Subject Index

Note: The letters ‘f’ and ‘t’ following the locators refer to figures and tables respectively.

A

AARP Diet and Health Study cohort, 220
Acrodermatitis enteropathica (AE), 501
ACS, see American Cancer Society (ACS)
Activating transcription factor (ATF), 30, 56, 129, 265
Activator protein-1 (AP-1), 129–135
activation suppressed by EGCG, 130–131
activation of Fyn, 130
H-Ras-activated AP-1 pathway, 130–131
inhibitory effects, 131
MAP kinase/AP-1 signaling pathway, inhibits, 130
Ras pathway, 130
cell transformation, 129
EGCG, 129
flavonol compounds
kaempferol/quercetin/myricetin, see Flavonol compounds
[6]-gingerol modulates AP-1 activation, see [6]-gingerol
inhibited by black tea theaflavins, 131
anticancer activity, 131
polyphenols, 131
UVB-induced AP-1 activation, inhibitors, 131
inhibited by xanthine 70, caffeine analogue, 132–133
anticancer drugs, 132
effects of caffeine, 132
oral administration, 132
proliferation of cells, 132
and resveratrol, see Resveratrol
transcription factors, 129
ATF and MAF protein families, 129
Fos family, 129
Jun protein family, 129
in tumor promotion, 129f
Acute myeloid leukemia (AML), 479, 626
Acute phase response, 155, 436
AE, see Acrodermatitis enteropathica (AE)
Aged garlic extract (AGE), 569, 571, 579, 683, 685, 687, 690
AHR-mediated carcinogenesis, 768–769
animal models, 768
human studies
AhR repressor (AhRR) protein, 769
uter o exposure to AhR ligands, 768–769
AICR, see American Institute for Cancer Research (AICR)
2007AICR/WCRF report, 547
Ajolene, 568t, 569, 572, 575–579, 672f, 685
Alcohol and cancer
alcohol and carcinogen bioactivation, 740–741
alcohol and gene interactions, 741–744
ADH1C, rate-limiting factor, 742
ADH polymorphisms, 742–743, 742f
ALDH polymorphisms, 743
other polymorphisms, 743–744
polymorphisms in alcohol and aldehyde dehydrogenases, 742f
alcohol, hormones, and growth factors, 744–747
alcohol-breast cancer interaction, 747
biological intermediates, 746

From: Nutrition and Health: Bioactive Compounds and Cancer
Edited by: J.A. Milner, D.F. Romagnolo, DOI 10.1007/978-1-60761-627-6,
© Springer Science+Business Media, LLC 2010

797
Alcohol and cancer (Cont.)
carcinogenesis, effect on, 746
effect of hormone, determining factors, 745
immature terminal end bud (TEB) structures, 747
potential actions of ethanol in stimulating hormone-responsive breast cancer, 745f
consequence of ethanol oxidation to acetaldehyde, 736
ethanol metabolism: acetaldehyde and oxidative stress, 737–740
future research opportunities, 749
other biological actions/interactions, 748
effects on the immune system, 748
potential mediators of procarcinogenic influence, 748
“sufficient evidence” of ethanol’s carcinogenicity, 736
Allyl sulfur, 567–569, 571–579
Alpha-tocopherol, beta-carotene (ATBC) trial, 74, 77, 221, 317, 323, 327
American Cancer Society (ACS), 3, 21, 78, 147–148, 499
American Institute for Cancer Research (AICR), 28, 74, 151, 323, 326, 547, 693
Anaerobic culture techniques, 187
Androgen-dependent carcinogenesis, 641
Androgen-responsive elements (ARE), 420
Angiogenesis, 60–63, 61f
dietary components, inhibitors, 61
growth factors and MMPs, 60
inhibition, 61
physiological functions, 63
tumor angiogenesis, 60
Animal and in vitro experiments,
catechins/flavonols/procyandins, 614–619
studies in animal models of carcinogenesis, 614–617
colon tumorigenesis, 617
effectiveness of EGCG/of PPE, 615–616
preventive effect of tea/tea polyphenols, 615t
procyanidins, 617
quercetin inhibition, 617
in vitro studies, 617–619
chemopreventive targets of, 618f
concentrations, discrepancies between, 618–619
high-affinity targets, 618
Annual percent change (APC), 5–6, 7t–8t, 9, 12f, 18t, 205, 221, 239, 363, 368, 371–372, 401, 706
Annurca polyphenol extract (APE), 110
Antagonistic IC50 of α-Naphthoflavone and natural ligands, 773t
Anthocyanins, see Cancer prevention with berries, role of anthocyanins
Anticarcinogenic properties of culinary herbs and spices
research on selected spices/extracts, 676–693
spice production in tons and cancer rates, 673t
spices/herbs (phytochemicals) with chemopreventive properties, 672
therapeutic properties of herbs and spices, see Herbs and spices, therapeutic properties
Western medicine, 672
Antioxidant-responsive element (ARE), 32, 538, 764f, 765
Antioxidants, 57, 73, 76–78, 169t, 176, 312, 371, 471, 488, 500, 521, 636, 644, 674, 789–790
Antitumor effects of zinc
apoptotic antitumor effects, 521
inhibitory effects of zinc on apoptosis, 520–521
in prostate cancer, 520
AOAC, see Association of Official Analytical Chemists (AOAC) method
AP-1, see Cruciferous vegetables/ITCs/indoles/cancer prevention
Apaf-1, see Apoptotic protease-activating factor 1 (Apaf-1)
APC, see Annual percent change (APC)
APE, see Annurca polyphenol extract (APE)
Apostosis, 50–54, 645–646
“apoptotic-bodies,” 50
Bcl-2 family of proteins
anti-apoptotic proteins, 51
proapoptotic proteins, 51
characterization, 50
concentrations of EGCG, 54
dietary components, 54
quercetin and ellagic acid, 54
red clover-derived isoflavones, 54
resveratrol and quercetin, 54
selenium and vitamin E, 54
tomato sauce consumption, 54
mitochondrial proteins
cytochrome c, 50
Smac and DIABLO, 50
mitochondria-mediated pathway, 51
pathways, two, 50–51f
extrinsic (death receptor pathway), 50
intrinsic pathway (mitochondrial pathway), 50
proteolytic cleavage, 50
regulation, 645f
triggering factors, 50
See also Garlic and cancer prevention; Zinc in cancer development and prevention
Apoptotic protease-activating factor 1 (Apaf-1), 50, 645f
ARE, see Androgen-responsive elements (ARE); Antioxidant-responsive element (ARE)
Aromatase, 640–641
to genistein, 641
stimulation of brain protein synthesis, 641
Aryl hydrocarbon receptor-mediated carcinogenesis and modulation
activation of phase I and II enzymes by AhR, 764–765
AhR cross-talk with EGFR pathways, 766–767
AhR-mediated carcinogenesis, 768–769
AhR-mediated effects on cell cycle checkpoints, 767–768
expression levels of the AhR protein, 768
cross-talk between AhR- and ER-regulated pathways, 766
endogenous role for AhR, 765–766
histone acetyl transferase (HAT) activity, 764
human exposure to AhR xenobiotics, 769–771
natural ligands of the AhR, 771–774
antagonistic IC50 of α-Naphthoflavone and natural ligands, 773t
cathechins, 774
flavonoids, 773–774
indoles, 771–772
resveratrol, 771
synthetic modulators of AHR
α-Naphthoflavone and 3′-Methoxy-4′-Nitroflavone, 771
xenobiotic, endogenous, and natural AhR ligands, 762t–763t
effects on activation of the AhR pathway, 764f
Aspirin/Folate Polyp Prevention trial, 401–402
Association of Official Analytical Chemists (AOAC) method, 167
ATBC, see Alpha-Tocopherol, Beta-Carotene (ATBC) Trial
ATF, see Activating transcription factor (ATF)
Axin fused (AxinFu) model, 108
B
Barrett’s metaplasia, 428
Basic leucine zipper (bZIP) transcription factors, 30
Benign prostate hyperplasia (BPH), 113, 324t–325t, 517f, 690
Berry powders/anthocyanins for animal cancer prevention, 706–716
anthocyanins, studies on, 712–714
colonic cell proliferation, 714
effect of diets containing BRB or BRB residues/fractions, 714
HPLC, 712
MAPK activation, 712
preparation of extracts from freeze-dried BRB, 713f
berry types, evaluation of, 711–712
cellular and molecular mechanisms, 714–716
BRB diets, 714
DNA microarray, 715
functions and associated genes affected by BRB, 716t
freeze-dried BRB powder, 705–711
Barrett’s esophagus, 718–720
BRB treatment in post-initiation protocol, 709
colon cancer, 718
DMBA, 709
effect of 2.5/5/10% BRB diets, 710
effects of BRB/blueberry/ellagic acid diets on tumor, 710t
effects of 5% BRB diet on NMBA-induced rat esophageal tumorigenesis, 709f
nutrients levels and chemopreventive agents, 707t–708t
oral cancer, 718
protocols for complete carcinogenesis bioassay, 708
preparation of freeze-dried berry powders, 705
BFCs, see Bioactive food components (BFCs)
Big Blue® mice (BBM), 205
Bioactive food components (BFCs), 101
epigenetic mechanisms, 102f
Birth cohort (baby boomers) ages, 21
Bjelakovic Cochrane review, 434
BMI, see Body Mass Index (BMI)
Body mass index (BMI), 148, 280t–284t, 286, 318t–322t, 430f, 620, 436, 545, 546, 620
Brassica species/vegetables
prevention of cancer, 536
Breast cancer (BC), 33–34, 278
and calcium, 453–454
Cancer Prevention Study II, 453
Breast cancer (BC) (Cont.)
 dietary calcium intake and reduced risk of BC, 453
 mammographic breast density, 453
 Nurses Health Study, 453
 vitamin D intake and BC, 453
Broccolini and broccoli sprouts, 536
bZIP, see Basic leucine zipper (bZIP) transcription factors

C

Calcium and cancer, 449–461
 epidemiological studies
 breast cancer, see Breast cancer (BC)
 colon cancer, see Colon cancer and calcium prostate, see Prostate cancer (PC)
 future research, 460–461
 intervention studies, 455–459
 calcium supplementation and its long-term effects, 455–456
 colorectal adenomas, 455
 colorectal adenomas and calcium supplementation, 459
 CPPS, 455
 cumulative incidence curves for PC, 458
dose of vitamin D, 457
double-blind, placebo-controlled, randomized trial of calcium and vitamin D, 457
 ECP intervention study, 456
 hormone replacement therapy (HRT), 456
 Lappe/WHI study, differentiation, 458
 multivariate analysis, 457
 non-skin cancer, 457
 serum vitamin D concentrations, 458–459
 WHI study, 456
 recommendations for intake/dietary changes, 461
 tissue specificity and totality of evidence, 459–460
Calcium Polyp Prevention Study (CPPS), 455
CALERIE, see Comprehensive Assessment of Long-Term Effects of Reducing Intake of Energy (CALERIE) study
Caloric restriction (CR) and cancer
 ad libitum (AL)-fed animals vs. CR animals, 148
 anti-aging effects of CR, 149
 effect of CR on cancer, 149–150
 energy balance-related hormones and growth factors, 151–155
 in humans and non-human primates, 150–151
 and physical activity in humans and animals, 151
 role of inflammation, between energy balance/cancer, 155–156
 sirtuins, 156
CAMP→PKA→CREB pathway, 291
 animal studies, advantages, 168–169
 breast cancer, 174–175
 chemopreventive agent/intermediate biomarkers, 168
 colon cancer, 168
dietary factors, 168
environmental/genetic factors, causes, 168
 gastrointestinal cancer, 168
 large bowel cancer, 173–174
dietary fiber consumption, 173
dietary fiber intake and risk of colorectal cancer, 173
 EPIIC study, 174
 PPT study, 173–174
 other cancers, 175
 See also Calcium and cancer; Cancer in U.S, burden of; Cruciferous vegetables/ITCs/indoles/cancer prevention; Meats/protein/cancer; \(n\)–6 polyunsaturated fatty acids (\(n\)-6 PUFA) and cancer; Saturated fatty acids (SFAs) and cancer; Selenium (Se)
Cancer and \(n\)-3PUFAs, 253–268
 anti-cancer activity of \(n\)-3 PUFAS effect of lipid peroxidation, 259
effect on estrogen and testosterone metabolism, 258–259
effect on mevalonate metabolism, 258
effects on angiogenesis, 257
effects on membrane structure and function, 257
 as EPA, 267f
 inhibition of eicosanoid production from arachidonic acid, 258
 translation initiation connection, 259–260
epidemiological/prospective/experimental studies, 255–257
diet and dietary habits, 255
diet and risk of cancer, correlation between, 256
dietary and non-dietary risk factors, 256–257
fat–cancer risk association, 255
Health Professionals Follow-up Study, 256 high consumption of n–3 PUFAs, 255 low incidence of breast cancer, 255 specific fatty acids intake risk factors, 255 fatty acid biosynthesis, 254 metabolism of essential fatty acids, 254–255 translation initiation and cancer, see Translation initiation
Cancer biology and nutrigenomics, 25–37 gene × diet interactions, 28 age-increased susceptibility to cancer, 28 environmental/dietary factors, 28 multistage carcinogenesis, 26–28 nutrigenomics, 28–36 Cancer chemoprevention, 335, 349, 646, 686, 703, 731
See also Vitamin D and cancer chemoprevention Cancer in U.S, burden of, 3–21 cancer data collection, 4 cancer surveillance, future studies, 21 case definition, 4 combined malignant cancers, 6 delay adjustment and trend analysis, 5 esophageal cancer, types/risk factors, 9–11 esophageal adenocarcinomas, 10 esophageal squamous cell carcinoma, 10 molecular biomarkers study, 11 impact of race and ethnicity, 20 incidence and death rates, 5 invasive cancer, prevalences, 15 combined and top three sites of cancer, 18t survival rate by stage for three cancer sites, 17t prognosis, 20–21 race and ethnicity, incidence and death rates by, 11–12 age-adjusted cancer incidence rates, 13t–14t relative survival rates by stage distribution, five-year, 15–16t distant-stage disease, 15 localized-stage, 15 screening, 15 surveillance goal and factors influencing, 19–20 NCI-SEER Program, 19 population-based cancer statistics, 19 survival and prevalence, 5–6 top three cancer sites for men/women age-adjusted cancer incidence and death rates, 7t–8t annual incidence and death rates, 9f colon and rectum cancer or colorectal cancer, 6–9 death rates for liver/intrahepatic bile duct cancers, 9 declines in female breast cancer/prostate cancer in male, 9, 11f declines in rate of cancer of lung/bronchus, 9–10f esophagus/primary esophageal cancer histologies, 12f male cancer deaths/female cancer deaths, 9 Cancer prevention, see Vitamin D and cancer chemoprevention; Zinc in cancer development and prevention Cancer prevention and garlic, implications antimicrobial response, 572–573 to alliin and allicin, 573 to allyl sulfurs, 573 antimicrobial properties, 572 Helicobacter pylori colonization/proliferation, 572 against spoilage and pathogenic bacteria, 572 antitumorigenic response to garlic, 577–579 A549 lung tumor cells, 578 cell cycle arrest and apoptosis, 578 cellular and animal models, 578–579 lipid soluble allyl sulfur compounds, 577 MTK-sarcoma III xenographs, 578 $p34^{cdk2}$ kinase, 578 tissue culture studies, 577–578 cellular processes, 571 garlic and allyl sulfur compounds, 575t multiple cancer risk processes are influenced, 573–576 bioactivation and response to carcinogens, 574–576 carcinogen formation and bioactivation, 573–574 neoplasms to be inhibited by garlic, 577t stinking rose, 571f See also Garlic and cancer prevention Cancer prevention by catechins/
flavonols/procyanidins animal and in vitro experiments, 614–619 See also Animal and in vitro experiments, catechins/flavonols/procyanidins epidemiological studies, 619–623 dietary flavonols/procyanidins/cancer, 619–622 preventive effects of green tea, 619t tea consumption and cancer, 619–622 future research, 625 cancer preventive activities, mechanisms, 624
Cancer prevention (Cont.)
- efficacy of dietary effects, 625
- safe levels of intake of compounds, 625
- intervention studies in humans, 623–624
- dietary flavonols and procyanidins on antioxidant status, 623
- recommendations for intake, 625–626
- structures of biologically important catechins/flavonols/procyanidins, 614f
- tissue specificity and totality of evidence, 624–625

Cancer prevention with berries, role of anthocyanins
- epidemiological studies, 716–717
 - Health Professionals’ Follow-up Study, 716
 - Nurses’ Health Study, 716
- intervention studies in humans, 717–720
 - BRB powder on biomarkers of neoplastic progression, 717–720, 719t
 - phase I clinical trial of BRB, 717
- prevention of cancer in animals with berry powders and anthocyanins, 706–716

See also Berry powders/anthocyanins for animal cancer prevention
- rationale for use of berries in cancer prevention, 704–705
- anthocyanins, 704
 - chemical structure of anthocyanidins, 705
- NMBA-induced cancer, 704
- recommendations for intake/dietary changes, 720–721
- tissue specificity, 720
 - Barrett’s esophageal lesions, 720

Cancer risk, see Folate; Iron and cancer

Cancer Statistics Review (CSR), 4, 8t, 13t–14t, 16t–18t

Cancer survival and relative survival, 5

CAPS study, 424, 426t–427t

See also Braden’s squamous cell carcinoma, 738

breast carcinogenesis, 36, 747

Colon carcinogenesis, 59, 278, 288, 402, 450, 505, 709, 772

Esophageal carcinogenesis, 502, 505, 507, 509, 518, 520, 714–715

Hepatocarcinogenesis, 116, 767

mammary carcinogenesis, 26–28, 218, 295, 348, 580, 598–599, 601, 604, 616, 638

multistage carcinogenesis, 26–28, 125

prostate carcinogenesis, 367, 607, 741

skin carcinogenesis, 132, 518, 543, 686

Cardiovascular diseases, 150, 276, 621, 635, 704, 788–789, 794

Carotenoids, 311–327
- epidemiological studies
 - β-carotene, 317
 - consumption and PC cohort studies, 320t
 - consumption case–control studies, 318t–319t
 - serum lycopene and PC, 321t–322t
 - tomatoes/lycopene, 317
 - future research, 326
 - intervention studies
 - β-carotene, 317–323
 - lycopene clinical trials, 325t–326t
 - tomatoes/lycopene, 323
 - recommendations for intake/dietary changes, 327
 - tissue specificity and totality of evidence
 - β-carotene, 323–326
 - lycopene/tomatoes, 326
 - uses in cancer prevention/treatment, 311–313
 - lycopene and β-carotene, benefits of, 312
 - primary carotenoids/color/good dietary sources, 312t
 - structures of six main carotenoids, 311–312f
 - in vitro studies and animal experiments
 - β-carotene, 313
 - lycopene in PC animal models, 316t
 - lycopene/tomato extracts, 313–315t
 - Catechins, 130–131, 613–626, 773t, 774
 - CDC, see Center for Disease Control and Prevention’s (CDC)
 - CDKs, see Cyclin-dependent kinases (CDKs)

Cell-cycle regulation, 641–642
- cell-cycle arrest by genistein, 641
- G1/S checkpoint in cell-cycle regulation, 642f
- retinone, chemical structure of, 642f

Cell proliferation, 46–50

bioactive dietary components, 48
- calcium or low-fat dairy foods or dietary fiber, 49
- curcumin, 49
- EGCG plus curcumin, 49
- flavonoid apigenin, 49
- resveratrol, 48
- sulforaphane, 49
CDKI families
 CIP/KIP family, 48
 INK4 family, 48
Cell cycle regulation, proteins in, 46–47
 “check points,” activation and inactivation, 47
 D cyclins, expression, 47–48
 DNA damage checkpoints, 47
 DNA replication, 48
 E2F-responsive genes, 48
 replicative phases, 47
deregulation of cell cycle, 48
 phases of cell cycle, 47f
 Rb and p53 pathways, 48
See also Zinc in cancer development and prevention
Cellular cancer processes and molecular targets, 45–64
 angiogenesis, 60–63, 61f
 apoptosis, 50–54
 bioactive dietary components
 induce extrinsic/death receptor pathway of apoptosis, 52t
 induce intrinsic/mitochondrial pathway of apoptosis, 52t–53t
 inhibits angiogenesis, 62t–63t
 molecular targets, 56t
cell proliferation, 46–50
 cell division/proliferation/differentiation, 450
 colon carcinogenesis, 450
 human colon carcinomas, 450
 multiethnic cohort study, 452
 risk of colon cancer
 in men and women, 452
 reduction of, 452
 systemic calcium homeostasis, 450
 vitamin D deficiency slows apoptosis, 451
Colorectal adenoma study, 27, 75, 86, 173,
 401–402, 423–425, 427t, 431, 434,
 436–437, 452, 455, 458–459, 482, 485,
 690, 716
Colorectal cancer, see Gut microbiota/probiotics/prebiotics/colorectal cancer
“Compound epigenetic mosaic,” 108
Comprehensive Assessment of Long-Term Effects of Reducing Intake of Energy (CALERIE) study, 151
Conjugated linoleic acid (CLA) and cancer, 235–249
 alteration of lipoxygenase pathway, 243–245
 calcium ionophore-stimulated 5-HETE production, 243f
 effect of FLAP over-expression, 245f
 effect of 5-HETE, 244f
 effect of select CLA isomers, 244f
 HETE or LT production, 243
 human mammary tumor cell line
 MDA-MB-231, 243
tumor cell viability and co-incubation, 244
CLA mechanisms to alter breast tumorigenesis, 242
 potential mechanisms, 242t
CLA specificity, 248–249
effects of CLA on breast cancer stem cells (CSC), 246–248
definition of stem cells, 246
effect of fatty acids on MINOsphere formation, 248t
Conjugated linoleic acid (Cont.)
effect of fatty acids on tumorsphere formation, 247–247t
effects of CLA on precancerous tissues, 248
MINO mouse, 247
multiple mutations, 246
terminal end buds (TEB), 246
therapy effects on tumors and tumor “stem cells,” 246f
effects of CLA on extracellular matrix, 245–246
studies in humans, 242
in vitro studies
c9, t11-CLA/t10, c12- CLA isomers, 236–238
effect of fatty acids on cell viability, 237f
phase-contrast microscopy of mouse mammary tumor cell line, 237f
in vivo animal experiments, 238–242
CLA concentrations, 238
c9, t11-CLA isomer study, 239
decreased metastasis after treatment, 241f
effect of dietary CLA, 238, 240f
effects of CLA, 240–241
forestomach tumors in Kun Ming mice, 238–239
MNU-induced mammary tumors, 238
pulmonary tumor burden, 239
steps in tumor metastasis, 239f
t10, c12-CLA isomer study, 239
CpG island methylator phenotype tumors, 33
CPS, see Calcium Polyp Prevention Study (CPPS)
CR, see Caloric restriction (CR) and cancer
CRBP, see Cellular retinoid-binding proteins (CRBP)
Cruciferous vegetable FFQ (CVFFQ), 545
Cruciferous vegetables/ITCs/indoles/cancer prevention, 535–559
clinical studies and related BAFC, 556
efficacy of cruciferous vegetables, 557t–558t
epidemiological evidence, 547–556, 548t–554t
cruciferous vegetables intake, 555
polymorphisms in glutathione-S-transferase genes, 555
“protective” polymorphism, 555
“responsive” genotype, 555
intake estimates, 543–545
assessment of intake and exposure, 545–547
bioactive metabolic end products, 546f
cruciferous vegetables included in FFQ, 544t–545t
ITCs/indoles, molecular mechanisms, see Isothiocyanates (ITCs)/indoles, molecular mechanisms
CSFII, see USDA 1994–1996 Continuing Survey of Food Intake (CSFII)
CSR, see Cancer Statistics Review (CSR)
Curcumin
anti-inflammatory/antioxidant properties, 677–678
antioxidant, 678
COX-2 and NOX, 677
Interleukin 6 (IL-6), 677
scavenger of ROS, 678
effects on bacterial infections, 681
effects on cancer in intact animals, 679–680
angiogenesis, 679
immune response increase, 679
plaque-forming cells (PFCs), 679
regulation of immune cells by, 680f
effects on specific detoxifying enzymes, 680–681
activity of procarcinogen benzo[a]pyrene (B[a]P), inhibition, 681
GCL gene expression, 680–681
effects on tumor cells in culture, 678
API, 678
TNF, 678
human intervention studies, 681–683
bioavailability, 683
clinical trials, 682
human observational studies, 681
lowest cancer rates on consumption, 681
CVFFQ, see Cruciferous vegetable FFQ (CVFFQ)
Cyclin-dependent kinases (CDKs), 46–47f, 152, 344
Cyclocondensation reaction assays, 546–547
Cyclooxygenases (COXs), 289–290
COX-2 activity
non-steroidal anti-inflammatory drugs (NSAIDs), 289
three isoforms, COX-1/COX-2/COX-3, 289
CYP27b1, 359, 366, 369–370
CYP24 mRNA expression, 369
Cytochrome P450 2E1 (CYP2E1), 86–87, 574, 579, 687, 737–738, 740–742, 744
Cytochromes P450 1A1/1A2 (CYP1A1/CYP1A2), 574
D
Dark adaptation (night blindness), 336
DCIS, see Ductal carcinoma in situ (DCIS)
DCYTB, see Duodenal cytochrome b (DCYTB)
Deferoxamine (DFO), 484, 486–487
2D electrophoresis method, 658
DFO, see Deferoxamine (DFO)
Subject Index

DHA, see Docosahexaenoic acid (DHA)
Diallyl disulfide (DADS), 53t, 101, 111–112, 568t, 569–570, 572–574, 576–581, 683, 685–688
Diallyl trisulfide (DATS), 568t, 569, 577–581, 683, 686, 688
Diet, see Fruit/vegetable consumption and cancer risk
Diet and epigenetics, 101–118
diet and DNA methylation, 106–111
epigenetics and cancer, 103–106
histone modification by BFCs/diet composition, 111–115
PcG complexes, dietary modulation of, 115–116
small/noncoding RNA/epigenetics/dietary factors, 116–117
Dietary energy balance, 147–158
CR and cancer
in humans and non-human primates, 150–151
in mechanistic targets, 151–155
and physical activity in humans and animals, 151
See also Caloric restriction (CR) and cancer
Dietary fiber, 165–168
American/US foods, 166–167
commercially produced carbohydrates, 168
definitions, 166–167
DRI panel, 166
effects on methane and sulfur gases, 172–173
methane production, 172
sulfate reducing bacteria (SRB), 172–173
effects on stool chemistry, 171–172
daily fecal weight or stool weight, 171–172
differential effects on fecal weight, 172
fiber sources, 171
increase in stool weight, 171
psyllium seed husk, 171
and fermentation products, protective effects, 169–171, 169t
colonic absorption of SCFA, 170
dietary fiber sources and components, 171
effects of butyrate, 170
fiber’s ability, 170–171
large intestine production from diet, 169–170
lignin, insoluble dietary fiber, 171
pectin effects, 171
other components in fiber-containing foods, 176–177
phytochemicals with cancer protective properties, 176t
plant carbohydrates, 167
plant nonstarch polysaccharides, 167
potential functional fibers, 167–168
protect against western diseases, 166
resistant starch, 167
soluble and insoluble fibers, 167
three-dimensional plant matrix, 166
Dietary flavonols/procyandins/cancer, 619–622
cancer preventive effects of procyandins, 623
relationship between flavonoid intake and lung cancer risk, 622
Dietary folate, 19, 81, 393–396, 401, 748
“Dietary folate equivalents” (DFE), 388, 390, 393, 396
Dietary freeze-dried BRB powder, 706
Dietary n-3 PUFA, 254–255, 267
3,3′-diindolylmethane (DIM), 30, 52t, 536, 546, 557t–558t, 645, 763t, 764f, 771–772, 773t
Dimethylbenz(a)anthracene (DMBA), 134, 150, 286, 316t, 372, 420, 575t, 576, 580, 591–594, 598–600, 604, 616–617, 638, 708t, 709, 768–769, 772
Dipropyl disulfide (DPDS), 573, 576
Divalent metal transporter 1 (DMT1), 474, 476t, 478t, 479
DMNTs, see DNA methyltransferases (DMNTs/DNMTs)
DMT1, see Divalent metal transporter 1 (DMT1)
DNA methylation and diet, 106–111
APE, anticancer effects of, 110
dietary folate intervention, 109
folate supplementation/deficiency, 109
RFLP analysis, 109
dietary polyphenols effect, 110
murine metastable epiallele, AxinFu model, 108
Axin gene/AxinFu allele, 108
selenite treatment, 110–111
yellow agouti (Avy) mouse model
adult-onset disease hypothesis, 106
agouti gene, 107
dietary supplementations, 106
genistein effects methylation and epigenetic pathways, 107
maternal methyl donor supplementation, 107
maternal obesity, 108
DNA methyltransferases (DMNTs/DNMTs), 32, 103, 111–112, 116
DNA microarrays, 31, 34, 368, 509, 648, 708, 715
Docosahexaenoic acid (DHA), 31, 256–259, 282t, 284t, 290
Ductal carcinoma in situ (DCIS), 247
Duodenal cytochrome b (DCYTB), 476t, 478t, 479

E
“Ecogenetics,” 72
ECP, see European Cancer Prevention (ECP)
EGCG, see Epigallocatechin-3-gallate (EGCG)
Eicosapentaenoic acids (EPA), 31, 254, 256–258, 261–267, 282t, 284t, 290
eIFs, see Eukaryotic translation initiation factors (eIFs)
Ellagic acid (EA), 54, 56t, 704–706, 707t, 710–711, 717, 726–727, 729
Ellagitannins (ETs), 711–714, 726–731
Endoplasmic reticulum (ER) stress, 54, 414, 418
E3N-EPIC study, 220
Energy balance-related hormones and growth factors, 151–155
activation of RTKs and PIP3, 152–153
adiponectin and cancer risk, 154
factor influencing, 153
IGF-1, 151–152
cell cycle progression factor, 152
IGF-binding proteins (IGFBPs), 152
IGF-1 receptor (IGF-1R), 151
role in anti-cancer effects and GFBP activity, 152
insulin, effects of, 152
leptin administration, 153
JAK/STAT family of transcription factors, 154
mTOR activation, 153
PI3K/Akt pathway, 152
steroid hormones, 154–155
adipose tissue, 154
glucocorticoid hormones, 155
sex steroids, risk factors, 154–155
tuberculous sclerosis complex (TSC), 153
EPA, see Eicosapentaenoic acids (EPA)
“Epiallele,” 108
EPIC, see European Prospective Investigation into Cancer and Nutrition (EPIC)
EPIC-EURGAST study, 175, 201
EPIC Norfolk study, 83–84, 220
Epidemiology, see Vitamin A
Epidermal growth factor receptor (EGFR), 131, 287–288, 294, 512t, 580, 594, 596, 652t, 673–674, 764f, 766–767
Epigenetic phenomena, 646
reduction of hypermethylation of p16
DNMT3A and DNMT3B, “de novo” methylation, 103
DNMT1, “maintenance” methyltransferase, 103
HDAC inhibitors, 104
histone acetylation/modifications, 104
“loss of function,” or “gain of function,” 104
PcG complex, 105
secondary structure of chromatin, 104
small noncoding RNA molecules, role of, 105
Swi/SNF complex, 105
TGS, 106
ERK, see Extracellular signal-regulated kinase (ERK)
ESCC, see Oesophageal squamous cell carcinoma (ESCC)
Esophageal adenocarcinoma (EAC), 10, 20, 394, 499, 505–507, 518, 718, 720
Esophageal and oral cancer, 498–499, 505, 520, 522
Esophageal squamous cell carcinoma (ESCC), 10, 20, 394, 431, 499, 503, 506, 510, 518, 520–522, 706, 720
Esophagus, 7t–8t, 12f, 13t, 14, 19, 74, 79, 148, 198, 204t, 393, 499, 501–504, 507–508f, 509–510, 512t, 518–519f, 520–521, 573, 575t, 615t, 619t, 687, 703–709, 711, 713–718, 720, 735, 743
Essential fatty acids (EFA), 254, 275, 279
Estimated average requirement (EAR), 166
Estrogen-like properties of isoflavones, 639–640
clover isoflavones, infertility in sheep, 639
metabolites of daidzein and genistein., 640f
Estrogen receptor alpha (ERα) and beta (ERβ), 634
Ethanol metabolism, acetaldehyde and oxidative stress, 737–740
cell proliferation and damage-induced hyper-regeneration, 740
covalent DNA adduct formation, 739
CYP2E1-dependent ethanol oxidation, 737
damaging cellular consequences of ROS formation, 740

damaging outcomes, 737f

DNA–acetaldehyde adducts, 739

eigenalcohol-associated inflammation and ROS, 740

forms of stable DNA damage, 739

less active aldehyde dehydrogenase enzyme, 738

microsomal acetaldehyde oxidizing system, 738

microsomal cytochrome P4502E1 (CYP2E1)-catalyzed conversion of ethanol, 737

peroxisomal catalase-mediated metabolism, 737

tissue accumulation and toxicity of acetaldehyde, 738

Eukaryotic translation initiation factors (eIFs), 259

European Cancer Prevention (ECP), 456

European Prospective Investigation into Cancer and Nutrition (EPIC), 75, 83–84, 174–175, 182, 198, 201, 205, 220, 222, 394, 545, 550t, 553t, 689

Evaluation of Weight Control and Physical Activity, 148, 151

EVA study, 430

Exosome signaling, 647

Expression Analysis Systematic Explorer (EASE) pathway, 510

Extracellular signal-regulated kinase (ERK), 56, 75, 127–131, 133–134, 155, 345t, 362, 539, 579, 601–602, 615, 636t, 644f

F

FADD, see Fas-associated death domain protein (FADD)

False discovery rate (FDR), 517t, 648

FAO, see Food and Agricultural Organization (FAO)

FAs, see Fatty acids (FAs)

Fas-associated death domain protein (FADD), 50, 52t, 643f

Fatty acids (FAs)
biosynthesis, 254

linoleic and linolenic acid, 254

synthase, 215

cerulin, antifungal antibiotic, 215–216

increased levels of FAS, 215

palmitic acid, 215

Ferritin, 475

H-ferritin mRNA, 475

L-ferritin gene and protein, 475

FFQs, see Food frequency questionnaires (FFQs)

FGF, see Fibroblast growth factor (FGF)

Fiber and microbially generated active components, 165–177
cancer, 168–169

breast cancer, 174–175

large bowel cancer, 173–174

other cancers, 175
dietary fiber, 165–168

effects on methane and sulfur gases, 172–173

effects on methane and sulfur gases, 172–173

and fermentation products, protecting mechanism, 169–171, 169t

other components in fiber-containing foods, 176–177

Fibroblast growth factor (FGF), 60, 644f

“Field cancerization” effect, 499

Flavonoids, 46, 57, 81–82, 84, 135, 157, 176t, 207, 568, 622, 625–626, 633–635, 683, 704, 763t, 773–774

Flavonol compounds
equol treatment, 135

kaempferol, 133–135

MEK/ERK/AP-1 pathway, 134

onion leaves, highest flavonol content, 133

red wine, major flavonols in, 134

RSK2 activity, 133–134

myricetin, 134–135

quercetin, 134

Folate, 387–403

in cancer prevention
evidence from animal models, 401

to cancer risk, biologic mechanisms, 389

DNA methylation, 389

global DNA hypomethylation, 389

thymidylate/purine synthesis, 389

cancer types, case–control studies, 395–396

in carcinogenesis, role of, 401

in colorectal and breast cancer, 396

evidence for cancers with supporting data, 395
evidence from pooled or meta-analyses

breast cancer, 393–394

cancers with meta-analyses, 394–395

colorectal cancer, 390–393

of folate status and cancer risk, 391t–392t

genetics and nutrigenetics, role of, 401

intakes and esophageal cancer, correlation, 394

status/cancer risk, epidemiologic evidence

studies of dietary intake and biomarkers, 389–390

studies of genetic polymorphisms, 396–397

folate-mediated-one-carbon metabolism, 388f, 397–401, 398t
Folate (Cont.)
meta-analysis results of MTHFR polymorphisms, 400t
Folate-mediated-one-carbon metabolism (FOCM), 389
functional polymorphisms, 397
MTHFR activity, 397
677C>T (rs1801133) and 1298A>C (rs1801131) polymorphisms, 397
risk of gastric cancer, 399
thymidylate synthase (TS), 399
Food and Agricultural Organization (FAO), 186, 196f, 675
Food frequency questionnaires (FFQs), 72, 176, 218, 220, 279, 296, 349, 390, 543, 545, 623
Former Yugoslav Republic of Macedonia (FYROM), 422–423, 426t
Free radicals, 55, 312, 470, 501, 614, 685, 790
Fruits and vegetables, 317, 327, 348–349, 352, 396
Fruit/vegetable consumption and cancer risk
 cruciferous vegetables/SNPs in metabolic enzymes, 74–76
ATBC study, 74
case–control study in Europe/Sweden, 75
Chinese study, 75
colon cancer study, 75
EPIC study, 75
HPFS, 74
LIBCSP, 76
mercapturic acid pathway, polymorphic genes in, 75
Shanghai Breast Cancer Study, 75–76
study of bladder cancer, 76
Western New York Diet Study, 74–76
dietary antioxidants/genetics of oxidative stress/DNA repair, 76–78
Manganese superoxide dismutase (MnSOD) synthesis, 77
superoxide radicals reduction, 76–77f
folate and folate metabolism, 78–81
alcohol metabolism, 79
bioactive nutrient/genetic polymorphism, 81
“double-edged sword,” 79
high-quality food sources, 79
MTHFR/CH3-THF, role of, 79–81
one-carbon metabolism TTCC, 79–80f
polymorphisms of genes, 79
Functional polymorphisms, 397, 421–422
FYROM, see Former Yugoslav Republic of Macedonia (FYROM)
G
Garlic, 683–691
anti-inflammatory/antioxidant properties, 685
allicin inhibited inflammatory biomarkers, 685
ROS formation, lowering of, 685
effects of garlic on bacterial infections, 688–689
antibiotic spectrum against gram positive/-negative bacteria, 688–689
garlic oil and OSC compounds, 688
effects on cancer
initiation/promotion/progression in intact animals, 686–687
AGE, 686–687
effects on specific detoxifying enzymes, 687–688
carcinogen 1,2-dimethylhydrazine (DMII), 688
phase I detoxification reactions, 687
effects on tumor cells in culture, 685–686
antitumorigenic effects, 685
DADS/DAS/DATS, 686
E-cadherin, 685
NF-kB activation, 686
human intervention studies on cancer patients or healthy subjects, 690–691
BPH, 690
double-blind intervention study, 690–691
human observational studies on garlic, 689–690
EPIC, 689
protective association, garlic intake and PC, 689
limitations of garlic research, 683–684
chemical structures of garlic compounds, 683–684f
organic compounds in garlic, 684f
organosulfur compounds (OCS), 683
potentially bioactive compounds, 683
Garlic and cancer prevention, 567–581
complex food
Allium sativum, 567
allyl sulfur compounds, 568–569
characteristics, 568
different dietary factors, 568
P450/liver monooxygenases, 569
with potential health benefit properties, 568t
processing and steam-distillation, 569
sulfur-containing constituents, 568
dietary modifiers, 580–581
dietary fatty acid supply, 580–581
Subject Index

DMBA mammary carcinogenesis, 580
membrane lipids, interaction with, 581
MNNG-induced stomach tumors, 580
exposures – range and safety, 569–571
DADS and allicin, 570
exaggerated intakes and complications, 570
long-term multiple dietary supplement,
569–570
TRPA1, 570
USDA reports, 569
warfarin pharmacokinetics or
pharmacodynamics, effect on, 570–571

Genetic/epigenetic events influence garlic
response, 579–580
anticarcinogenic and antitumorigenic
response, 580
DADS, 579
epigenetic gene regulation mechanism, 579
implications in cancer prevention, see Cancer
prevention and garlic, implications
influence heart disease and cancer risk, 567
Gastric cardia cancer (GCC), 222, 431
Gastrointestinal tract cancer, 168, 399, 620
GCC, see Gastric cardia cancer (GCC)

Gene expression, 28–29, 31–34, 36–37t, 102,
104–105, 109–110, 114–116, 118, 217,
224, 239, 242, 290, 294, 336–337, 341,
343–344, 347, 350, 360, 367, 399,
415–416, 420, 475, 487, 498, 500, 503,
509, 512t, 576, 580, 598, 601, 648–649,
650t, 657, 680, 690, 715, 718, 748

Gene interactions and alcohol, 741–744
ADH1C, rate-limiting factor, 742
ADH polymorphisms, 742–743, 742f
ALDH polymorphisms, 743
other polymorphisms, 743–744
polymorphisms in alcohol and aldehyde
dehydrogenases, 742f

Genistein
and BC
DMBA-induced mammary tumorigenesis,
591
mechanisms of action, 593–595
ontogeny of palpable mammary tumors, 592f
terminal ductal structures in mammary
glands, 594f
tumor suppressor gene, 594
in vitro results, 591
in vivo chemoprevention, 591–593, 593t
breast and prostate cancer epidemiology, 596
prevalence, 596
chemical structures of genistein and resveratrol,
591–591f
and PC
mechanisms of action, 596
in vitro results, 595
in vivo chemoprevention, 595

Ginger
chemical structures of ginger compounds, 692f
[6]-gingerol
ginger family (Zingiber officinale Roscoe,
Zingiberaceae), 132
characteristic properties, 132
[6]-gingerol and [6]-paradol, effects of,
132–133
oleoresin or oil from ginger root, 132

Glutamate–cysteine ligase (GCL), 680–681
Glutathione peroxidase (GPX1), 422–423
cytosolic
bladder, 423
breast, 422–423
lung, 422
other cancers, 423
prostate, 423

proline/leucine SNP at codon 198,
3p21, 426t
Glutathione peroxidase (GPX4), 77, 422, 425, 617,
653t, 685, 688
Glutathione S-transferase (GST), 75–76, 87,
110–111, 216, 420, 538, 555–556, 576,
680, 685, 687–688, 741, 765, 772
GPx1 Pro198Leu polymorphism, 425
Gut microbiota/probiotics/prebiotics/colorectal cancer, 181–189
future research
distally targeted effects, 189–190
improved microbiota characterization, 187–189
prebiotics for butyrate production, 189
gut microbiota in colorectal cancer, 182–183
EPIC study, 182
microbial metabolic pathways, 183
protection methods, 182
risk factors, 182
human gut microbiota, 183–184
Bacteroides, 184
bifidobacteria and lactobacilli, 183
Clostridium spp., 184
colic microbial ecosystem, 183
enterococci, 183–184
putrefaction, 183
probiotics and prebiotics, 186–187
anti-cancer activities, 187
inulin and galacto-oligosaccharides (GOS) metabolism, 187
studies on rats for dietary factors, 188t
symbiotics, 187
in vitro, animal and human studies, 184–185
butyrate activity, 184–185
cell cycle checkpoints, 185
colon cancer, manifestation, 185
control diets experiments, 185
mutant p53 cells, 185
proteolytic/saccharolytic fermentation, 185
saccharolytic metabolism, 184

H
HAT, see Histone acetyltransferase activity (HAT)
HCC, see Hepatocarcinogenesis (HCC);
Hepatocellular carcinoma (HCC)
HDACs, see Histone deacetylase complexes (HDACs)
Health professionals follow-up study (HPFS), 74–75, 77, 80, 256, 363–364, 549t, 716
“Healthy foods,” 396
Heat shock protein 27 (HSP27) pathway, 646
Heme/non-heme iron foods, 470
Hepatocarcinogenesis (HCC), 116, 290, 431, 651, 767
Herbs and spices, therapeutic properties, 673–676
anti-inflammatory properties, 673–674
molecular targets, 673–674
antioxidant properties, 674
ORAC assay, 674
synergistic effects, 674
effects on bacterial infections, 675
effects on cancer
initiation/promotion/progression in intact animals, 675
effects on specific detoxifying enzymes, 675
effects on tumor cells in culture, 674
tumorigenesis, 674
human intervention studies with cancer patients or healthy subjects, 676
human observational and population studies, 675–676
See also Spices and spice extracts, research on
HETE, see Hydroxyeicosatetraenoic acids (HETE)
Heterocyclic amines (HCAs), 85–87, 198, 202
HFE
gene variants, 479
polymorphisms and cancer, 485–486
cervical neoplasia, 485–486
C282Y heterozygote hereditary hemochromatosis, 485
HFE gene variants and brain tumors, 485
HFE gene variants and colorectal cancer, relationship, 485
High density lipoprotein (HDL), 82, 150, 276, 581
High-performance liquid chromatography (HPLC), 243f, 244, 547, 712
Histone acetyltransferase activity (HAT), 32, 104, 361, 764
Histone deacetylase complexes (HDACs), 32–33, 103–114, 112–113
Histone methyltransferases (HMTases), 32, 112f
Histone modification by BFCs/diet composition, 111–115
dietary factors, role of, 111
butyrate, 111–112
diallyl disulfide (DADS) treatment, 112–113
epigenetic machinery in cancer cells, 112f
genistein, 113–114
histone acetylation, 111
lunasin, 114
maternal diet with chronic consumption/caloric-dense, 114
phenethyl isothiocyanate, 113
sulforaphane (SFN), 112–113
HL-60 myeloid leukemia cells, 337
HMTases, see Histone methyltransferases (HMTases)
Homocysteine (Hcy) concentrations, 80, 109, 388, 390, 397–399
Hormone replacement therapy (HRT), 19, 281t, 284, 456–458, 471
HPFS, see Health Professionals Follow-up Study (HPFS)
HPLC, see High-performance liquid chromatography (HPLC)
HRT, see Hormone replacement therapy (HRT)
Huixian intervention trial, 521
Human papillomaviruses (HPV), 395, 542
Human umbilical vein endothelial cells (HUVEC), 62t–63t, 729–739
HUVEC, see Human umbilical vein endothelial cells (HUVEC)
Hydroxyeicosatetraenoic acids (HETE), 243–244
Hypercalcemia, 370, 372–373
Hypermethylation
of SEP genes/increase cancer risk, 428–429
Barrett’s metaplasia, 428
LnCAP (lymph node metastasis), 428
methionine sulfoxide reductase 1 (MsrB1), 429
PC3 (bone metastasis) prostate cancer cell lines, 428
post-prostatectomy metastasis, 428
Hypervitaminosis A, 336, 340, 352
Hypoxia-inducible factor-1α (HIF-1α), 729, 762
I
IARC, see International Agency for Research on Cancer (IARC)
ICD-O-3, see International Classification of Diseases for Oncology, Third edition (ICD-O-3)
IEG, see Immediate-early-response genes (IEG)
IGF-1, see Insulin-like growth factor-1 (IGF-1)
Immature terminal end bud (TEB) structures, 246, 594, 604, 747
Immediate-early-response genes (IEG), 127
Immunity, 58–60
adaptive immune response, 58
B-lymphocytes and T-lymphocytes, 58
cancer immunosurveillance, 58
dietary components
energy restricted diet/exercise enhanced, 59
to enhance γδ T-cell function, 60
selenium, 59–60
yogurt and fish oil consumption, 59
“flags” on tumor cells, 58
immune system, role of, 59
innate immune response, 58
NK2GD, immune receptor, 58–59
Immunoblot assays, 574
Incidence, cancer, see Cancer in U.S, burden of
Indole-3-carbinol (I3C), 30, 536, 538, 540–543, 545–546, 558t, 763–763t, 771–772, 774
Indoles, 30, 176t, 185, 535–555, 763t, 771–772, 773t
Inducible nitric oxide synthase (iNOS), 55f–56f, 57, 60, 62t–63t, 216, 414, 715–716t, 718
Inflammation
bioactive food components
eicosapentaenoic acid, 57–58
chronic inflammation, 55–56
COX-2 transcription/upregulation, 57
between energy balance/cancer, role of,
155–156
acute inflammation, 155
chronic inflammation and cancer, 155
chronic (low-grade) systemic inflammation, 155–156
inflammatory cascade, 55f
nitric oxide, role of, 57
flavonoids, 57
nutritional prevention of cancer
COX-2 and NF-κB, genes, 56
proinflammatory cytokines, synthesis/secretion, 56
Inflammatory bowel disease (IBD), 173, 184, 201, 287, 498–499, 510
iNOS, see Inducible nitric oxide synthase (iNOS)
Insulin-like growth factor-1 (IGF-1), 31, 36, 60–61, 63, 151–154, 292, 315t, 324t, 367, 602, 655t, 746
Interleukin (IL-1/IL-6/IL-12), 56, 130, 154–155, 417, 579, 617, 677, 685
International Agency for Research on Cancer (IARC), 148, 151, 202–203t, 736, 739, 770
International Classification of Diseases for Oncology, Third edition (ICD-O-3), 4
Intestinal carcinogenesis, 401
Iowa women’s health study, 198, 522
Iron and cancer, 469–488
cancers associated with iron overload, 487
clinical studies, 486–487
Iron and cancer (Cont.)
Desferri-exochelins, 487
effect of DFO and its treatment, 486
triapine, 487
dietary iron intake and cancer, 470–472
heme supplemented diet, 471
hemochromatosis, 472
lung cancer development, 471
perilla, 471
red and processed meat consumption, 470
risk of breast cancer, 471
risk of endometrial cancer/acute lymphoblastic leukemia, 471
risk of other cancers, 471
risk of rectal cancer, 471
vegetarian diets, 471
vitamin C and acidic substances consumption, 472
epidemiological studies
HFE polymorphisms and cancer, 485–486
transferrin receptor variants and cancer, 486
future research, 488
HFE and cancer, 479–480
C282Y alleles, 480
effect of wild-type HFE on Tf receptor and ferritin, 480
HFE expression and iron metabolism, relationship, 480
iron metabolism genes in cancer, 481t–483t
liver iron concentration and hepatocarcinoma, 480
iron consumption, 470
iron metabolism/regulation in cancer tissue
body iron is predictor of cancer risk, 473t
divalent metal transporter 1 (DMT1), 474
effects of iron accumulation, 472
ferritin, 474
hepatocellular carcinoma, 472
hepcidin, 474
HFE, 474
iron-regulatory protein (IRP), 474
transferrin receptor (TfR), 474
type 3 hereditary hemochromatosis, 474
measurement of body iron, 472
measurement of ferritin, 472
measurement of transferrin, 472
preclinical studies, 480–484
antiproliferative effects of iron chelators, 484
anti-tumor effects of iron chelation, 484
caspase-3-mediated apoptosis, 484
combination therapies, 484
13762NF rat mammary adenocarcinoma model, 484
recommendations for intake/dietary changes, 488
Iron chelation therapy, 486
Iron intake, 199, 470–472, 485, 488
Iron proteins, 479
DCYTB/DMT1, expression of, 479
ferroportin (MTP1), 479
hepcidin, 479
iron regulatory protein 1 (IRP1), 479
Isoflavone in cancer prevention
androgen-dependent carcinogenesis, 641
apoptosis, 645–646
regulation, 645f
aromatase, 640–641
to genistein, 641
stimulation of brain protein synthesis, 641
cell-cycle regulation, 641–642
cell-cycle arrest by genistein, 641
G1/S checkpoint in cell-cycle regulation, 642f
retonone, chemical structure of, 642f
chemical structure of
8-C-glycoside of daidzein, 634f
daizdin, 634f
genistein, 634f
glycitein, 634f
puerarin, 634f
clover isoflavones, infertility in sheep, 639
metabolites of daidzein and genistein., 640f
exosome signaling, 647
intake, 635
soy food products, 635
interactions with other phytochemicals, 647–648
combination of biochanin A/EGCG/quercetin, 648
mechanisms of action of, 636–637
cellular targets of genistein, 636t
metabolism, 635–636
phase II metabolism, 636
UDP-glucuronosyltransferases, 635
metastasis, 646
MAPK-HSP27 pathway, 646
nude mouse models, 638–639
omics and mechanisms of action, 648–657
distribution of P values, 649
FDR, 648
genistein in gene expression, impact of, 650–656
microarray analysis (transcriptomics), 648
microarray data from cells, examination of, 657
origins, 634–635
 A. americana (popular vegetable), 635
 β-glycosides/C-glycosides, 634
 principal sources, 635
proteomics, 657–659
 advantage of Gel-LC method, 658
 2D electrophoresis method, 658
 fluorescent dyes (Cy dyes), 658
 gel-free approach, 657
 nanoLC-tandem mass spectrometry, 659
 posttranslational modification (PTM), 658
 protein separation, 658
 proteins insoluble in IEF buffers, 658
PTK inhibition, 641
 inhibitors, 641
 signaling pathways, 642–645
 antioxidant role of genistein, 644
 G2/M checkpoint in cell-cycle regulation, 643f
 MAP kinase regulation, 644f
 MEKK1, 644
 NF-κB pathway, 643f
tumor suppressor pathways, 646–647
 genistein on BRCA1/BRCA2 expression/protein levels, effects, 647
 PTEN expression in mammary gland, 647
Isothiocyanates (ITCs)/indoles, molecular mechanisms
 AP-1/NfκB transcription factors, inhibition, 539–540
 oncogenic transcription factors, 539
 overactivity of AP-1, 539
 Rel or NfkB families, 539–540
 apoptosis/cell cycle arrest, regulation of, 541–542
 intrinsic/extrinsic pathway, 541
 ITCs and SUL, 541
 PEITC/BITC/I3C, role of, 542
 SUL treatment to inhibit PC, 541
 chemoprevention methods, 542
 chemopreventive actions, 538f
 COX-2/inflammatory response, inhibition, 540–541
 cruciferous vegetables consumption, 537t
cytoprotection or Keap1/Nrf2 pathway, 536–538
 Nrf2 activity (“double-edged sword”), 538
 Nrf family (Nrf1/Nrf2/Nrf3), 536–538
 effects in animal models, 542–543
 combinations of natural products, 543
 PEITC to Apc (Min+/+) mice, 543
 SCID mouse model in I3C blocked breast cancer cells, 542

J
 JACC, see Japan Collaborative Cohort (JACC) study
 JAK2/STAT3, see Janus kinase 2/signal transducer and activator of transcription 3 (JAK2/STAT3) pathway
 Janus kinase 2/signal transducer and activator of transcription 3 (JAK2/STAT3) pathway, 154
 Japan Collaborative Cohort (JACC) study, 220
 Japanese Public Health Center-Based Prospective Study (JPHC), 621
 JNK, see C-Jun N-terminal kinase (JNK)
 JNK/SAPK, see JNK stress-activated protein kinases (JNK/SAPK)
 JNK stress-activated protein kinases (JNK/SAPK), 127–128

L
 Lactic acid bacteria, 187
 Lecithin:retinol acyltransferase (LRAT), 341–342
 346–347, 351
 Leukoplakia, 336, 349, 473t, 739
 LIBCSP, see Long Island Breast Cancer Study Project (LIBCSP)
 Linoleic acid (LA), 30, 60, 62t, 221, 235–249, 254, 276–277f, 319t
 Linxian China Study, 323
 Linxian nutrition intervention trial, 521
 Lipopolysaccharide (LPS)-activated RAW264, 575
 Liquid chromatography–tandem mass spectrometry assay, 547
 Liver cancer, 20, 349, 395, 434, 436–437, 473t, 487, 637, 675, 736
 Long Island Breast Cancer Study Project (LIBCSP), 76–78, 80, 423
 LRAT, see Lecithin:retinol acyltransferase (LRAT)
M

Malmo Diet and Cancer cohort, 220
Mammary and PC, rodent models
 combinational chemoprevention, see
 Chemoprevention
genistein, see Genistein
resveratrol, see Resveratrol
Mammary tumorigenesis, 31, 217–218, 238,
 240–242, 245, 248, 286, 290, 293, 295,
 401, 591–593, 598, 605–606, 617, 624,
 647, 710, 768
Manganese superoxide dismutase (MnSOD)
synthesis, 77
ATBC study, 77
CARET study, 78
Carolina Breast Cancer Study, 77
German study of breast cancer, 77
Nurses’ Health Study, 77–78
Shanghai Breast Cancer Study, 77
study of prostate cancer, 78
XRCC1 gene polymorphisms, 78
MAPK, see Mitogen-activated protein kinase
 (MAPK)
MARRS, see Membrane associated rapid response
 steroid-binding receptor (MARRS)
Matrix metalloproteinases (MMPs), 60, 130, 414f,
 415, 579, 618f, 655t, 746
Maximum tolerable dose (MTD), 202
MBPs, see Methyl-binding proteins (MBPs)
Meat consumption/genetics/cancer risk
 breast cancer risk and colorectal cancer, 85
 heterocyclic amines, 86–87
 nitrosamines and colorectal cancer, 87
 polycyclic aromatic hydrocarbons and breast
 cancer, 87–88
 prostate cancer, red and processed meat
 consumption, 85
Meats/protein/cancer, 195–208
 correlation, annual meat
 consumption/age-standardised cancer
 incidence rates, 196f
correlation coefficients, 196f
data from NIH-AARP prospective study, 197f
endogenous nitrosation, 199–201
 heme induced formation of DNA adducts,
 200f
 nitric oxide (NO) concentrations, 201
 nitroso-thiols, 200
 N-nitroso compounds (NOC), 200–201
 red and processed meats, 199
future research, 207
HCA AND PAH, 201–206
effects on cancer, 205
EPIC-Heidelberg cohort, 205
HCA compounds (IQ compounds/PhIP),
 201–202
lipophilic PAHs, 202
mutagenicity and carcinogenicity data,
 203t–204t
mutagenicity tests-Salmonella typhimurium
 (Ames test), 202–205
HEME, 198–199
 Canadian study, 198
cytotoxic and haemotoxic effects, 198
 haem content in foods as haemoglobin
 equivalent, 199t
 haem-rich diet, 198
 Iowa Women’s Health Study, 198
 red and white meats, differentiation, 198
 recommendations for intake/dietary changes,
 207–208
 relative risk for colorectal cancer, 197f
 totality of evidence, 206–207
 mechanisms linking dietary meat and protein
to cancer risk, 206f
Mechanism of Se, anti-cancer
 activation of p53 tumor-suppressive activity,
 419–420
 androgen receptor down-regulation, 420–421
 for anti-cancer effects, species of, 421–429
 cytosolic GPX1, 422–423
 frequency of GPx3 promoter
 hypermethylation, 428t
 hazard ratios for all-cancer, 430f
 hypermethylation of promotor regions,
 428–429
 15 KDA selenoprotein, 423–424
 phospholipid GPX4, 425
 polymorphisms in
 selenoproteins/selenoenzymes, 421–422
 selenoprotein P, 424
 selenoprotein polymorphisms and cancer
 risk, 425
 thioredoxin reductase 1, 424–425
 anti-inflammatory effect, 415–416
 antioxidant protection, 415
 apoptosis (necrosis), 418
 cell cycle arrest – decreases cell proliferation,
 418
 enhancement of cell-mediated immune
 response, 416–417
 inactivation of PKC, 420
 inhibition of angiogenesis, 419
 maintenance of genome stability, 417–418
 modification of sulfhydryl groups, 413–415
reduced tumor cell migration and invasion, 418–419
upregulation of phase II carcinogen-detoxifying enzymes, 420
Membrane associated rapid response steroid-binding receptor (MARRS), 362
Metabolomics, 28–29, 35t, 37, 690
Metallothioneins (MTs), 500–501, 510
Metastable epialleles, 108
Methionine sulfoxide reductase 1 (MsrB1), 429
Methyl-binding proteins (MBPs), 32, 37t
Methylenetetrahydrofolate reductase (MTHFR), 27, 79–81, 388f, 397–398t, 399–400t, 749
Methylguanine methyltransferase (MGMT), 33, 110
MGMT, see Methylguanine methyltransferase (MGMT)
Microbial fermentation, 182
Microflora, 169t, 170, 183–184, 186–189, 546, 572, 731
MicroRNAs (miRNAs), 105–106, 116–117, 518, 520
MINO, see Mouse mammary intraepithelial neoplasia outgrowths (MINO)
miRNAs, see MicroRNAs (miRNAs)
Mitogenactivated kinase kinase 1 (MEKK1), 643f, 644
MMPs, see Matrix metalloproteinases (MMPs)
Molecular mechanisms, 242, 503, 536–543, 600, 705, 714–716
Molecular targets
for cancer prevention, 30
Mortality, see Cancer in U.S, burden of Mouse mammary intraepithelial neoplasia outgrowths (MINO), 247–248
MTHFR, see Methylentetrahydrofolate reductase (MTHFR)
MUFA, see Monounsaturated fatty acid (MUFA)
Multistage carcinogenesis, 26–28
anticarcinogenic or procarcinogenic effects, 27
bioactive components and drugs, 27
cancer prevention, 26
carcinogens, 27
dietary-intervention strategies, 27
epigeneric silencing, 27
initiation/promotion/progression, phases, 26
nutrigenetics, 27
risk for cancer, Western diets, 26
“Multivitamin/Mineral Supplements and Chronic Disease Prevention,” 352
Musculoaponeurotic fibrosarcoma (MAF) protein families, 129, 765
Myrosinase, 546–547
N
National Cancer Act, 3
National Cancer Institute (NCI), 4–5, 15, 19, 460, 544t, 590
National Center for Health Statistics (NCHS), 4–5, 14t
National Institute of Aging, 150
National Institutes of Health-AARP Diet and Health Study, 174
National Program of Cancer Registries (NPCR), 21
NCI, see National Center for Health Statistics (NCHS)
NCI, see National Cancer Institute (NCI)
NER, see Nucleotide excision repair (NER)
Netherlands Toxicology and Nutrition Institute study, 150
NFicB, see Cruciferous vegetables/ITCs/indoles/cancer prevention
NHANES III, see Third National Health and Nutrition Examination Survey (NHANES III)
NHANES III, see US Third National Health and Nutrition Examination Survey (NHANES III)
Nitroso compounds, 198–201, 207
N-methyl-N′-nitro-N-nitrosoguanidine (MNNG) induced stomach tumors, 580
Non-cruciferous vegetables, 556
Non-Hodgkin’s lymphoma (NHL), 260, 395
oncogenic proteins, 260
Non-melanoma skin cancer, 289, 434
Non-steroidal anti-inflammatory drugs (NSAIDs), 77, 258, 289, 319
NPC, see Nutritional Prevention of Cancer (NPC) trial
NPCR, see National Program of Cancer Registries (NPCR)

N-6 polyunsaturated fatty acids (n-6 PUFA) and cancer, 275–296
dietary n-6 PUFA intake and BC risk in women, 278–285
intake of n-3/n-6 FAs, 282t–284t
intakes of total fat/MUFA/PUFA/SFA, 280t–281t
premenopausal vs. postmenopausal fat intake/obesity, 285
PUFA and BC recurrence, 285
subtypes of fat, role of, 279
total fat and BC, association between, 279
effects of n-6 PUFAs on cancer risk
COXs, 289–290
estrogen levels and PUFA, 291
fat intake and obesity, 291–292
gene expression, 290
n-6 PUFA-derived eicosanoids, 287–289
effects of timing of dietary PUFA exposures on BC risk
gene expression in mammary glands, differentiation, 294t
pregnancy, 295–296
prepubertal dietary fat exposures, 293
in utero exposures, 292–293
PUFA, 276–277
increase n-3/reduce n-6 PUFA intake, reasons for, 276
LA metabolism, 276–277
mean dietary intake, 276
metabolism of n-6 PUFA LA, 277f
n-6 PUFA deficiency, 277
ratio, 276
timing of dietary PUFA exposures and BC risk
pregnancy, 286–287
prepubertal dietary fat exposure, 286
in utero exposure, 286
n-3 polyunsaturated fatty acids (n-3PUFAs) and cancer, 253–268
See also Cancer and n-3PUFAs

n-6 PUFA-derived eicosanoids, 287–289
EP1, 287–288
EP2, 288
EP3, 289
EP4, 288–289
Nrf2, see Nuclear E2-factor related factor 2 (Nrf2)
NSAIDs, see Non-steroidal anti-inflammatory drugs (NSAIDs)

Nuclear E2-factor related factor 2 (Nrf2), 536–541, 543, 576, 636t, 644, 657, 680, 765, 772
Nucleotide excision repair (NER), 436
Nutrient signaling, 125–135
AP-1 activation
flavonol compounds, kaempferol/quercetin/myricetin, 133–135
inhibited by black tea theaflavins, 131
inhibited by xanthine 70, caffeine analogue, 132–133
is suppressed by EGCG, 130–131
and resveratrol, 133
See also Activator protein-1 (AP-1)
from membrane receptor to transcription factor, 126f
mitogen-activated protein kinase cascades, 128f
See also Transcriptome
Nutrigenetics, 28, 71–89
DNA coding, variations in, 72–74
DNA structure/translation into proteins, 73f
A G to C substitution SNP, 73f
nucleotides arrangement, 72
SNPs, description/discovery, 72–73
fruit/vegetable consumption and cancer risk, 74–81
meat consumption/genetics/cancer risk, 86–88
phytoestrogens and hormone metabolism pathways, 82–85
Nutrigenomics, 28–36
biomarkers
genomics-based biomarkers, development, 29
nutritional biomarkers, 29
uses, 33
DNA
methylation and histone modifications, 32
methyltransferase and HDAC activity, 33
EGCG and genistein, effects, 33
endocrine cancers, 33–34
factors affecting nutrigenomics research, 37t
interindividual genetic variations, 34
BRCA1 mutation, 34
isoflavones
effects, 34–36
nutrigenomic approaches in female cancers, 35t
microarrays
cDNA, 31
ChIP and DNA, 31
DNA and gene, 31
oligonucleotide microarray analyses, 31
whole-genome microarray hybridization, 31–32
NFkB and activator protein-1 (AP-1), role of, 30
dietary/bioactive compounds, inhibition, 30
molecular targets for cancer prevention, 30
transcription factors, 30
nuclear receptor super family of transcription
factors, 29
dietary ligands and endogenous ligands, 30
examples, 29
homodimers/heterodimers/monomers, 30
nuclear receptor ligands (nM), 30
orphan receptors, 29
PPAR-dependent gene regulation, 30
posttranslational modifications, 32
soy-related diets, effects, 34

Nutritional Prevention of Cancer (NPC) trial, 421, 434
Nutritional vitamin D, 373

Obesity-inducing high-fat diet (OID), 286, 292
Oesophageal squamous cell carcinoma (ESCC), 431, 499, 503, 506, 510, 518, 520–522
Ohsaki National Health Insurance Cohort Study, 621
Oil-soluble diallyl sulfide (DAS), 572, 576–579, 683, 685–688, 694

Oxygend radical absorbance capacity (ORAC) assay, 674

P
PAHs, see Polycyclic aromatic hydrocarbons (PAHs)
Paired-ion chromatography, 546
Palmitic acid, 214, 216, 220, 223
Pancreatic cancer, 57, 117, 205, 220–221, 277, 394–395, 475, 487, 500, 542, 622, 639, 648, 678–679, 682, 690, 769
PeG, see Polycystic group (PeG) complex
Peroxisome proliferator-activated receptor γ (PPARγ), 290, 580
Physician’s Health Study, 323
Phytochemicals, interactions with, 647–648
combination of biochanin A/EGCG/quercetin, 648
Phytoestrogens and hormone metabolism pathways
 genetic variation and response to phytoestrogen
 exposure, 82–84
dietary phytoestrogens, 82
EPIC and Nutrition-Norfolk, 83–84
flaxseed supplement, 83
isoflavones supplement or placebo, 82–83
phytoestrogen–gene interactions, 82
genetic variation/phytoestrogen
 exposure/disease risk, 84–85
CYP17 polymorphism, effect of, 84
dietary phytoestrogens and genetic variation,
 association study, 84
EPIC-Norfolk, 84
Shanghai Endometrial Cancer Study, 84
soy food and tea consumption, 85
Taq-Man assays, 85
isoflavones/coumestans/lignans, 81–82
PI3K/AKT pathway, 152–153, 288–289
Polycomb group (PeG) complex, 105, 115–116
Polycomb repressive complexes, dietary
 modulation of, 115–116
embryonic stem (ES) cell differentiation, 115
polyphenol EGCG, 115–116
second PeG complex 1, formation, 115
Polycyclic aromatic hydrocarbons (PAHs), 85, 87, 198, 203t, 574, 765
Polymorphisms
 gene polymorphisms, 29, 78, 361–362, 574, 579
genetic polymorphisms, 64, 75–76, 86, 224, 396–401, 579
See also Nutrigenetics
Polyphenols, see Isoflavone in cancer prevention
Polyp prevention trial (PPT), 172–173, 401–402, 431
Polyunsaturated fatty acids (PUFAs), 31, 214, 254, 275–296, 339

Pomegranate
 bioactivity of polyphenols and metabolites, 726–727
 chemical structures of punicalagin isomers, 726–727f
 punicalagin, 726
 bioavailability and metabolism, 730–731
 data on DMEAG and urolithins, 731
 phytochemicals, 730
 cancer preventive potential of polyphenols
 constitutive activation of NF-κB in prostate cancers, 728–729
 ETs/hydrolysis product and EA, 729
 induction of cell-cycle arrest and apoptosis, 727
 NF-κB activation in inflammatory cells, 728f
 cancer preventive potential of pomegranate polyphenols, 727–729
 evidence of bioactivity from human clinical studies, 730
 mechanistic insights from cell culture and animal studies, 729–730
 angiogenesis, 729
 human prostate cancer cells (LNCaP), 729
 HUVEC, 729
 pomegranate polyphenols
 (anti-proliferative/pro-apoptotic/antiangiogenic activities), 730
 urolithins, 729
Pomegranate juice (PJ), 726
Pooling Project of Prospective Studies of Diet and Cancer, 172
Prebiotics, 186–187
 for butyrate production, 189
 Clostridium butyricum, 189
 definitions, 186
 dietary materials, 186–187
 prebiotic inulin, 187
Prevention, see Fruit/vegetable consumption and cancer risk; Nutrigenomics
Probiotics, 186–187
 acid-tolerant strains, 186
 characteristics, 186
 definitions and description, 186
 probiotic Lactobacillus acidophilus, 187
Procyandins (PC), 613–614, 617–618f
Proliferation, see Garlic and cancer prevention
Prostate cancer (PC)
 and advanced prostate cancer using tissue indicators of exposure, 432t–433t
 and calcium, 454–455
 dairy products or calcium intake and PC, 454
 dietary calcium mechanism, 454
 lower renal production of serum 1,25(OH)2D, 455
 risk of PC in men and women, differentiation, 454
Prostatectomy, 54, 220, 323–324t, 428, 728
Prostate, lung, colorectal, and ovarian cancer screening trial, 393, 424, 427t
Prostate-specific antigen (PSA), 19, 323, 325t, 374, 458–459, 601, 725–726
Prostatic intraepithelial neoplasias (PIN), 316t, 324t–325t, 601–602, 605, 623, 637
Protein kinase C (PKC), 155, 288, 362, 413–414, 420
Protein/meats/cancer, see Meats/protein/cancer
Protein tyrosine kinase (PTK), 601, 641
Proteomics, 28, 657–659
 advantage of Gel-LC method, 658
 2D electrophoresis method, 658
 fluorescent dyes (Cy dyes), 658
 gel-free approach, 657
 nanoLC-tandem mass spectrometry, 659
 protein separation, 658
 proteins insoluble in IEF buffers, 658
 PTM, 658
 See also Isoflavone in cancer prevention
PSA, see Prostate-specific antigen (PSA)
PUFAs, see Polyunsaturated fatty acids (PUFAs)
Punicalagin, 726–727, 729–730

R
Radical prostatectomy, 54
Randomised controlled trials (RCTs), 437
effect of Se on cancers, 437–438
RARE, see Retinoic acid response element (RARE)
RAR-RXR complex, 343
 coactivators (N-CoA, p300, or CBP), 344
 corepressors (N-CoR and SMRT), 343
Ras/ERK, see Ras/extracellular signal-regulated kinase (Ras/ERK) pathway
Ras/extracellular signal-regulated kinase (Ras/ERK) pathway, 127
RCTs, see Randomised controlled trials (RCTs)
RDA, see Recommended Dietary Allowance (RDA)
Reactive nitrogen species (RNS), 57, 59, 201

Receptor for advanced glycation endproducts (RAGE), 502, 518–519f

Recommended dietary allowance (RDA), 166, 352, 498

Relative risk (RR) or odds ratio (OR), 390

Restriction fragment length polymorphisms (RFLP), 109, 361–362, 365

Resveratrol, 133, 596–603, 771
BC and PC epidemiology, 603
alcohol consumption, 603
“French Paradox,” 603
and BC: in vitro results, 597
inflammatory mediators in cancer progression, 597
and BC: in vivo chemoprevention, 598–599, 598f
effects of resveratrol on mammary tumor latency, 599f
and BC: mechanisms of action, 599–601, 599t, 601t
rate of apoptosis using DNA fragmentation assay, 600
MEK, role of, 133
and PC: in vitro results, 601
and PC: in vivo chemoprevention, 601–602
and PC: mechanisms of action, 602
phytoalexin family, 133

Retinoic acid (RA), 335
effects on gene expression and outcomes, 336–337

Retinoic acid response element (RARE), 344
Retinoids, 336–344
absorption/storage/enzymatic activation/elimination, 341–342
carboxylic acids, 341
chylomicron remnants, 341
CYP26A1/CYP26B1 gene promoter, 342
LRAT gene expression, 341
RA production and catabolism, 342
retinol oxidation, 341
at-RA, 336

CRBP, 341
“efficiency factor” of vitamin A, 341
homeostasis, metabolism in, 340
molecules of natural and synthetic origin, 337–339
at-RA, 339
13-cis-RA, pro-drug, 338–339
9-cis-RA, RXR family, 339
natural and synthetic retinoids, 339f
nutritional and synthetic retinoids, 338t
retinyl esters and retinol, 337
RBP, 340
receptors, 342–343
RAR and RXR, 337, 342–343
“rexinoids,” 337
as regulators of gene transcription, 343–344
biochemical and structural studies, 343
Jun-Fos (AP-1) transcription factor complex, 344
RARE, hexameric nucleotide sequences, 344
RAR–RXR complex, 343

Retinol, see Vitamin A

RFLP, see Restriction fragment length polymorphisms (RFLP)

RNS, see Reactive nitrogen species (RNS)
ROS, see Reactive oxygen species (ROS)

RsaI polymorphism, 574, 579

S

Saffron, 672f, 675, 691–692f
S-allyl cysteine (SAC), 56t, 568t, 569, 573, 577, 580, 683, 685–688
S-allyl mercaptocysteine (SAMC), 113, 578, 683, 685–686

Salmonella typhimurium TA100, 574

Saturated fatty acids (SFAs) and cancer, 213–224
animal studies
cocnut fat, 218
dietary butyrate, 217–218
dietary myristic acid, 218
inhibition of FAS, 217
chemical structure and abbreviation for SFAs, 214t
de novo synthesis of SAFs, 214–215
epidemiologic studies, see SFA, epidemiology of evidence, 223–224
cell culture studies, 215–217
SFA in tumors, 215
rationale, 215
recommendations and future research, 224
sources of dietary SFAs, 214
structural formula for butyric acid, 214f

Sec Insertion Sequence (SECIS) element, 412, 423

Secondary mitochondrial-derived activator of caspase (Smac), 50, 53t
Spices and spice extracts, research on, 676–693
capsaicin, 692–693
AICR, 693
chemical structure, 693f
WCRF, 693
curcumin, 677–683
garlic, 683–691
See also Garlic
ginger, 691–692
saffron, 691
structure of curcumin deferuloylmethane, 677f
Stage IV Evans disease, 486
Sulfotransferases (SULT), 36, 82, 86
SULT, see Sulfotransferases (SULT)
Surveillance, Epidemiology, and End Results (SEER) Program, 4
Survival, cancer, see Cancer in U.S, burden of
SU.VI.MAX French study, 521
SW480 colon cancer cells, 368
Swedish Mammography Cohort, 221, 257, 393, 395, 552t
Swedish Women’s Lifestyle and Health cohort study, 220
Swi/SNF, see SWItch/Sucrose NonFermentable (Swi/SNF) complex
SWItch/Sucrose NonFermentable (Swi/SNF) complex, 105

T
Tea consumption and cancer, 619–622
cancer preventive effects of green tea, 619t
dietary flavonols/procyanidine/cancer, 619–622
epidemiological studies, 619–623
JPHC study, 621
Ohsaki National Health Insurance Cohort Study, 621
quantity/quality/determination of tea consumption, 621–622
reduced risk, 620–621
Tertiles of fruit and vegetable consumption, 88f
TGS, see Transcriptional gene silencing (TGS)
Third National Health and Nutrition Examination Survey (NHANES III), 430, 437
TIMPs, see Tissue inhibitors of metalloproteinases (TIMPs)
Tissue inhibitors of metalloproteinases (TIMPs), 60, 414f
TNF, see Tumor necrosis factor (TNF)
TNF-related apoptosis-inducing ligand (TRAIL) receptor, 50, 52t
“Total dietary intakes,” 390
Total folate consumption, 393
TPA-response element (TRE), 539
TRAIL, see TNF-related apoptosis-inducing ligand (TRAIL) receptor
Transcriptional gene silencing (TGS), 106, 117
Transcriptome, 125
DNA binding, 126
dysfunctional transduction, 126
MAP kinase signaling pathways, 127
ERK, 127–128
IEG, 127
JNK/SAPK, 127–128
p38 kinases, 128
protein kinase signaling, 126
chemoprevention and chemotherapy, 127
phosphorylation, 126–127
Ras/ERK pathway, 127
signal transduction, 126
transcription factors, 126
Transcriptomics, 28–30, 35t, 37t, 126, 648, 690
Transferrin receptor (TfR), 475–479
cellular iron acquisition, 475
TfR2, expression, 479
TfR mRNA expression, 475
Transforming growth factor-beta (TGFβ), 746
Translation initiation, 262f
anti-cancer effect of EPA, 261–262
GDP–GTP exchange factor, 261
connection, 259–260
eIFs, 259
G0-G1 transition, 260
oncogenic proteins/cell growth regulatory proteins, 260
strong mRNAs and weak mRNAs, 259–260
translation initiation factors, 259
eIF4E/eIF4E-BP, over-expression of, 260
EPA depletes intracellular Ca2+ stores, 262–263, 263f
cellular polysome profile, 263
ER-targeted “chameleon” proteins, 262
“store-operated calcium channels” (SOC), 262
EPA downregulation and upregulation, 265–266
ATF-4 mRNA (uORF) frames, 265
EPA upregulates expression of BRCA1, 265–266, 266f
EPA-induced eIF2a phosphorylation is PERK independent, 264f
EPA-mediated phosphorylation, 263–265
Translation initiation (Cont.)
cancer cell lines with EPA, 263
of eIF2α, 264
eIF2α kinases, inhibitory phosphorylation, 264
SERCA-ATPase experiments, 264
EPA shifts cell polysome profile, 263f
factor eIF2α, over-expression, 260
PKR like ER-resident kinase (PERK), activation
release of Ca2+ from ER and closing of SOC
channels, 265f
TRE, see TPA-response element (TRE)
TSC, see Tuberous sclerosis complex (TSC)
Tuberous sclerosis complex (TSC), 153
Tumor necrosis factor (TNF), 50, 52t, 56, 58, 155,
287, 416, 502, 644–644f, 652t, 678
Tumor promotion, 129, 135, 155, 413–414, 420,
540, 592
Tumor-specific antigens or tumor-associated
antigens, 470
Tumor suppressor pathways, 646–647
genistein on BRCA1/BRCA2
expression/protein levels, effects, 647
PTEN expression in mammary gland, 647
Tyrosinase-related protein-1 (TRPA1), 570

U
UADT, see Upper aerodigestive tract (UADT)
cancer
Ultraviolet B (UVB) light, 357
increased colon cancer rates, 357
Upper aerodigestive tract (UADT) cancer,
499–501, 503–504, 507, 523, 735–736,
738–740, 742–743, 749
US cancer prevalence counts, 6
USDA 1994–1996 Continuing Survey of Food
Intake (CSFII), 543
US Environmental Protection Agency, 706
US Food and Drug Administration (FDA), 19, 487
US Third National Health and Nutrition
Examination Survey (NHNES III), 430

V
Vascular endothelial growth factor receptor 2
(VEGFR2), 595, 659
Vascular endothelial growth factor (VEGF), 60,
419, 579, 595, 639, 679, 715, 729, 746
VEGF, see Vascular endothelial growth factor
(VEGF)
Vitamin A, 335–352
effects on cancer prevention/treatment, see
Retinoids
epidemiological and interventional studies
“best” retinoids, 351
chemoprevention study using biomarkers,
350
“differentiation therapy”, 350
good nutrition, 351
premalignancies, 349
tissue specificity, 350
totality of evidence, 350–351
future research, 351
recommendations for intake/dietary changes,
351–352
in vitro studies in cells/animals – prevention/
treatment, 344–349
aberrant retinoid signaling in cancer
cells/tissues, 347–348
animal studies, 348
CAK complex, 346
cell culture studies, inhibition mechanism,
345t
cell differentiation in retinoids, 347
cyclins D/cyclin E, 344
effects of RA on cell division cycle, 346f
G1/G0 cell cycle, 344
induction of apoptosis, 347
“pocket” protein, 346
retinoids cellular processes, 344
Vitamin D and cancer chemoprevention,
357–376
anti-cancer actions
initiation/promotion/progression, colon
cancer, 366
1,25(OH)2 D action, 368–370
1,25(OH)2 D, growth inhibitory properties,
367
potential gene targets mediating effects,
367–368, 369f
progression of prostate cancer, 367
tumor/normal cell types, 366
anti-cancer effects, animal studies,
370–372
dietary vitamin D, 372
in human biology and carcinogenesis, 371
impact of nutritional vitamin D status on
cancer, 371–372
impact of vitamin D status or signaling, 370
MMTV-neu mice, VDR allele, 371
for tissue-specific cancer, 370
VDR knockout mouse, 371
vitamin D intake or status on cancer, 372
“Western diet”-fed mice, 371
epidemiological studies
 assessment of vitamin D metabolites, 363
 breast cancer, 365
 cancer protection by higher vitamin D status, 366
 colon cancer, 364–365
dietary intakes of vitamin D, 363
“local production” hypothesis, 366
measurements of 25OHD, 363
population-based studies, 365
prostate cancer, 364
future research, 374–375
human intervention studies, 373–374
1,25(OH)2D activates signal transduction pathways, 362
 growth factors and peptide hormones, 362
 recommendations for intake/dietary changes, 375–376
 regulation of gene expression through VDR, 360–361, 361f
 1,25(OH)2D–VDR–RXR complex, 360–361
 RXR–VDR–ligand complex, 360
 VDR–RXR dimer, 361
totality of evidence, 374
VDR gene polymorphisms, 361–362
 Cdx2 and GATA polymorphisms, 362
 RFLP, 361
vitamin D metabolism, 358–360
calcium homeostasis, 358
classical view of, 359f
 7-dehydrocholesterol to UV light, 358
dietary requirement, 358
endocrine/autocrine vitamin D signaling, 360f
molecular impact of cancer, 370f
parathyroid hormone (PTH), 359
serum 25OHD levels, 358
vitamin D signaling system, 360

W
Watchful Waiting Trial in Arizona Cancer Center, 435
WCRF, see World Cancer Research Fund (WCRF)
WCRF’s Second Expert Report, 197
Western New York Diet Study, 76
Wheat Bran Fiber Trial, 431
WHI, see Women’s Health Initiative (WHI)
Women’s Health Eating and Living (WHEL) randomized trial, 175
Women’s Health Initiative (WHI), 19, 373, 456–458

Women’s health study, 198, 323, 522
World Cancer Research Fund (WCRF), 28, 45, 74, 151, 197, 547, 572, 693
World Cancer Research Report, 433

X
Xenobiotics (AhR), human exposure to, 769–771
dioxins, 770
PAH, 769–770
PCB and bisphenols, 770–771

Z
ZD/animal tumorigenesis studies
 in knockout/transgenic models, 505–506
 AZ overexpression, 506
cyclin D1 overexpression, 506
 deletion of COX-2 gene, 506
 loss of function of TP53, 506
 zinc-deficient mouse forestomach cancer model, 505
Zinc antioxidant, 501
 free radical, definition, 501
 oxidative stress, 501
 zinc supplementation, 501
Zinc deficiency (ZD), 504f
Zinc-deficient rodent cancer models
 initiation/reversal of protumorigenic environment, 503
 modulation, 518–520
 of gene expression, 509–518
 of miRNA expression, 518–520
 See also Gene and miRNA expression profiling
molecular targeting of COX-2 in cancer prevention, 507–509
adenomatous polyposis, 507
apoptosis and cell proliferation in ZD and ZR, 508f
ZD and animal tumorigenesis studies
 colon tumors, 505
 EAC, 505
 effects of ZD and ZR, 504f
 esophageal squamous cell tumors, 503–504
Zinc-deficient rodent cancer models (Cont.)
in knockout/transgenic models, 505–506
lingual tumors, 504–505
Zinc homeostasis, 500–501
 acute inflammation in ZD mouse lungs, 500
 cellular zinc transporter proteins
 ZnT/ZIP, two families, 500
 MT synthesis, 500
 in UADT cancer, 500
 ZIP6/ZIP10/ZIP7/ZIP4/ZIP1, expression levels, 500
Zinc in cancer development and prevention,
 497–523
 antitumor effects in tumor cells, 520–521
 apoptotic antitumor effects, 521
 inhibitory effects of zinc on apoptosis, 520–521
 in prostate cancer, 520
 biological roles of zinc
 as antioxidant, 501
 homeostasis, 500–501
 and immune response, 501–502
 and intracellular signaling in cancer, 502
human intervention studies
 colon cancer, 522
 esophageal cancer, 521–522
 prostate cancer, 522
human ZD, 498–499
 dietary sources, 498
 diseases, 498–499
 dwarfism, hypogonadism, 498
ZD/UADT cancer, epidemiology, 499
 American Cancer Society statistics, 499
 chronic alcohol consumption and tobacco, 499
 oral cancer incidence, 499
 x-ray fluorescence spectroscopy, 499
zinc-deficient rodent cancer models, see
 Zinc-deficient rodent cancer models
Zinc replenishment (ZR), 504f, 507
 prevention of esophageal carcinogenesis, 507
 apoptosis in ZR1 rat esophageal epithelia, 507
 Bax/Bcl-2 ratio, 507
 NMBA treatment, 507
Zinc supplementation, 498, 500–502, 505, 509, 523
About the Editors

John Milner, Ph.D., is chief of the Nutritional Science Research Group, Division of Cancer Prevention, National Cancer Institute. From 1989 to 2000, he was head of and a professor in the Department of Nutrition at The Pennsylvania State University, where he also served as director of the Graduate Program in Nutrition. Before joining Penn State, he was a faculty member for 13 years in the Food Science Department and in the Division of Nutritional Sciences at the University of Illinois, Urbana-Champaign. While at the University of Illinois he served as the director of the Division of Nutritional Sciences and as an assistant director of the Agricultural Experiment Station.

Dr. Milner earned a Ph.D. from Cornell University in nutrition, with a minor in biochemistry and physiology and a B.S. in Animal Sciences from Oklahoma State University. Dr. Milner is a member of several professional organizations, including the American Society for Nutrition, American Association of Cancer Research, American Chemical Society’s Food and Chemistry Division, the Institute of Food Technology and the International Society of Nutrigenetics/Nutrigenomics. He is a fellow in the American Association for the Advancement of Science and an honorary member of the American Dietetic Association.

He has served in an advisory capacity as a member of the US Department of Agriculture’s Human Nutrition Board of Scientific Counselors, Joint USDA/HHS Dietary Guidelines Committee, and for the Food, Nutrition and Safety Committee within the International Life Sciences Institute (ILSI). Dr. Milner has served as president of the American Society for Nutrition (formerly the American Institute of Nutrition) and has testified before the Subcommittee on Appropriations in Washington, DC and the Presidential Commission on Dietary Supplement Labels in Baltimore, Maryland. He has served as a member of the National Academy of Sciences Committee on Military Nutrition Research, the US Olympic Committee Dietary Guidelines Task Force, the External Advisory Board for the Pennington Biomedical Research Center, as a member and vice-chair for the Counsel of Experts of United States Pharmacopoeia Committee on Bioavailability and Nutrient Absorption, a member of the External Advisory Board for the European Commission SeaFood Plus initiative, and as the chair of the World Cancer Research Fund/American Institute for Cancer Research Mechanisms Working Group. He is currently a member of the Global Board of Trustees for ILSI, liaison to the International Food Information Council (IFIC), member of the Danone Institute’s International...
Functional Foods and Health Claims Knowledge Center Committee, a member of the Board for the McCormick Science Institute, and a member of the Mushroom Research Board. In 2008 he received the David A. Kritchevsky Career Achievement Award in Nutrition from the American Society for Nutrition.

Dr. Milner has published more than 200 book chapters, monographs, and journal articles. He serves on the editorial boards for *Cancer Prevention Research, Food and Nutrition Research, Nutrition and Cancer, Nutrfood, Journal of Nutritional Biochemistry, Journal of Alternative and Complementary Medicine, Journal of Ovarian Research, and The Journal of Medical Foods*. In his current position he promotes research that deals with the physiological importance of dietary bioactive compounds as modifiers of cancer risk and tumor behavior. Much of his own current research focuses on the anticancer properties of garlic and associated allyl sulfur compounds. In addition to presentations about nutrition and genomics he has been invited to speak about garlic and health, selenium nutriture, antioxidants and health, functional foods and health promotion, and nutrition for cancer prevention.
Donato F. Romagnolo, Ph.D., is professor of Nutritional and Cancer Biology at The University of Arizona. Dr. Romagnolo is a member of the Arizona Cancer and The Toxicology Centers, The BIO5 Institute, and the Southwest Environmental Health Sciences Center at The University of Arizona. He is currently a member of the Executive Committees for the Graduate Program in Nutritional Sciences, the Cancer Biology Graduate Program, The Training Grant in Cancer Biology, The Training Grant in Toxicology and Toxicogenomics, and served as member for the Advisory Board and chair of the Environmental Gene Expression Group of the Southwest Environmental Health Sciences Center, and chair for the Research Frontiers in Nutritional Sciences Conference, Department of Nutritional Sciences, at The University of Arizona. Dr. Romagnolo is instructor for undergraduate Nutritional Biology and graduate Metabolic Integration at The University of Arizona.

Dr. Romagnolo earned a M.S. and a Ph.D. from Virginia Polytechnic Institute and State University, and a B.S. from The University of Padua, Padua, Italy. He was a postdoctoral fellow at the National Institutes of Environmental Health Sciences, National Institutes of Health. Dr. Romagnolo is a member of several professional organizations, including the American Society for Nutrition, American Association of Cancer Research, and the American Association for the Advancement of Science.

He has published book chapters, monographs, and original research in cancer and nutrition scientific journals including Cancer Research, The Journal of Nutrition, Nutrition and Cancer, Breast Cancer Research, Molecular Carcinogenesis, Environmental and Molecular Mutagenesis, Neoplasia, and Experimental Biology and Medicine. Dr. Romagnolo has been a member of scientific review panels and received research funding from the National Institutes of Health, The US Department Breast Cancer Research Program, the Susan G. Komen Breast Cancer Foundation, and the Arizona Biomedical Research Commission. Dr. Romagnolo is currently a member of the RIS Gene Expression Group of the American Society of Nutrition.

In his current position he promotes research that deals with the role of dietary xeno-biotics and natural bioactive compounds as epigenetic regulators of expression of genes involved in cancer and inflammation. Current research focuses primarily on the role of ligands of the aromatic hydrocarbon receptor on epigenetic regulation of the breast cancer tumor suppressor (BRCA1) and proinflammatory (COX-2) genes.
Dr. Adrianne Bendich is clinical director, Medical Affairs at GlaxoSmithKline (GSK) Consumer Healthcare where she is responsible for leading the innovation and medical programs in support of many well-known brands including TUMS and Os-Cal. Dr. Bendich had primary responsibility for GSK’s support for the Women’s Health Initiative (WHI) intervention study. Prior to joining GSK, Dr. Bendich was at Roche Vitamins Inc. and was involved with the groundbreaking clinical studies showing that folic acid-containing multivitamins significantly reduced major classes of birth defects. Dr. Bendich has co-authored over 100 major clinical research studies in the area of preventive nutrition. Dr. Bendich is recognized as a leading authority on antioxidants, nutrition and immunity and pregnancy outcomes, vitamin safety and the cost-effectiveness of vitamin/mineral supplementation.

Dr. Bendich is the editor of nine books including “Preventive Nutrition: The Comprehensive Guide for Health Professionals” co-edited with Dr. Richard Deckelbaum and is Series Editor of “Nutrition and Health” for Humana Press with 29 published volumes including “Probiotics in Pediatric Medicine” edited by Dr. Sonia Michail and Dr. Philip Sherman; “Handbook of Nutrition and Pregnancy” edited by Dr. Carol Lammi-Keefe, Dr. Sarah Couch, and Dr. Elliot Philipson; “Nutrition and Rheumatic Disease” edited by Dr. Laura Coleman; “Nutrition and Kidney Disease” edited by Dr. Laura Byham-Grey, Dr. Jerri Lynn Burrowes, and Dr. Glenn Chertow; “Nutrition and Health in Developing Countries” edited by Dr. Richard Semba and Dr. Martin Bloem; “Calcium in Human Health” edited by Dr. Robert Heaney and Dr. Connie Weaver; and “Nutrition and Bone Health” edited by Dr. Michael Holick and Dr. Bess Dawson-Hughes.

Dr. Bendich served as associate editor for “Nutrition” the International Journal; served on the Editorial Board of the Journal of Women’s Health and Gender-based Medicine and was a member of the board of directors of the American College of Nutrition.

Dr. Bendich was the recipient of the Roche Research Award, is a Tribute to Women and Industry Awardee, and was a recipient of the Burroughs Wellcome Visiting Professorship in Basic Medical Sciences, 2000–2001. In 2008, Dr. Bendich was given the Council for Responsible Nutrition (CRN) Apple Award in recognition of her many contributions to the scientific understanding of dietary supplements. Dr. Bendich holds academic appointments as adjunct professor in the Department of Preventive Medicine and Community Health at UMDNJ and has an adjunct appointment at the Institute of Nutrition, Columbia University P&S, and is an adjunct research professor, Rutgers University, Newark Campus. She is listed in Who’s Who in American Women.