, Captain Samuel Wilson, 1856. (NARA Waltham R636, Box 74. F496e)

35 percent of Beverly vessels were using this new technology: Leavenworth (2006).

the well-financed and heavily subsidized French fleet of treaty violations by employing them: p. 29–30 in Sabine (1853).

French trawlers crossed the Laurentian Channel to Banquereau in 1858: Leavenworth (2006).

The effect was devastating on the already beleaguered Beverly fleet: Leavenworth (2006).

FRANKLIN: FRANKLIN log, Captain Enos Hatfield, 1858. (NARA Waltham RG36, Box 67: F474o).

LODI: LODI log, Captain Samuel Wilson, 1858. (NARA Waltham RG36, Box 74: F496g).

PELICAN: PELICAN log, Captain Jones Hatfield, 1858. (NARA Waltham RG36, Box 80: F510g).

PRIZE BANNER: PRIZE BANNER log, Captain Solomon Woodbury, 1858. (NARA Waltham RG36, Box 82: F515b).

Tub trawling clearly made the fisheries more dangerous than ever for men on the banks: Leavenworth (2006).

PETREL: PETREL log, Captain Calvin Foster, 1854. (NARA Waltham RG36, Box 81: F512c).

MAYFLOWER: MAYFLOWER log, Captain Gustavus Obear, 1858. (NARA Waltham RG36, Box 78: F503g).

EXCHANGE: EXCHANGE log, Captain Daniel McGrath, 1858. (NARA Waltham RG36, Box 65: F472h).

Wilson had experimented with them for almost a decade: for the technological shift from handlining to tub trawling, see p. 148–181, vol. 1, section V, in Goode, G.B. (1884–1887); ch. 12 in Innis (1940); Leavenworth (2006).

cod, and other demersal species would soon become “scarce as salmon”: Bolster (2006).

“a few years since . . . [to] set line fishing (tub trawling), first practiced on it by the French and latterly by United States fishermen”: p. 376–377 in Innis (1940).

“Not much fished at present by Americans”: chart 4, vol. 3 in Goode (1884–1887).

the earliest regular scientific sampling surveys by thirty: Smith (1994).

we estimated the biomass of the cod population in 1852, the first year of the time series: Rosenberg et al. (2005).

Figure 6.6: Rosenberg et al. (2005).

43 percent of all spoken vessels: Sources of data for the spoken vessels are as follows: NARA Waltham Record Group [RG] 36, Customs District Records: Barnstable MA District fishing agreements-Record #533; Marblehead MA District fishing agreements-Essex Institute Collection #9-11; Frenchman’s Bay ME District logs and agreements Record #104, 105; Machias ME District logs-Record #76; fishing agreements-Record #75; Penobscot-Castine ME District logs Record #137; fishing agreements-Record #136. James Duncan Phillips Library, Peabody Essex Museum: Newburyport MA logs-Manuscript Collection [Mss] 282, Box 31; Barnstable MA District enrolled vessels; Marblehead MA District vessel registers; Applebee Collection of Castine ME vessels; Colcord, Lincoln, compiler, (1932),

Page 107

Europeans had exploited those grounds since at least 1539: Ramusio 1565, quoted in Rosenberg et al. (2005).

much like the earliest stages of modern exploitation of an unfished species: Rosenberg et al. (2005).

adjusted for assumed rates of natural mortality (M) and recruitment: Rosenberg et al. (2005).

Page 108

Page 109

Page 110

the total carrying capacity of the Scotian Shelf 1.15 million metric tons: Myers et al. (2001).

biomass for this area is less than 50,000 metric tons: Fanning, Mohn, and MacEachern (2003); Rosenberg et al. (2005).

Page 111

Figure 6.7: Rosenberg et al. (2005).

Page 112

both history and biology indicate otherwise: Myers (2001); Northeast Fisheries Science Center (2002), Final report of the working group on re-evaluation of biological reference points for New England groundfish. Northeast Fisheries Science Center Reference Document 02-04; Rosenberg et al. (2005).

Chapter 7

Page 115

Page 116

“we should have the chance of reconstructing the population of our country as it was during all those generations which went by before the census began in 1801, of doing it swiftly, accurately, and completely”: p. 160 in Laslett (1963).

Page 117

Laslett discovered a number of astonishing facts: Laslett (1963).

households were a lot smaller (4.0–4.5 members) than Laslett had expected: Laslett (1963).

“We cannot yet tell: we may never be able to tell”: p. 181–182 in Laslett (1963).

with its “more humane, much more natural relationships” was simply a myth: p. 236 in Laslett (1965).

Page 121

marine ecology could well proceed along the same path: Safina, this volume.

drew from two mutually exclusive labor pools: Vickers (1994).

Page 122

Page 123

Page 125

Page 126

“if we leave them sufficient for their use we may lawfully take the rest, there being more than enough for them and us”: Winthrop, J. (1629), Reasons to be Considered for . . . the Intended Plantation in New England. p. 70–74 in Heimert, A., and A. Delbanco, editors (1985), *The Puritans in America: A Narrative Anthology*. Cambridge, MA: Harvard University Press.

one needs to take much of what they wrote with a grain of salt: Cronon (1983).

shad “so thick . . . you could not put in your hand without touching some of them”: Marston, P.M., and G. Myron (1938), Notes on Fish and Early Fishing in the Merrimack River System. p. 190 in Hoover, E.E., editor *Biological Survey of the Merrimack Watershed*. New Hampshire Fish and Game Department, Report #3.

mollusks were a lot smaller and much fewer in number than they had been at the time of European settlement: Kirby, M.X. (2004), Fishing down the coast: Historical expansion and collapse of oyster fisheries along continental margins. *Proceedings of the National Academy of Sciences of the United States of America* 101(35): 13096–13099.

Page 127

the fur trade in western Canada during the eighteenth century: Ray, A.J., and D. Freeman (1978), ‘Give us Good Measure’: An Economic Analysis of Relations

subsidizing the fishing industry and the communities that pursued it: Sumaila and Pauly, this volume.

Part IV Introduction

Page 135

Page 136

managers can better anticipate the likely environmental consequences of different actions: Lotze, H.K., and B. Worm (2009).

the carrying capacity of the environment and the biological characteristics of cod: Bolster and Alexander, this volume.

Chapter 8

Page 137

Page 138

climate records based on stable isotopes or pollen: Committee on the Geologic Record of Biosphere Dynamics, and National Research Council (2005).

the environmental conditions when each layer was formed: Swart, P.K., and A. Grottoli (2003), Proxy indicators of climate in coral skeletons: A perspective. *Coral Reefs* 22(4): 313–315.

the population structure of reefs had remarkable stability over a period of ~100,000 years: Pandolfi, J.M. (1999), Response of Pleistocene coral reefs to environmental change over long time scales. American Zoologist 39: 113–130.

Page 143

species dominance associated with the reduction of Colorado River flows in the early twentieth century: Committee on the Geologic Record of Biosphere Dynamics, and National Research Council (2005).

Figure 8.3: Cooper and Brush (1993).

Page 144

estimating relative or absolute abundance compared to simple presence or absence: Kidwell and Flessa (1995).

this is sometimes possible under special circumstances: Chepstow-Lusty, A.,

Page 145

evidence for the colonization of the California coast by about 13,000 to 12,000 years ago: Erlandson (2001, 2002).

species that occurred in earlier times but are now regionally or globally extinct: Lotze, H.K., and I. Milewski (2004), Two centuries of multiple human impacts and successive changes in a North Atlantic food web. *Ecological Applications* 14(5): 1428–1447.

Pages 146–147

their breeding range had shrunk to the southern part of the South Island: Smith (2005).

reduced range and numbers of fur seals until protection was implemented in 1873: Smith (2005).

Page 148

collaborations of archaeologists and historical ecologists: Erlandson et al. (2005).

Page 149

Figure 8.5: Broughton (1997, 2002).

Page 150

Levels of neutral genetic variation increase with population size: Avise, J., R. Ball, and J. Arnold (1988), Current versus historical population sizes in vertebrate species with high gene flow: A comparison based on mitochondrial DNA

Page 151

Similar human responses have occurred many times and in many places to this day: Lotze, H.K. (2004), Repetitive history of resource depletion and management: the need for a shift in perspective. in Browman, H.I., and K.I. Stergiou, editors, Perspectives on ecosystem-based approaches to the management of marine resources. *Marine Ecology Progress Series* 274: 282–285.

very different from today’s coastal migration routes to northern feeding
J. Lien, D. Mattila, P.J. Palsbøll, S. Sigurjónsson, P.T. Stevick, and N. Øien (1999),
An ocean-basin-wide mark-recapture study of the North Atlantic humpback whale

the historical distribution of right whales in the North Pacific: Josephson,
E.A., T.D. Smith, and R.R. Reeves (2008), Historical distribution of right whales

the first signs of overfishing appeared in the mid-1800s: Hutchings, J.A., and
R.A. Myers (1995), The biological collapse of Atlantic cod off Newfoundland and
Labrador: An exploration of historical changes in exploitation, harvesting, technol-
ogy and management. p. 38–93 in Arnason, R., and L. Felt, editors The North At-
lantic Fisheries: Successes, Failures and Challenges. Charlottetown, Prince Edward Is-
land, Canada: The Institute of Island Studies.

an increase in numbers of target species in the commercial fisheries: Lotze

Page 152

Figure 8.6: Townsend (1935); Reeves et al. (2004); Smith et al. (1999).

extreme ecological degradation over the past century: Lotze, H.K. (2005),
Radical changes in the Wadden Sea fauna and flora over the last 2,000 years. Hel-

loss of oyster banks and of complexity and diversity of benthic communities
due to overfishing: Reise, K., E. Herre, and M. Sturm (1989), Historical changes in
the benthos of the Wadden Sea around the island of Sylt in the North Sea. Hel-

Page 153

Figure 8.7: Lotze (2004); Lotze and Milewski (2004).

a common sign of eutrophication: Lotze and Milewski (2004).

changes in species composition began almost from the start of the trawl fishery
a century before: Klaer, N.L. (2001), Steam trawl catches from south-eastern Aus-
tralia from 1918 to 1957: trends in catch rates and species composition. Marine and
Freshwater Research 52: 399–410.

fisheries data have become increasingly available since the late nineteenth
to early twentieth centuries: Goode, G.B. (1884–1887), The fisheries and fishery
industries of the United States. Prepared through the co-operation of the commissioner
of fisheries and the superintendent of the tenth census by George Brown Goode . . .
and a staff of associates. Washington, DC: Government Printing Office; Cushing
(1888).

to infer past trends in abundance: Hilborn, R., and C.J. Walters (1992), Quan-
titative Fisheries Stock Assessment: Choice, Dynamics and Uncertainty. New York:

changes in response to human harvesting have been documented for many other species: Fenberg, P.B., and K. Roy (2008), Ecological and evolutionary consequences of size-selective harvesting: How much do we know? Molecular Ecology 17: 209–220.

Page 156

Figure 8.8: Original specimens in museum collections are from the California Academy of Sciences, University of California Museum of Paleontology, Los Angeles County Museum of Natural History, San Diego Natural History Museum, Santa Barbara Museum of Natural History and Scripps Institution of Oceanography Benthic Invertebrate Collection; recent field survey took place in Southern California from Los Angeles to San Diego. Roy et al. (2003).

due to overfishing during postwar fishing booms: Smith (1994).

Page 157

severely reduced or extinct by 1900 due to human impacts: Lotze and Milewski (2004).

more than a hundred times greater than today: Lotze and Milewski (2004).

Page 158

exploitation has fundamentally altered marine food webs and ecosystems over time: Jackson et al. (2001); Christensen, V., S. Guénette, J.J. Heymans, C.J. Wal-

the categorical abundance of different groups of reef organisms over different cultural periods: Pandolfi et al. (2003); Pandolfi, J.M., J.B.C. Jackson, N. Baron, R.H. Bradbury, H. Guzman, T.P. Hughes, F. Micheli, J. Ogden, H. Possingham, C.V. Kappel, and E. Sala (2005), Are US coral reefs on the slippery slope to slime? *Science* 307: 1725–1726.

powerful for estimating the decline in fish populations: Myers and Worm (2003).

relative contributions of fishing versus oceanographic change: McCall, this volume; Field et al., this volume.

Page 159

Figure 8.9: Lotze and Milewski (2004).

Page 160

Figure 8.10: Lotze et al. (2006); Lotze and Milewski (2004).
Chapter 9

Page 163

Page 164

Figure 9.1: ch. 2 in Braudel (1978).

Page 165

interpreting historical data about state of the oceans in the past requires making assumptions about the past: Vickers, this volume.

Page 167

do not combine to give a good fit of gray whale population trajectories to population counts in the twentieth century: Reilly, S. (1981), Population Assessment and Population Dynamics of the California Gray Whale (Eschrichtius robustus). Seattle: College of Fisheries, University of Washington.

complex models with changing carrying capacities are invoked: Punt, A.,
C. Allison, and G. Fay (2004), An examination of assessment models for the eastern
North Pacific gray whale based on inertial dynamics. *Journal of Cetacean Research

bring historical and current population data into alignment: e.g., Punt et al.
(2004).

loss rate of \(L = 50 \text{ percent} \) (\(1/(1-L) = 2.0 \)) in preindustrial whaling in the
North Atlantic: Mitchell, E., and R. Reeves (1983), Catch history, abundance, and
present status of northwest Atlantic humpback whales. *Report International Whal-
ing Commission* (special issue) 5: 153–212.

Peter B. Best and colleagues suggested \(L = 25 \text{ percent} \) (\(1/(1-L) = 1.3 \)) for right

J. E. Scarff suggested 57 percent (\(1/(1-L) = 2.3 \)): Scarff, J.E. (2001), Prelimi-
inary estimates of whaling induced mortality in the 19th century North Pacific right
whale (*Eubalaena japonica*) fishery adjusting for struck-but-lost whales and non-

the fate of the many whales that were chased and lost was seldom recorded: Sher-
man, S. (1984), The nature, possibilities and limitations of whaling logbook

Page 168

Reeves noted that the quality of logbook entries often declined from the 1840s
to the 1880s: Reeves, R. (1984), A note on interpreting historic log books and

recorded humpback whale catch in the North Atlantic of about 29,000 ani-
males: Stevick, P., J. Allen, P. Clapham, N. Friday, S. Katona, F. Larsen, J. Lien,
D. Mattila, P. Palsboll, J. Sigurjónsson, T. Smith, N. Øien, and P. Hammond
(2003), North Atlantic humpback whale abundance and rate of increase four de-
cades after protection from whaling. *Marine Ecology Progress Series* 258:
263–273.

“interpretation of the extracted information by scholars is essential”: Sherman

Page 169

illuminate the past population sizes of hunted whale populations: Roman, J.,
301: 508–510; Alter, S.E., E. Rynes, and S.R. Palumbi (2007), DNA evidence for his-
toric population size and past ecosystem impacts of gray whales. *Proceedings of the

comparing DNA sequences that have been obtained from individuals in the
same population: e.g., Baker, C., A. Perry, J. Bannister, M. Weinrich, R. Abernethy,
J. Calambokidis, J. Lien, R. Lambertsen, J. Ramírez, O. Vasquez, P. Clapham,
A. Alling, S. Obrien, and S. Palumbi (1993), Abundant mitochondrial DNA vari-
ation and worldwide population structure in humpback whales. *Proceedings of the
National Academy of Sciences of the United States of America* 90(17): 8239–8243;

where *N_e* is the long-term effective size of the population: Avise, J., R. Ball, and J. Arnold (1988), Current versus historical population sizes in vertebrate species with high gene flow: A comparison based on mitochondrial DNA lineages and inbreeding theory for neutral mutations. *Molecular Biology and Evolution* 5: 331–344.

current levels of whale diversity reflect past population sizes more than they reflect current levels: Baker et al. (1993).

Page 170

or 20–40 percent per million generations, in this region of the whale genome: Alter et al. (2007).

breeding females are thought to make up about one-sixth to one-eighth of a whale population: Roman and Palumbi (2003).

typically assumed in models and management plans: Alter et al. (2007).

Page 171

previous estimates of the mutation rate of one gene were low by about a factor of two: Alter, S.E., and S.R. Palumbi (2009), Comparing evolutionary patterns and variability in the mitochondrial control region and cytochrome b in three species of baleen whales. *Journal of Molecular Evolution* 68: 97–111.

genetic diversity in one population of North Pacific gray whale suggests a historic population of 90,000 instead of 20,000: Alter et al. (2007).

simulated the diversity of DNA sequences in gray whale populations as if they had been subjected to a bottleneck during whaling: Alter et al. (2007).

Page 172

Figure 9.3: Alter et al. (2007).

Chapter 10

Page 178

... Cod have been a mainstay of fisheries for much of the developed world for more than five hundred years: Kurlansky, M. (1997), *Cod: A Biography of the Fish That Changed the World*. New York: Walker and Co.

Page 179

... as recently shown by Rose for northern cod stocks: Rose, G.A. (2004), Reconciling overfishing and climate change with stock dynamics of Atlantic cod (*Gadus*
morhua) over 500 years. Canadian Journal of Fisheries and Aquatic Science 61: 1553–1557.

overfishing has been nearly unaffected or even exacerbated by management: Rosenberg, A.A. (2003), Managing to the margins: The overexploitation of fisheries. Frontiers in Ecology and the Environment 1: 102–106.

Page 180

Page 181

slow response to the problem of overfishing and the loss of too many resources: Rosenberg (2003).

Page 182

as major alteration of food webs: Jackson et al. (2001).

limited days fishing, established fishing seasons, protected spawning, issued licenses, imposed gear restrictions, and even instituted a landings moratorium—all before 1700: *Laws Relating to Inland Fisheries in Massachusetts 1623–1886* (1887).

a shortage of cod near Boston in the 1650s: Leavenworth (2008).

Page 185

the appeal of its “relative simplicity” and “lower information demand”: p. 5 in Longhurst (2010).

Results indicated that monkfish were not overfished and overfishing was not occurring, although fish size had declined: Northeast Data Poor Stocks Working Group (2007), *Monkfish Assessment Summary for 2007*. Northeast Fisheries Science Center Reference Document 07-13, online at: http://www.nefsc.noaa.gov/publications/crd/crd0713/

biological indicators have been adjusted downward: Hermsen, J. (2009), Monkfish northern and southern fishery management area daily landings and days-at-sea limit allocations for FY 2011–FY 2013. *Draft Amendment 5 to the Monkfish FMP incorporating Stock Assessment and Fishery Evaluation as well as a DSEIS*. New England Fisheries Management Council, online at: http://www.nefmc.org/monk/index.html

Regulators are considering a five-year fishing moratorium to rebuild stocks: Lindsey, J. (2010), Regulators weigh 5-year southern NE lobstering ban. Associated Press, online via News8 wtnh.com, at: http://www.wtnh.com/dpp/news/business/regulators-weigh-5-year-southern-ne-lobstering-ban

recovery from overfishing under adverse climate conditions may take a century: MacCall (2002).

there is no historical evidence that sustainable fisheries have ever been maintained for long periods of time: Longhurst (2010).

density of the shellfish had increased to about half of the average harvest from 1977 to 1988: Stokesbury (2002).

biomass appears to be at levels not seen since the late 1960s: Stone, H.H., S. Gavaris, C.M. Legault, J.D. Neilson, and S.X. Cadrin (2004), Collapse and re-

Page 188

Resident and migrant mammals include five species of seals (harp, gray, harbor, hooded, and ringed seals), 10 species of whales (humpback, minke, fin, sperm, right, beluga, orca, sei, blue, and pilot), along with white-beaked, whitesided, common, bottlenose, and Risso’s dolphins and harbor porpoise: p. 99–132 in MacDonald, C. (2010).

Some scientists fear a total collapse is under way: Limburg and Waldman (2009).

Important to both freshwater and oceanic ecosystems: Garmen, G.C., and S.A.

Page 189

it helped reestablish a spawning population of two million alewives in just ten years: Natural Resources Council of Maine (2009), *Kennebec River Reborn 10 Years after Dam Removal*, online at: http://www.nrcm.org/newsdetail.asp?news=3128

a default closure of directed commercial fisheries in state waters by 2012 unless sustainable harvest plans have been approved: p. iii–vii in Atlantic States Marine Fisheries Commission Shad and River Herring Plan Development Team (2010), *Shad and River Herring Management Plan*, online at: http://www.asmfc.org/“managed-species-shad-and-river-herring”

locations and timing of river herring hot spots in New England waters have been modeled using recent data: Cournane and Correia (2010).

as in the case of cod: Pauly and Maclean (2003); Part III, this volume.

fishers move on to other species, which are generally smaller and grow faster: Bonfil, R., G. Munro, U.R. Sumaila, H. Valtysson, M. Wright, T. Pitcher,

in the mid-1600s a single trap on the southern coast of the Iberian Peninsula caught up to 100,000 tuna every year: unpublished data, Medina-Sidonia family archives.

Figure 11.2: Unpublished data, Medina-Sidonia family archives.

the data are more fragmentary and recent: Bolster, Alexander and Leaverton, Lotze et al., and Palumbi, this volume.

long-term oscillations in sardines and anchovies driven primarily by oceanographic change: Part II, this volume.

a measure that would have banned international trade in this endangered species: Stokstad, E. (2010), Trade trumps science for marine species at international meeting. *Science* 328: 26–27.

when the ocean’s riches were viewed as inexhaustible: Huxley, T.H. (1884), Inaugural address of the fishery conferences. *Fisheries Exhibition Literature* 4: 1–19.

Page 196

reefs were already mildly to severely degraded: Pandolfi et al. (2003).

Abundance of reef fishes has declined by 90–95 percent just in the last fifty years: Gardner et al. (2003).

yield great differences in coral and fish populations: Friedlander, A.M., and E.E. DeMartini (2002), Contrasts in density, size, and biomass of reef fishes between the northwestern and the main Hawaiian Islands: The effects of fishing down apex notes 269

...by overgrowth or indirectly by promoting coral disease: Hughes (1994).

Page 197

mass mortality of corals: Hughes et al. (2003).

show comparable declines at sites scattered throughout the Caribbean before the 1980s: Jackson et al. (2001).

bleaching increased to epidemic proportions: Hughes (1994); Aronson et al. (2002); Aronson et al. (2004).

but have little bearing upon the causes or magnitude of changes that may have occurred earlier elsewhere, as in the case of Barbados: Lewis (1984).

unless we reduce all the threats as soon as possible: Pandolfi et al. (2005); Jackson, J.B.C., J.C. Ogden, J.M. Pandolfi, N. Baron, R.H. Bradbury, H.M. Guzman, T.P. Hughes, C.V. Kappel, F. Micheli, H.P. Posshingam, and E. Sala (2005), Re-assessing U.S. coral reefs—response. *Science* 308: 1740–1742; Knowlton and Jackson (2008).

unless we also halted overfishing and the runoff of pollution from the land: Hughes et al. (2003); Sandin et al. (2008); Knowlton and Jackson (2008).

Page 198

the monk seal was already extinct: Jackson (1997); Jackson et al. (2001); McClenanchan et al. (2006); McClenanchan and Cooper (2008).

wipes out entire meadows and their associated shrimp and fish stocks: Jackson et al. (2001).
water quality has declined severely: Pandolfi et al. (2005).

Page 199

everfishing had upset this balance by the early 1900s: Hardt, M.J. (2009), Lessons from the past: the collapse of Jamaican coral reefs. Fish and Fisheries 10: 143–158.
identify conservation priorities to ward off imminent collapse: Pandolfi et al. (2005).
incorporate the data into a historical database: sensu Pandolfi et al. (2003, 2005).
an entirely different trajectory to a new alternative community state: Knowlton 2004.

Page 200

Figure 11.3: Pandolfi et al. (2003); Pandolfi et al. (2005), Knowlton (2004). Coral reef communities were remarkably stable for millennia until their geologically instantaneous collapse: Pandolfi (1996, 2002); Aronson et al. (2002, 2004); Pandolfi and Jackson (2007).
cyclical, and therefore predictable, fluctuations over comparable time periods: MacCall, this volume.
seem particularly promising for analysis of pelagic baseline communities: Lotze et al., this volume.

Page 201

they may have an oceanographic as well as anthropogenic explanation: Part 2, this volume.
human impacts must have been primarily responsible: Jackson et al. (2001); Pandolfi et al. (2003); Steadman, D.W., P.S. Martin, R.D.E MacPhee, A.J.T. Jull, H.G. McDonald, C.A. Woods, M. Iturralde-Vinent, and G.W.L. Hodgins (2005),

oceanographic regime shifts: MacCall, this volume.

from apex predators to herbivores: Friedlander and DeMartini (2002); Knowlton and Jackson (2008); Sandin et al. (2008).

from vertebrates to invertebrates: Jackson and Sala (2001).

an inevitable problem of multiple ecosystem states: Scheffer et al. (2001); Knowlton (2004).

significantly degraded from their pristine state: Jackson (2008).

attempt to reverse degradation once it has occurred: Jackson et al. (2001); Scheffer et al. (2001).

Page 203

that can help sustain the commitment to stay the course in others: Pandolfi et al. (2005); Safina et al. (2005).

which take so much longer to grow and reproduce: Jackson (1991); Newman et al. (2006); Knowlton and Jackson (2008).

Epilogue

Page 206

Karen E. Alexander is a historical fisheries scientist at the University of New Hampshire. She has coordinated the Gulf of Maine Cod Project since 2002, using her degrees in mathematics and history to facilitate communications between the project’s scientists and historians. Co-editor of *Journal of a Cruise* by Captain David Porter, she also served as an advisor on a US Supreme Court case as well as on several documentary films, and currently writes on maritime history and fisheries science.

W. Jeffrey Bolster is an associate professor of history at the University of New Hampshire, best known for his prize-winning *Black Jacks: African American Seamen in the Age of Sail*. A maritime historian increasingly fascinated by changes in the sea, his research has shifted to marine environmental history. Bolster is part of the interdisciplinary Gulf of Maine Cod Project, and has contributed to their papers in *Frontiers in Ecology and the Environment* and *Fish and Fisheries*, among other journals. His solely authored papers have appeared in *Environmental History* and *The American Historical Review*. He is currently writing a book on the environmental history of the northwest Atlantic in the age of sail.

Francisco Chavez is a biological oceanographer with interests in how climate variability and change regulate ocean ecosystems on local and basic scales. He was born and raised in Peru, has a BS from Humboldt State and a PhD from Duke University. He was one of the first members of the Monterey Bay Aquarium Research Institute (MBARI) where he pioneered time series research and the development of new instruments and systems to make this type of research sustainable. Chavez has authored or co-authored more than a hundred peer reviewed papers, with ten in *Nature* and *Science*. He is a past member of the National Science Foundation Geosciences Advisory Committee, has been heavily involved in the development of the US Integrated Ocean Observing System (IOOS), and is a member of the governing board of the Central and Northern California Coastal Ocean
Observing System (CeNCOOS) and the Science Advisory Team for the California Ocean Protection Council. Chavez is a Fellow of the American Association for the Advancement of the Sciences, honored for distinguished research on the impact of climate variability on oceanic ecosystems and global carbon cycling. He was named Doctor Honoris Causa by the Universidad Pedro Ruiz Gallo in Peru in recognition of his distinguished scientific career and for contributing to elevate academic and cultural levels of university communities in particular and society in general.

Jamie M. Cournane, a postdoctoral research fellow at the University of New Hampshire and Environmental Defense Fund, currently serves on the Atlantic Herring Plan Development Team of the New England Fishery Management Council. She has worked most recently on mapping hot spots of river herring bycatch by trawlers and seiners that target Atlantic herring. For her doctoral work, she assessed spatial patterns of groundfish biodiversity in the Gulf of Maine and Georges Bank over the past hundred years and emphasized that historical perspectives provide baselines to measure success in the current spatial management of fisheries.

Jon M. Erlandson is an archaeologist, professor of anthropology, and Knight Professor of Arts and Sciences at the University of Oregon (UO), where he directs the Museum of Natural and Cultural History. He earned his PhD from the University of California, Santa Barbara in 1988, and taught at the University of Alaska–Fairbanks before joining the UO faculty in 1990. With sixteen books and more than two hundred scholarly articles published, Erlandson’s research focuses on the origins and development of maritime societies, human migrations, the peopling of the Americas, and the historical ecology of marine fisheries and coastal ecosystems.

David B. Field is currently an assistant professor in marine sciences at Hawaii Pacific University. He has worked extensively in reconstructing past changes in climate and marine populations from laminated marine sediments as well as calibrating and determining the fidelity of the fossil records with historical records and plankton tows. He has used planktonic foraminifera from the Santa Barbara Basin to distinguish the warming trend from natural variability in the California Current. Investigations with fish debris have been used to infer past variations in fish populations. Field has also lived and worked in Peru as part of an international group of investigators (Paleopeces) reconstructing climate and ecosystem change in the Peru-Chile Current.
Marah J. Hardt, founder of OceanInk, is a research scientist, writer, and consultant. A coral reef ecologist by training, she keeps one foot wet in the field, while the other roams the worlds of creative storytelling and problem-solving, with a focus on ocean conservation and climate change issues. Her interdisciplinary background and effective communication skills allow her to work with diverse thought leaders, from scientists to social entrepreneurs, to create innovative solutions to pressing conservation problems. Her articles have appeared in academic and popular media, such as *The American Prospect*, *Ecology Letters*, and *Scientific American*.

Jeremy B. C. Jackson is the Ritter Professor of Oceanography and Director of the Center for Marine Biodiversity and Conservation at the Scripps Institution of Oceanography in La Jolla, California, and Senior Scientist Emeritus at the Smithsonian Tropical Research Institute in the Republic of Panama. Previously he was Professor of Ecology at Johns Hopkins University. He is the author of more than 150 scientific publications and author or editor of seven books. His research includes human impacts on the oceans and the ecology and paleoecology of tropical and subtropical marine ecosystems. Dr. Jackson is a Fellow of the American Academy of Arts and Sciences and the American Association for the Advancement of Science and recipient of numerous international prizes and awards. His work on overfishing was chosen by *Discover* magazine as the outstanding scientific achievement of 2001.

Carina B. Lange was born and raised in Buenos Aires, Argentina. She received her undergraduate degree in biology from the University of Buenos Aires, followed by a doctorate in marine biology at the same university. She left Argentina in 1984 with a UNESCO scholarship for the Scripps Institution of Oceanography in California. There, her main research focused on laminated Quaternary sedimentary records as well as phytoplankton time-series studies from off California. Lange is the author of numerous scientific articles on diatom ecology and taxonomy, diatom fluxes to the seafloor and preservation in the sediments, as well as paleoreconstructions from sedimentary archives worldwide. Since September 2001 Lange has been a professor of oceanography at the University of Concepción, Chile, where she is involved in graduate teaching, scientific research, and academic administration. She is also the director of the Center for Oceanographic Research in the eastern South Pacific (COPAS), hosted at the University of Concepción, and the leader of the project Oceanographic Applications for the Sustainable Economic Development of the Southern Region of Chile. In
addition, Lange holds a position as research associate at Scripps. Currently, one of her main lines of research focuses on paleoceanographic and paleoclimate changes of the Late Quaternary and the Holocene in the eastern South Pacific.

William B. Leavenworth is a marine environmental historian for the Gulf of Maine Cod Project at the University of New Hampshire, and a professional sailor. In 1976 he shipped on the tall ship *Gazela Primeiro*, and stayed in the sailing profession for twelve years. Later he obtained a doctorate in history from the University of New Hampshire, with a dissertation in colonial New England maritime environmental history. His firsthand knowledge of the sea has been key to interpreting historical fisheries records, and he has been with the Gulf of Maine Cod Project since 2001. In addition to scholarly articles concerning historic cod fisheries in the Northwest Atlantic, he has published short stories and poetry.

Heike K. Lotze is an assistant professor in marine biology at Dalhousie University in Halifax, Canada, and holds the Canada Research Chair in Marine Renewable Resources. Trained in marine ecology and biological oceanography, she has a strong interest in how human activities alter marine populations and ocean ecosystems. In her research, she tries to reconstruct the long-term history of human-induced changes in the ocean and analyze the consequences on the structure and functioning of marine ecosystems and the services they provide for human well-being. Lotze received a masters in biology in 1994 and a doctorate in biological oceanography in 1998 from Kiel University in Germany. She has worked as a postdoctoral fellow and research associate at Dalhousie University in Halifax, Canada, and the Alfred-Wegner Institute for Polar and Marine Research in Bremerhaven, Germany, and has participated in several working groups at the National Center for Ecological Analysis and Synthesis in Santa Barbara, California.

Alec D. MacCall has worked on fish population dynamics for more than forty years. He has focused on assessment and management of California’s coastal pelagics and long-lived groundfish, and has contributed to the successful rebuilding of several depleted stocks (California sardines, Pacific mackerel, and bocaccio rockfish). He has written extensively, and has contributed to assessment methodologies, ecological modeling, effects of interdecadal climate variability, and development of adaptive harvest control policies. His current work focuses on developing data-limited stock assess-
ment methodologies. He received a doctorate in oceanography from the University of California’s Scripps Institution of Oceanography in 1983. He joined the National Marine Fisheries Service’s Southwest Fisheries Science Center (NMFS-SWFSC) in 1982, after working twelve years for the California Department of Fish and Game. From 1988 to 1997 he was director of the NMFS-SWFSC Tiburon Laboratory. He currently holds the position of Senior Scientist at the NMFS-SWFSC Laboratory in Santa Cruz, California.

Loren McClenachan is a NSF International Postdoctoral Fellow at Simon Fraser University. She received her doctorate in marine biology from the Scripps Institution of Oceanography, where she researched historical changes in tropical marine ecosystems. Her current work addresses issues in historical ecology and marine conservation.

Richard D. Norris works on the evolutionary dynamics of ocean plankton using the marine microfossil record preserved in deep ocean sediments. These studies focus both on mechanisms of extinction and speciation as well as on biological responses to past periods of “extreme climate” and mass extinctions. In addition, he studies historical records of human impacts on modern marine ecosystems. Norris was an undergraduate in Earth Sciences at UC Santa Cruz, obtained a master of science at University of Arizona, Tucson, and a doctorate in geology at Harvard University. In between these academic programs he worked on the Condor Recovery Project for the State of California and served as director of the NRS Granite Mountain Reserve for the University of California. Following graduate training, he was a research scientist at Woods Hole Oceanographic Institution, on Cape Cod, Massachusetts, until he moved in 2002 to UC San Diego as a full professor at Scripps Institution of Oceanography.

Randy Olson earned his PhD at Harvard University and became a professor of marine biology before moving to Hollywood for his second career as a filmmaker. Since obtaining an MFA from the University of Southern California School of Cinema, he has written and directed the critically acclaimed films *Flock of Dodos: The Evolution-Intelligent Design Circus* (Tribeca 2006, Showtime) and *Sizzle: A Global Warming Comedy* (Outfest 2008), and co-founded the Shifting Baselines Ocean Media Project, a partnership between scientists and Hollywood to communicate the crisis facing the ocean. He is the author of *Don’t Be Such a Scientist: Talking Substance in an Age of Style*.
Daniel Pauly is a French citizen who completed his high school and university studies in Germany; his doctorate (1979) is in fisheries biology, from the University of Kiel. After many years at the International Center for Living Aquatic Resources Management (ICLARM), in Manila, Philippines, Pauly became in 1994 a professor at the Fisheries Centre of the University of British Columbia, of which he was the director from 2003 to 2008. Since 1999, he has also been Principal Investigator of the Sea Around Us Project, funded by the Pew Charitable Trusts, and devoted to studying and documenting the impact of fisheries on the world’s marine ecosystems (www.seaaroundus.org). The concepts, methods, and software he codeveloped, documented in more than five hundred publications, are used throughout the world, following multiple courses and workshops given in four languages on all five continents. This applies especially to the Ecopath modeling approach and software (www.ecopath.org) and FishBase, the online encyclopedia of fishes (www.fishbase.org). This work is recognized in various profiles, notably *Science* (April 2002), *Nature* (January 2003), *New York Times* (January 2003), and by numerous awards, notably the International Cosmos Prize, Japan (2005), the Volvo Environmental Prize, Sweden (2006), and the Excellence in Ecology Prize, Germany (2007).

Stephen R. Palumbi is director of the Hopkins Marine Station and the Jane and Marshall Steele Jr. Professor of Marine Science at Stanford University. He has lectured extensively on human-induced evolutionary change, has used genetic detective work to identify whales for sale in retail markets, and is working on new methods to help design marine parks for conservation. His latest book is an unusual environmental success story called *The Death and Life of Monterey Bay: A Story of Revival*. Palumbi holds a doctorate from the University of Washington and a B.A. from Johns Hopkins University. He has received numerous awards for research and conservation, including a Pew Fellowship in Marine Conservation. He lives in Pacific Grove, California, and is based at Stanford’s Hopkins Marine Station.

Andrew A. Rosenberg is Senior Vice President for Science and Knowledge at Conservation International and a professor in the Institute for the Study of Earth, Oceans, and Space at the University of New Hampshire where, prior to April 2004, he was dean of the College of Life Sciences and Agriculture. From 2001 to 2004, he was a member of the US Commission on Ocean Policy and continues to work with the US Joint Ocean Commis-
Rosenberg was the deputy director of NOAA’s National Marine Fisheries Service from 1998 to 2000, the senior career position in the agency, and prior to that he was the NMFS Northeast Regional Administrator. Rosenberg’s scientific work is in the field of population dynamics, resource assessment, and resource management policy. He holds a bachelor of science in fisheries biology from the University of Massachusetts, a master of science in oceanography from Oregon State University, and a doctorate in biology from Dalhousie University.

Kaustuv Roy is a professor at the University of California, San Diego. His research focuses on macroecology, macroevolution, and conservation biology.

Carl Safina writes about how the ocean is changing. A MacArthur fellow, Pew fellow, and Guggenheim fellow, he is adjunct professor at Stony Brook University and president of Blue Ocean Institute. His books include *Song for the Blue Ocean* and *The View from Lazy Point: A Natural Year in an Unnatural World*.

Enric Sala obtained his doctorate from the University of Aix-Marseille, France. After an early career at the Scripps Institution of Oceanography in San Diego, California, he returned to Spain to sit on the Spanish National Council for Scientific Research (CSIC). Now based in Washington, DC, as the head of National Geographic’s global marine conservation initiative, Sala dives all over the world to explore marine ecosystems and promote their conservation.

Paul E. Smith, now retired, served as Supervisory Fisheries Biologist at NOAA and was adjunct professor of biological oceanography at the Scripps Institution of Oceanography.

Tim D. Smith is a fishery biologist turned environmental historian, interested in the effects of harvesting on long-lived species, including fish and seals, and especially cetaceans. He is retired from NOAA and has been active in the History of Marine Animal Populations project, part of the Census of Marine Life.

U. Rashid Sumaila is director of the Fisheries Centre at the University of British Columbia. He specializes in bioeconomics, marine ecosystem valuation, and the analysis of global issues such as fisheries subsidies; illegal,
unreported, and unregulated fishing; and the economics of high and deep seas fisheries. He has published articles in several journals, including Science, Nature, and the Environmental Economics and Management. Sumaila has received invitations to give talks at the United Nations, the White House, the Canadian parliament, and the British House of Lords. His work has been cited by, among others, the Economist, Boston Globe, International Herald Tribune, Financial Times, and Globe and Mail.

Daniel Vickers works in the fields of Early American, Atlantic, and maritime history. He taught at the Memorial University of Newfoundland for fifteen years before moving to the University of California, San Diego in 1999 and to the University of British Columbia in 2006, where he served as head of the department until 2011. His first book, Farmers and Fishermen: Two Centuries of Work in Essex County, Massachusetts, 1630–1850, won the Dunning Prize of the American Historical Association, and he has recently published a second, Young Men and the Sea: Yankee Seafarers in the Age of Sail. He is also the editor of the Blackwell Companion to Colonial American History and The Autobiography of Ashley Bowen.

Christine R. Whitcraft is an assistant professor in the Biological Sciences Department at California State University, Long Beach (CSULB). She earned a bachelor of art at Williams College, a doctorate at Scripps Institution of Oceanography, and was a CALFED Bay-Delta Program postdoctoral fellow with the San Francisco Bay National Estuarine Research Reserve before coming to CSULB in 2008. As a biological oceanographer and wetlands ecologist, she teaches a variety of ecology classes and researches the impacts of human activities on coastal ecosystems.
INDEX

Note: page numbers followed by ‘f’ or ‘t’ refer to figures or tables, respectively.

advertising, 14, 37–40, 38f
age structures and anchoveta recruitment, 66–67
alewives, 2, 81, 126, 159f, 176, 188–190. See also river herring (gaspereau)
Alexander, Karen, 6, 77, 78, 151, 176, 275
algae
coralline, 197, 206
filamentous, 199
macroalgae, 155
allocation of resources, intergenerational, 29–30
Almadrabas, 194–195
anchovy and anchoveta fisheries
anthropogenic activity vs. natural variability, 51–52, 69–71, 70f
boom-and-bust cycles, 59–62
catch quotas, 62, 64, 66
climate fluctuation and, 61f, 62, 64, 65f, 69–73
fishing restrictions efficacy, 62–64
guano birds and, 50–51, 61f, 62, 68
historical records, 68–69
interaction of climate, fish catch, fishing industry development, and predators, 61f
recruitment variations, 64–66
relative abundances from sedimentary data, 51–52, 51f, 54, 69–71, 142
sport and recreational fishing, 50, 68
susceptibility to fluctuation, 47, 52–54, 55, 61, 74–75
anecdotal evidence. See history and historical perspective
“Anecdotes and the Shifting Baselines Syndrome in Fisheries” (Pauly), 3, 83–84
aquaculture policies to increase food protein supply, 31, 151, 183
archaeological data, 18, 144–149
assumptions underlying historical data, 85–86, 124–129, 163–168, 173
Atlantic Herring Fishery Management Plan, 189
Auletta, Ken, 37
Australia, 153, 199, 206
Ba/Ca (barium/calcium) ratios, 143
Baird, Spencer, 81–82
bait (baitfish)
in cod fisheries, 87–88, 97, 98f, 100, 105, 106
sardines and anchovies in recreational fisheries, 68
Baltic Sea, 202–203
Banquereau, 88f, 92, 93, 94f, 95–97, 99–102, 110
Barbados, 142, 197
Bay of Fundy, 92, 110, 153f, 157–158, 159f, 160f
Benguela Current, 55, 59
Bering Sea, 73, 119
Beverly fleet. See cod abundance on the Scotian Shelf, historic
Bigelow, Henry, 83
biodiversity
communicating decline in, 39
biodiversity (continued)
cultural diversity and, 120
loss of, 4, 21, 152–153
public knowledge about, 123, 127
biomass decline
anchovy and anchoveta, 50, 60, 64
discounting and, 29f
fool policies and, 22, 25
models of fish population response, 63f
off West Africa, 27
top predators and, 14–15, 159–160, 202
biomass estimate, Scotian Shelf cod, 102–109, 108t, 111f
birds. See Seabirds
Black, Jack, 35
Black Sea, 1, 202
blueback herring, 157, 159f, 188–190.
See also river herring (gaspereau)
bluefin tuna, Atlantic, 17, 194–195, 195f
Bluewater Horizon, 191
Bolster, W. Jeffrey, 6, 77, 78, 151, 275
boom-and-bust cycles for fisheries industries, 47, 59–62, 175
Bradbury, Roger, 123, 203
Braudel, Fernand, 163–165
British Columbia salmon fishery, comparing indigenous and European, 128
Brush, G. S., 143, 143f
bultows, 99–102
Cabot, John, 85
Cadigan, Sean, 115–116
CalCOFI (California Cooperative Oceanic Fisheries Investigations), 44, 48–50, 52, 53–56, 57, 66, 69, 70, 75
California Current, 47, 49, 52–55, 59, 67–68, 69, 72–73, 74
Cambridge Population Group, 117–118
Cannery Row (Steinbeck), 43
Cape Wind Project, 191
Caribbean
coral cover, 196, 199
historical trade, 81
humpback whale breeding grounds, 152f
monk seals, 2, 154
Oviedo's observations in, 5
plankton, 141f, 142
sea grass, 5
sea turtles, 2, 5, 15
Carr, E. H., 85–86
carrying capacity
environmental fluctuations and, 53–54
historical oceans, 123
regime shift, 53–54
sardine fluctuations and, 52
Scotian Shelf cod, 110, 111f, 136
whales, 165–166
catch per unit effort (CPUE), 87, 95, 100–102, 104f, 105, 108
catch shares, 190
Chabot, Warner, 37
Chapman-Delury method, 103, 104f
Chavez, Francisco, 56, 66, 275–276
choice, culture of, 132
chronologies and rates of change, 201
CITES (Convention on International Trade in Endangered Species), 195
Civil War, 81, 95, 106, 184
climate
El Niño, 49, 51, 55, 61f, 64–67, 65f, 69, 74
interaction between climate, fish catch, fishing industry development, and predators, 61f
marine populations, anthropogenic activity, and, 71
sea surface warming trend, 70
climate change. See also global warming ecosystem effects, 62, 71–73, 74, 119, 155, 177, 196–197, 199, 201, 203, 206
United States Global Change report, 41
cliometric revolution, 85–86, 116–118
cod, ecosystem importance of, 178–179

cod abundance on the Scotian Shelf, historic
ancillary documents, 87
anecdotal evidence, place of, 85–86
background, 80–84
bait. See bait; cod fisheries
Beverly sample set and locations, 91–95
biomass estimate and significance, 77–78, 109–110, 111f
biomass estimate methodology, 102–109, 104f
bottom conditions information, 87
catch decline, 95–97
collapse, 101–102
fishermen’s logbooks, reliability and nature of, 86–91
implications, 111–112, 122, 136
map of ports and banks, 94f
predictability issue and, 122
technological change and, 97–101, 98f

cod fisheries
Canadian moratorium (1992), 24, 115
discount rates and, 29, 29f
economic influence on, 81, 89, 96–97
folly policies and, 22–24
Gulf of Maine ecosystem effects and, 178–179
historic past, 81–82, 178
Ispwich Bay spawning closure, 190
Lofoten Islands, 81
management, 74–75, 111–112, 184–185, 186, 187
myth of inexhaustibility, 2
Native American, 18, 145
overfishing of, 3, 123, 179 182, 195
as overfishing poster child, 182
Quoddy region, Bay of Fundy, 153f, 157–158
remnant and rebuilding, 182–183
social impacts of stock collapse, 27, 78, 129–133
subsidies, 22–23, 89, 193
technological change in, 3, 97–101, 98f, 193
time series of landings, 24f
collapse of human societies compared to marine ecosystems and fisheries, 193, 194f
Collins, J. S., 102
Columbus, 5, 15
Common Heritage of Mankind approach, 120, 180
common property and commons. See also tragedy of the commons
cultural complexity and, 128
cultural role in tragedy of, 119–120, 128
folly policies and, 27, 30
global human impacts on, 182
regulation of, 128
in time, 18
communication
9/11 Commission report, 36–37
advertising, art of, 37–39, 38f
diversity in, 42
ideas vs. events, 33–34
lack of, as shifting baselines problem, 18–19
“old news” and throwaway mentality, 40–41
perfect conservation movement and, 41–42
Pew Oceans Commission Report, 33–37
regulation of media as common property, 120
“science think,” 33, 36, 39–40
Super Bowl commercials, 39–40
Turning the Tide report, 40
underfunding of, 34–35
U.S. Global Change Program report, 41
conservation movement, “perfect,” 41–42
consumption
communication (continued)
 human, 1–2, 40, 62, 76, 128, 132, 157
 limitations on, 132
 continental vs. maritime consciousness, 130–131
 Convention on International Trade in Endangered Species (CITES), 195
 Cooper, S. R., 143, 143f
 coral reefs
 Caribbean coral cover, 196, 199
 decline or collapse of, 2, 71, 84, 198–199, 201
 ecosystem consequences, 4, 201–202
 future of, 7, 200f
 importance of control sites, 14–15
 Jamaica, 198–199. See also Hurricane Allen
 management goals, 198
 protection, 203
 recoveries, 122, 206
 sedimentary record and, 141–144, 201
 shifting baselines and causes of decline, 196–197, 201
 time series analysis, 158
 Cournane, Jamie M., 7, 176, 276
 Cousteau, Jacques, 18, 42
 CPUE (catch per unit effort), 95, 100–102, 102, 104f, 105
 Cronon, William, 84, 126
 Crosbie, John, 115
 Crosby, Alfred, 84
 culture
 archeological assemblages and, 144
 capitalization and commercialization of, 18, 131
 change outstripping adaptive powers of, 78
 disappearance of traditional, 17
 history, cultural filters in, 124–127
 history and cultural complexity, 127–129
 marine biodiversity and decay of cultural diversity, 120
 Newfoundland cod collapse and, 129–132
 tragedy of the commons and, 119–120
 cumulative impacts, 179, 181–182
 Daisy Cave, San Miguel Island, California, 145, 146t–147t
 data. See methods and data
 Dayton, Paul, 118–119
 decadal scale climate cycles, 6, 44, 54, 62, 66, 68–71, 72
 DeLury, D. B., 103
demography
 ecological, 166
 historical, 116–118
 sardine, 49
density
 absolute estimates of, 155
 and catchability, 67
 change in, 184, 187
 population health not implied by, 74
 density dependence
 anchoveta recruitment and, 63f, 64–66
 density dependent vs. density independent controls, 48
 population health not implied by, 74
 Department of Fisheries and Oceans (DFO), Canada, 110, 131
discount rates and discounting, 28–30, 29f, 31
 Discovery Bay, 142, 198
diversity
 within fish populations, and stock health, 74
 genetic, 73, 149–150, 169–173
 influences on, 155
DNA sequences
 ancient DNA, 138, 149–150
 of sardines and anchovies, 73
 from whale populations, 136, 169–173
 Dory fishing, 97–101, 98f
dynamic ecosystems and precautionary management, 74
ecological surveys, 154
economic valuation and folly policies, 27, 28–30, 31
ecosystem management. See also Gulf of Maine management calls for, 30–31, 74, 111, 186
dam removal, 189
habitat protection, 187–188
primitive form of, in Peruvian anchoveta, 50–51
proposed experiment in sardine fisheries, 50
temperature dependent, 57, 66
ecosystem variability over spatial and temporal scales, 200–201
Edwards Dam, Kennebec River, Maine, 176, 189
effort and prices, relationship between, 127–128
EFH (essential fish habitat), 187
El Niño–Southern Oscillation (ENSO), 49, 51, 55, 59–60, 61f, 64–67, 65f, 69, 74. See also climate
Emeryville shell mound, San Francisco Bay, 145, 149f
Endangered Species Act (1973), 188
Engerman, Stanley, 86
Ensler, Jason, 34–35
environmental groups, 41, 181
environmental history. See history and historical perspective
Erlandson, Jon M., 276
essential fish habitat (EFH), 187
European regulation in Middle Ages, 183
Exclusive Economic Zone (EEZ), Canada, 23
experimental data, 140t, 155–156
explorers, historical, 5, 16–17, 120
extinction
archeological evidence on extinct species, 138, 142, 145, 147–148
commercial vs. biological, in anchoveta, 73
coral reef trajectories, 200f
 corporate responsibility for, 131
ecological, 198, 200
ecological consequences of, 122
in human prehistory and history, 1–5
low biomass, 22
near extinction, 122, 131, 195, 196
then versus now approach and, 157
urgency due to, 118
Field, David B., 6, 276
Finley, Carmel, 184–185
Fish and Wildlife Service, U.S. (FWS), 48
Fish Commission, U.S., 81–82, 190
Fisheries Management Councils, 189
Fisheries Products International (FPI), 131
“fishing down the food web,” 25, 26f, 84
fishmeal, 59–62, 76
Fitzroy, Robert, 16
Florida Keys, 141, 198
Fogel, Robert, 86
food webs, 21–22, 124, 138, 156–160, 182, 198, 202
fishing down marine food webs, 25, 26f, 84
reconstructing ecosystem models of past webs, 153f, 159–160, 160f
fossil record, 138–144, 141f, 143f, 158–159, 196
Foster, Calvin, 87, 100–101
fur seals
New Zealand fur seals, 145, 147
Northern, 71
FWS (Fish and Wildlife Service, U.S.), 48
Gee, Robert, 86
genetic analysis of whale populations, 169–173
genetic data, 140t, 149–150, 169–171
 genetic diversity. See diversity, genetic geographic expansion of fisheries, folly policies and, 25
gerological data, 138–144
Georges Bank, 187, 202, 206
global market and globalization
folly policies and, 28
homogenizing effects, 120
Newfoundland cod and historical construction of, 131–132
ocean zoning and, 191
global warming, ecosystem effects of, 44, 69–70, 186. See also climate change
goals
conservation and management of, 3, 17, 197–200
discount rates, 30
Goode, George Brown, 98f, 102, 187–188
Goodman, Andy, 34
Gore, Al, 41
Grand Banks. See cod fisheries, Newfoundland
grazing species, 196, 198, 199
Great Barrier Reef, 199, 206
greenhouse gases and planktonic foraminifera, 69–70
groundfish, 75, 131, 151, 153f, 159f, 176, 187, 190
growth bands, isotopic and trace element analyses of, 141–142
guano birds and anchoveta, 50–51, 61f, 62, 68
Gulf of Maine management. See also cod abundance on the Scotian Shelf, historic
cumulative impacts and ecosystem-level effects, 177–183
habitat protection, 181, 187–188
haddock, 123, 176, 184, 187, 206
history, importance of, 7, 81–83, 176, 179–180, 183–86
lobsters, 185–186
monkfish, 185
new directions for, 190–191
political pressure and, 179–181, 184
river herring, 176, 188–190. See also alewives; blueback herring
sea scallops, 176, 187, 206
shifting baselines of management, 183–184
short-lived vs. long-lived species, 186
spatial management, 186, 190
whale and seal management, 188
habitat
loss and degradation, 4, 18, 151, 157, 158, 159f, 177–178
protection and restoration, 176, 181, 187–188, 199
range and spawning grounds, 64, 67, 74
haddock, 81, 88, 101, 123, 153f, 157, 176, 184, 187, 206
hand lining and shift to long lining, for cod, 97–101, 98f
Hardt, Marah J., 203, 277
Hawaiian Islands, 14–15, 196, 199
herring, Atlantic or sea, 87, 176, 181, 184, 187, 188–90
historical ecology. See also methods and data; specific topics
as collaborative and synthetic, 135, 137
future challenges, 200–202
goal setting, 197–200
imagination inspired by, 161
precision vs. generalization and realism, 4, 122
history and historical perspective. See also past
anecdotal evidence, shift away from, 83
anecdotal evidence, skepticism about scientific use of, 15–17, 85, 125–126
assumptions underlying historical data, 85–86, 124–29, 163–68, 173
cliometric revolution, 85–86
cultural issues integrating history into marine ecology, 124–129, 132–133
danger in lack of, 3–4
environmental history, development of, 84
historical data, 140t, 150–151, 163–169, 172–173, 189, 190
historical demography example, 116–118
ignorance of repetitive overfishing shown by, 180
logbooks as sources, 6, 16, 80, 86–91, 95, 151, 165–168, 173
in management, 175–176, 183–186, 187, 190
narratives, reliance on, 85–86, 138
past vs. history, 78, 85–86, 120–129
questions addressed by, 79, 200–202
sampling and, 91–95, 117
“hockey stick” model, 63f, 64
Hoffmann, Richard, 84, 122, 150
Holdren, John, 41
hook-and-line technology and shift to long lining from dories, 97–101, 98f
human diet, prehistoric, 145, 148f
human societal collapse patterns, 193, 194f
Hurricane Allen, 198–199
Hypoxia and dead zones, 2, 143, 195
ICCAT (International Commission for the Conservation of Atlantic Tunas), 195
In a Perfect Ocean (Pauly), 41
An Inconvenient Truth (film), 41
information and knowledge, belief in power of, 19, 36
Innis, Harold, 102
Institute of the Seas of Peru (IMARPE), 62
interdecadal climate variability, 55, 61f, 72
International Commission for the Conservation of Atlantic Tunas (ICCAT), 195
International Union for the Conservation of Nature (IUCN), 195, 196
International Whaling Commission (IWC), 136, 165, 170, 205
intertidal gastropods, 155, 156f
Isaacs, John, 49–50, 51–52
isotopic analyses, 135, 141–142, 148
Ispwich Bay, 190
IUCN (International Union for the Conservation of Nature), 195, 196
IWC (International Whaling Commission), 136, 165, 170, 205
Jackson, Jeremy B. C., 7, 10, 31, 34, 84, 113, 123, 176, 178, 277
Jacquet, Jennifer, 40–41
Jamaican coral reefs, 198–199. See also coral reefs; Hurricane Allen
Kawasaki, T., 53
Kennebec River, Maine, 176, 189
Kenney, Justin, 35
Kuroshio Current, 52, 64
Lange, Carina B., 277–278
large, carnivorous fishes
aquaculture policies, effects of, 31
biomass decline and, 5, 14–15, 22, 24, 159–160, 202. See also “fishing down the food web”
centuries of fishing for, 84
ecosystem role, and destabilization due to loss of, 154, 178, 198, 202
loss of, 145, 157–158
loss of forage for, 68, 73, 74
toxins in, 2
large marine ecosystems (LMEs), 92, 93f
Lasker, Reuben, 51–52, 69
Laslett, Peter, 116–118
Law of the Sea, 27, 180
Leavenworth, William B., 6, 77–78, 97, 278
Levins, Richard, 4
litigation, 181–182
LMEs (large marine ecosystems), 92, 93f
lobsters, 5, 185–186, 198
local ecological knowledge, emphasis on, 190. See also vocational knowledge
logbooks as source, 6, 16, 80, 86–91, 95, 151, 165–168, 173
Long, Edward, 15
Long Island, 10, 13–14
Index

long lining
for cod, shift from hand lining to, 97–101, 98f
Japanese, 17, 25
long time series, 148–149
Longhurst, Alan, 183, 186
long-lived fishes and other organisms, 17, 21, 141
vs. short-lived fishes, 186
Lotze, Heike K., 7, 135, 157, 278

MacCall, Alec D., 6, 44, 51, 55–56, 57, 66, 69, 76, 78, 142, 186, 278–279
Magnuson-Stevens Fisheries Conservation and Management Act (2006), 29, 189, 190
Maine. See cod abundance on the Scotian Shelf, historic; Gulf of Maine management
management
action, 175–176, 186
appropriate scale, 186
as experiment, 200, 202
management, policy and regulations. See Gulf of Maine management; shifting baselines paradigm
management plans, fishery
Atlantic Herring Fishery Management Plan, 189
California sardine, 57, 66, 74–75
gray whales, 170
narrative evidence and lessons of history and, 83, 179–180, 190
Peruvian anchoveta catch quotas, 62, 74–75
Shad and River Herring Management Plan, 189
spatial, 190
Squid, Mackerel and Butterfish Plan, 189
Stellwagen Bank National Marine Sanctuary, 188
The March of Folly (Tuchman), 9, 21, 22, 129
mare liberum doctrine, 119–120

“Marine Biodiversity: The Known, Unknown, and Unknowable” conferences, 5, 118–120, 123–124
Marine Mammal Protection Act (1972), 188
marine mammals and climate, 71
marine protected areas (MPAs)
conservation goals and, 199
global climate change and, 206
for marine mammals, 188
natural protection vs., 28
to reestablish natural barriers, 30–31
as tool of ecosystem-based management, 5, 187
maritime vs. continental consciousness, 130–131
market barriers and folly policies, 27–28
mathematical modeling vs. anecdotal evidence, 83
Maximum Sustainable Yield (MSY)
environmental variability and, 72–73
management goals based on, 3, 72–73, 193, 195
recruitment variability and, 66
stock assessment modeling and, 184–185
whale populations, 165–167
McClenachan, Loren, 154, 203, 279
McEvoy, A.F., 48
media campaigns. See communication memory and Long Island, 13–14
methods and data
overview, 135–136, 137–138, 140t
archaeological data, 144–149
Chapman-Delury method, 103, 104f
cod biomass calculation (19th century Scotian Shelf), 102–109, 104f
cod biomass calculation (19th century Scotian Shelf), 102–109, 104f
cod biomass calculation (19th century Scotian Shelf), 102–109, 104f
comparison across disciplines, 6–7, 136, 140t
eyear scientific data, 151–154
experimental data, 155–156
geographic data, 73, 149–150, 169–173
historical data, 84–91, 150–151, 163–168
integrating data from different temporal and spatial scales, 140t, 156–160
survey and monitoring data, 154–155, 187
microfossils, 144, 158–159
Middle Ages, regulation during, 183
monkfish, 185
mortality rates, 57, 71, 107–109, 165–166, 177, 178, 180
MPAs. See marine protected areas
multispecies ecological theory, 50
Multi-Species Virtual Population Analysis, 154
Murphy, Garth, 49–50
Myers, Ram, 17, 24–25, 109–110, 123, 151, 178
NAFO (Northwest Atlantic Fisheries Organization) zones, 92, 93f, 110
National Environmental Policy Act, 181
National Marine Fisheries Service (NMFS), 175, 185, 279, 281
National Sea Products, 131
nationalism in Newfoundland, 129–130
natural barriers to fishing, 28, 30–31
natural experiments, 156
NEFSC (Northeast Fisheries Science Center), 185
net present value, 29
New England. See also cod abundance on the Scotian Shelf, historic; Gulf of Maine management
colonial, 115, 125–126
19th-century, 121–122, 126
New England Fisher Management Council, 176
New York City dead zone, 195
New Zealand fur seals, 145, 147
Newfoundland cod fishery, 5, 15, 21, 24f, 27, 29, 78, 81, 105, 115, 129–132, 183
9/11 Commission report, 36–37
NMFS (National Marine Fisheries Service), 175
Norris, Richard D., 279
Northeast Fisheries Science Center (NEFSC), 185
Northern Line Islands, 199, 206
Northwest Atlantic Fisheries Organization (NAFO) zones, 92, 93f, 110
Northwestern Hawaiian Islands, 14–15, 199
Nova Scotia cod. See cod abundance on the Scotian Shelf, historic
ocean zoning, 191
Olson, Randy, 6, 9–11, 279
Ommer, Rosemary, 115–116
open access and folly policies, 23, 27, 30
Orbach, Michael, 12, 119–120
Oviedo, Fernández de, 5
Pacific Decadal Oscillation (PDA), 55
Paine, Robert, 118–119, 121
palaeontological data, 138–144
paleosedimentary data, 51–52, 51f, 68–69, 138–144, 141f, 143f
Palmyra, 14–15
Palumbi, Stephen R., 7, 135, 136, 150, 280
Pandolfi, J. M., 84, 142, 158
Panic of 1857, 96
parametric vs. nonparametric approaches, 184–185
past. See also History and historical perspective
as control site, 13–14
past vs. history, 78, 85–86, 120–129
past (continued)
predictability and design issues, 120–124
Scripps conference panel discussion (2003), 118–120
society’s disdain for, 17–18, 123
Pauly, Daniel, 3, 6, 9, 10, 41, 83–84, 85, 123, 127, 130, 178, 280
pelagics
ecosystems, 2, 53–54, 62, 200
large fishes, 25
small fishes. See sardine and sardine fisheries
Peruvian anchoveta. See sardine and sardine fisheries
Pew Oceans Commission Report, 33–38, 38f, 40, 41, 111
Pilgrims, 183–184
planktonic foraminifera, 69–71, 70f, 141f, 142, 200
policies of folly
overview, 6, 9, 21, 78
criteria for folly, 22–24, 73
cure for, 30–31
negative ecological and human impacts, 24–27
reasons for, 27–30, 129–133
political pressure, 31, 50, 112, 154, 179–182, 184
pollution, 2, 120, 143, 151, 157, 175, 196–197, 199
pollution vs. overfishing, public opinion on, 177
population bottleneck, 73, 150, 171
precautionary approach to management, 74, 184
precisionism, 4, 121–122
predator fish. See large, carnivorous fishes
predator interaction with climate, fish catch, and fishing industry development, 61f
predictability and the past, 72, 78, 121–124, 126–128, 132, 137
prices and effort, relationship between, 63, 63f, 127–128, 129, 132
privatization of fishing rights, 30
productivity
fish, 49, 66, 72, 154, 179, 190
fisheries, 81, 182–183, 193
primary, 187
system, 110, 111, 155, 177–179, 183
proxies
data used as, 7, 95, 105, 107, 138, 141, 143, 161
of imminent ecosystem collapse, 202
proximate causes, 177–178, 201
public opinion on pollution vs. overfishing, 177
public service announcements, 34–35
Puritans, 125–126, 183–184
radiometric dating, 135, 141, 142, 144
recreational fishing, 2, 50, 68, 176, 177, 180–181, 187, 191
recruitment
anchoveta, 61, 64–68, 71, 73–74
estimates, 154
failure, 22, 24
groundfish, 75
“recruitment problem” vs. “regime problem,” 54
sardines, 53–57, 61, 73–74
Scotian Shelf cod biomass estimate, 107–109
reef terraces, 142
regimes and regime shifts, 43, 52, 53–56, 54f, 73, 201
Rich, Walter, 187–188
river herring (gaspereau), 176, 188–190. See also alewives; blueback herring
Rosenberg, Andrew A., 7, 175–176, 205, 280–281
Roy, Kaustuv, 154–155, 281
Rufe, Roger, 37
Safina, Carl, 6, 9, 10, 121, 123, 129, 176, 281
Salad Enric, 7, 176, 281
salmon
in aquaculture, 31, 62, 76
fishery of British Columbia, differences between indigenous and European, 128
high-tropic level predator, 67
loss of spawning habitat, 157, 176
as metaphor for abundance or depletion, 101, 125
toxic contamination of, 2
Salmon Bay (River), Labrador, 94f, 95, 105
Santayana, George, 41
sardine and sardine fisheries
anthropogenic activity vs. natural variability, 51–52, 69–71, 70f
boom-and-bust cycles, 47
California landings, 49f
California management plan, 57, 66
climate fluctuation and, 53–57, 64, 65f
historical review, 48–56, 68–69
lessons for future, 73–76
management plans, 57
multispecies ecological theory, early development of, 50
population fluctuations as puzzle, 47
relative abundances from sedimentary data, 51–52, 51f, 54, 69–71
sport and recreational fishing, 50, 68
Steinbeck’s ‘Cannery Row’, 43
stock mixing and recruitment, 66–67
studies, reception of, 56
susceptibility to fluctuation, 47, 52–54, 55, 61, 74–75
unknown and unknowable factors, 71–73
variations in fish size, type, and distribution, 66–67
worldwide synchrony, 52–53, 53f
Sargon the Great, 1
SASI (Swept Area Seabed Impact) model, 187–188
data integration across, 156–160, 191
ecosystem variability over spatial and temporal scales, 44, 68–69, 200–201
of governance, 183–184, 190–191
history and debate over, 118–120
scallops, 176, 187, 206
Scammon, Charles, 16
Schaefer, M. B., 50–51
Schroeder, William, 83
science and marine science, and fisheries science
as anti-ideology, 19
anti-scientific mood, 19
fisheries crisis spurred the development of, 44, 48–51, 81
lack of historical perspective, 3, 5, 179
modeling, shift to, 83
precision vs. realism, 4
suspicion about historical observations, 15–17, 85
“science think,” 33, 36, 39–40
scientific data, early, 151–154
scientific surveys
bottom, 152
CalCOFI, 55, 69, 70
ecological, 138, 154
historical, 105
hydrographical, 70
ichthyoplankton, 55
larval, 50
modern, 135, 152, 154–156
oceanographic, 68
population, 165
public opinion, 177
qualitative, 197
spatial distribution, 65f
spawning area, 55
traditional sampling, 6, 102–103, 188
video, 187
Scotian Shelf. See cod abundance on the Scotian Shelf, historic
Scripps Institute of Oceanography (SIO)
“Marine Biodiversity” conferences, 5, 77, 118–120, 123–124
sardine studies, 48, 56
sea turtles, 1–2, 5, 14–15, 17, 18, 73, 196, 198, 205
sea urchin
archaeological evidence for consumption of, 147f
Diadema antillarum, 198–199
in Gulf of Maine ecosystem, 178
seabirds, 13, 50–51, 61f, 62, 67–68, 73, 74, 81, 87, 145, 146t, 148f, 157, 158, 160f, 205
seagrass and seagrass ecosystems, 5, 160
seals, 1–2, 71, 75, 84, 131, 145, 146t, 147, 154, 176, 188, 196, 205
sedimentary record, 51–52, 51f, 54, 68–69, 72, 138–144, 141f, 143f, 161
Sequential Population Analysis, 151–154
Shad and River Herring Management Plan, 189
sharks, 5, 14–15, 147t, 158, 188, 198
Shifting Baselines Ocean Media Report, 10, 34, 35f
shifting baselines paradigm. See also history and historical perspective analysis and communication, lack of, 18–19
Atlantic bluefin example, 17, 194–195, 195f
collapse of human societies compared to marine ecosystems and fisheries, 193, 194f
coral reefs and, 196–197
denial of responsibility and, 205
hope for the future, 205–206
impediments to change, 3
management and, 17, 183–191
Pauly on, 3, 83–84
short-lived vs. long-lived species, 186
single-species-based management compared to ecosystem-based management, 127
Smith, Captain John, 81, 82f
Smith, Paul E., 281
Smith, Tim D., 281
social and cultural impacts of folly policies, 25–27
of Newfoundland cod fishery collapse, 131–133
resource depletion and, 179
sardine and anchovy fisheries and, 43, 47, 59–60, 74–75
Socino, Raimondo di, 85
Soutar, A, 51–52
spatial and temporal management, 187, 189
spatial and temporal scales different, 73, 135, 138, 140t, 156–157, 187, 200
importance of, 3, 71, 187, 202
variability in, 44, 144, 187, 200
spatial distribution, 65f, 67, 68–69, 73–74, 154, 158
spatial management, 186, 190
spatial surveys, 155
spawning closure for cod in Ipswich Bay, 190
sport fishing. See recreational fishing
Squid, Mackerel and Butterfish Plan, 189
stable isotope analysis, 135, 141–142, 148
Steinbeck, John, 43
Steller’s sea lion population, Bering Sea, 119
Stellwagen Bank National Marine Sanctuary, 82f, 188
Stille, Alexander, 118, 120, 123
Stilwell, Elias M., 81–82
stock assessment modeling
logbook data and, 80
Index

MSY and parametric vs. nonparametric approaches, 184–185
Scotian Shelf cod, 6, 102–109, 104f
stock mixing and anchoveta recruitment, 66–67
Stratton Commission Report, 34
subsidies, 27, 28, 30, 89, 193
Sumaila, U. Rashid, 10, 130, 281–282
surveys and monitoring, 14, 17, 62, 68–69, 140t, 154–155, 158, 189, 196
sustainability concept, questioning of, 186
Swept Area Seabed Impact (SASI) model, 187–188
Tampa Bay, 202
technological advances, 28, 30, 80, 97–101, 98f, 175, 179
“then versus now” approach, 157–158
Thoreau, Henry David, 126–127
throwaway mentality and “old news,” 40–41
Time on the Cross (Fogel and Engerman), 86
time series
archeological data and, 148–149
CalCOFI, 66, 70
climates, 69–70
cod, 6, 24f, 82–83, 103, 107
historical catch records, 82–83
as method, 136, 138, 157, 158
millennial, 44–45
monkfish, 185
ocean, 70, 72
from paleosedimentary data, 44–45, 51–52, 68–69, 72, 201
sardine and anchovy, 51–52, 51f, 69, 70, 72
whales, catch records of, 165–166
TOC (total allowable catch), 190
Tol, R.J.S., 29–30
total allowable catch (TOC), 190
trace element analyses, 141–142, 148
tragedy of the commons, 18, 75, 119–120, 128
Treaty of Ghent (1815), 129
Tub trawling, 80, 97–101, 98f. See also
Dory fishing
Tuchman, Barbara, 9, 10, 21, 22, 129
tuna
Atlantic bluefin, 17, 194–195, 195f
generic, 2, 14, 15, 25, 31, 67, 76
Turning the Tide report, 40
U.N. Convention on the Law of Sea (UNCLOS), 27, 180
uncertainty
assumptions and, 163–168, 173
biological, 119
climatic change and, 62, 71–73
environmental factors, 66
as a foil for reform, 44, 75, 199
historical, 78, 109
Peruvian anchoveta and, 44, 71–73
scale and, 119
statistical, 103
whaling reconstruction and, 167–168
United States Global Change Program report, 41
U.S. Commission on Ocean Policy, 111
Venice, sixteenth-century, 163–165
Venrick, E.L., 53–54
Vickers, Daniel, 7, 78, 282
Virtual Population Analysis, 49, 154
vocational knowledge, 90. See also local ecological knowledge
Wadden Sea, 152, 157
West Africa, 21, 25–27
whales
Atlantic grey, 2, 167
decline, public awareness of, 34, 177
fin, 150, 172, 188
humpback, 150, 151, 152f, 168, 170–172, 188
management implications of population estimates, 136, 150, 165
minke, 150, 172, 188
New England conservation, 188
whales (continued)

North Atlantic right, 169, 188
North Pacific right, 151
Pacific grey, 16, 146t, 170–172
Population, size and distribution estimates, 7, 17, 152f, 167–173
population, size and distribution estimates, 150
recoveries of, 205–206
sperm, 154, 167, 188
whales vs. fish trade off, 75

whaling
anthropogenic impacts of, 71, 81, 119, 135, 171–173
assumptions and uncertainty, 163–168, 173

genetic data analysis, 150, 169–173
historical, 84, 131, 139f, 151, 166–168
logbook data analysis, 16–17, 103, 151, 152f, 165–168
Whitcraft, Christine, 282
White, Richard, 84
Whitehead, Hal, 154, 167
Wilson, Samuel, 97, 98–99, 101
Winthrop, John, 125–126
Wood, William, 126
Worm, Boris, 17, 24–25
Worster, Donald, 84

zooplankton biomass, 66, 69