Index

Note: The letters ‘f’ and ‘t’ following locators refer to figures and tables respectively.

A
AANEM, 31
Action current, 11, 14f, 19
Action potential, 11, 18–19, 41, 57, 86, 102, 132, 138, 141
Adson’s maneuver, 37–39, 39f, 49, 58, 152–153, 159
Allen test, 30, 37, 39f, 54, 56–57, 58f–59f, 60, 61t, 65–66, 71f–73f, 74–75, 74t, 156
Amber, 2, 4, 24–25
Animal electricity, 6–11, 11f, 15, 18, 23–24
Arimina, 3
Auxiliary muscles of respiration, 150
Axillary nerve, 56–57, 61t, 70, 149, 153

B
Barr, J. S., 77
Basmajian, J. V., 20, 31
Battery, invention of (Volta), 9
Bernstein, J., 10, 12–15, 14f, 16f, 18, 31
Bernstein’s theory, 10, 15, 18
Botox, 67
Botulinum neurotoxin type B (Bt-B), 57, 59, 65–67, 68f, 69–70, 71f–72f, 72–74, 73f, 74t, 106–107, 106f, 107t, 109t
clinical study, 67
inhibition of acetylcholine at neuromuscular junction, 67
local action, 67
Brachial plexus, 37, 38f–39f, 49, 50f, 53, 55–56, 60, 67, 68f, 149
Bt-B, see Botulinum neurotoxin type B (Bt-B)

C
Capacitor-theory, see Muscle-as-Leyden-jar theory (Galvani)
Carpal tunnel syndrome, 48, 114, 145, 147
Cathode ray tube, invention, 19
Cauda equina, 81, 126, 130, 136, 142
Characteristics of piriformis syndrome, 95, 101t, 103t
Claudication, 49, 81, 133
Clavicle, 37, 49, 55, 58, 150
Contralateral, 37, 39f, 48, 50f, 53–54, 57, 85, 88, 92, 92f, 98, 116t, 118t, 147, 153t, 154, 157
Coracoid process, 37, 51, 55–56, 55f, 58
Costoclavicular syndrome, see Neurological thoracic outlet syndrome (NTOS)
Crude electrostatic induction machines, 5

D
De Magnete, 4
Denervation, paraspinial, 40, 42–43, 57, 85–86, 106, 143
D’Etilles, 10
Diagnosis of exclusion, 33–37, 39, 47–48, 56, 58, 60, 77–78, 86, 96, 100, 161
See also Piriformis syndrome; Thoracic outlet syndrome
Diagnostic methods for piriformis syndrome, 41–42
EMG techniques, 41, 42f
neural scans, 41–42
physical therapy, 41
Differential diagnosis, 28, 33, 36, 48–49
Differential rheotome (Bernstein), 12–13, 13f
Distal motor latency, 60, 89, 114, 147
Dubois-Reymond, 11, 13
Dynamic electrodiagnosis “diagnosis of exclusion,” fallacy in, 33–37 case of a 37-year-old woman,
hypothesis, 34, 35f
differential diagnosis, 33
failure to identify dual diagnosis, 36f
infectious disease, 33
symptom as a diagnostic entity, 36
Dynamic electrodiagnosis (cont.)
 lumbar spinal stenosis vs. herniated disc, 43–44
 normal image of everything the fat, 42–43
 piriformis syndrome, 39–42
diagnostic methods, 41–42
 EMG findings in L4-5-S1- S2 muscles, 40
 normal CT and no paraspinal denervation, conclusions, 41
 position for piriformis test, 40f
 thoracic outlet syndrome, 37–39
 Adson’s maneuver, 37–38
 brachial plexus, 37, 38f
electromyographers, nerve conduction study, 38
 neurological effect of provocative maneuvers, 37–38

E
Electrica, 4
The electric fish (torpedo), 3–6, 3f–4f, 25, 31
 applications, 3
 arimna, 3
 narke, 3
 organs generating electrical charge, 4f
 “technology,” 3
 Electricity in medicine
 animal electricity controversy, 6–10
 “coup de grace” to Galvani’s theory, experiments, 10
 electricity and muscle contraction in frogs, study (Galvani), 6–7, 6f
 frogs’ legs’ sciatic nerves in contact (Galvani), 7–8, 8f
 invention of battery (Volta), 9
 muscle-as-Leyden-jar theory (Galvani), 7
 Volta’s postulations of electricity, 7
 The Bible, 2
 electricity through history of minerals
 amber, properties, 2
 “electric” (elektron), 2
 Neanderthals, 2
 electrophysiology through history of animals
 the electric fish, 3–4
 evidence of electricity through history, 4–6
cases of reanimation, 5
 electric and magnetic forces, distinguishing (Gilbert), 4
 electricity generated from muscles (Redi), 4, 4f
 Leyden jar, 5
 man-made approximations of electricity, 5
treatment of paralysis, 5
technological advances in medicine, 10–19
 Cole and Marmot’s technology, 18
devices of electrodiagnosis (Duchenne), 10
 “electropuncture,” 10
 EMG (Dubois-Reymond), 11
 EMG specific advances, 19–21
 investigations with galvanometer (Matteucci), 11, 11f
 Julius Bernstein’s rheotome, 13f
 local circuit theory, 13, 16f
 muscular fiber recruitment (Lucas concept), 15–16, 17f
 nerve cell membrane as a permeable capacitor (Bernstein), 14–15, 16f
 nerve conduction, study, 12
See also Dynamic electrodiagnosis;
 Electrodiagnosis and the physical examination; Extending dynamic electrodiagnosis
 Electrodiagnosis and the physical examination it takes two, 26–30
doctor/patient role in physical examination, 26
 EMG, diagnostic tool, 28
evocative maneuvers, 29
 interactive/patient active/clinician active sessions, 27
 interactive physical examination, 27
 limits of physical examination, 27
 provocative maneuvers, 29–30
 symptoms/signs, initial indications for diagnosis, 27
 philosophical reflection of the yet unseen, 31–32
 AANEM, 31
 reference point, benefits to practitioners, 31
 “thesis–antithesis-synthesis,” 31
 physical examination is not just physical clinicians’ analysis about the patient’s suffering, 26
 provocative maneuvers in electrodiagnosis, 30
 relevance to our subject, 24–25
physical examination, advancements in, 25
therapeutical usage of electrical arrangements, 25
“you can observe a lot just by looking”—Yogi Berra, 26
Electromyographer, 12, 38, 44, 73, 85, 146, 156, 158
Electron, 2
Electropuncture, 10
EMG guidance, 139, 151
Entrapment of brachial plexus, 37
See also Thoracic outlet syndrome
Entrapment syndrome, see Neurological thoracic outlet syndrome (NTOS)
Epstein–Barr virus, 43
Erb’s point, 53, 55f, 57, 59f, 71f, 149, 152–153
Extending dynamic electrodiagnosis acting on a hunch
64-year-old with significant lower back pain, case study, 151
driving for a stretch, 154
44-year-old with right buttock while driving car, case study, 154
exclusive considerations
45-year-old with left-sided sciatic pain/foot numbness, case study, 154
functional electromyography, uses of provocative electrophysiological techniques, 145
fusion of electrodiagnosis/physical examination
EMG, 157
functional approach to patient, 158
kinesiology, 156–157
muscular and bony anatomy, 156
peripheral neurology, 157
treatment, 158
ironing with a wrinkle, 152
it’s not all in the wrist!
41-year-old guitar player with right palmar cramping, case study, 153
memos of a snapping scapula, 147–150
resources, 146–147
electromyography, measures recommended, 145
engineer with right Erb’s palsy (case), MRI study, 147, 148f–149f
right to bare arms, 151
44-year old with history of deep gash in left upper arm, case study, 151
surgery
intraoperative functional electrophysiological testing, uses, 158
SSEP, provocative electrodagnostic technique, 158
taking matters to extremes, 152–153
37-year-old with left posterolateral upper arm pain, case study, 152–153, 153t
tools of the trade, 159–161
correlation between independent/dependent variable, 159
establish norms, 160
follow results with functional test, 161
standard deviations, 160
statistical significance vs. clinical significance, 160
treating patients based on pathology, 161
treatment and surgery, improvement of, 161
triple trouble
48-year-old with right lower back pain who developed sciatica, case study, 150
a turn for the worse
34-year-old with bilateral disc herniations after an accident, case study, 155

F
FAIR position, see Flexed, adducted internally rotated (FAIR) position
FAIR test, 30, 40, 44, 75, 88–89, 91–92, 92t, 92f, 99–107, 100t, 102t, 104t–105t, 108f, 109t, 135, 138, 140, 154
FAIR-test positive (FTP), 88, 92, 99, 102, 101t–102t, 106
Filler, A. G., 41–42, 79–80, 80f
Flexed, adducted internally rotated (FAIR) position, 40, 87–92, 90f, 98, 108, 109t, 138, 150
Flexion/extension, extreme and prolonged, 112, 147, 148f
Foraminal stenosis, 111–112, 119–120, 121t, 133
Frankenstein (Shelley), 6
Franklin, B., 7
Friberg, A. H., 78, 82
FTP, see FAIR-test positive (FTP)
Functional electrodiagnostics, 117
Fusion, 131
F wave, 57–58, 60, 65, 69, 72, 89, 112, 146, 152, 155–156

G
Gaenslen’s sign, 117, 161
Galvani, L., 6–11, 6f, 8f, 13–15, 18, 23–25
Galvanometer, 10–12, 19–20
Gardenpathogenesis, 82–83
Gemellus major and minor, 83f
Gilbert, W., 4–5
Guericke, O., 5

H
Hallstead maneuver, 48, 50f
Herniated nucleus pulposus (HNP), 28, 44, 107–108
H loop, 89–89, 90f–91f, 97, 105
Hong, C.-Z., 160
H-reflex latency, 88, 109t, 112–113, 115, 115f, 117, 120, 126, 132, 134, 137
Hyperabduction maneuver, 48–49

I
Infectious disease, 33
Injection, 67–68
See also Botulinum neurotoxin type B (Bt-B)
Injury current, 12, 14
Interactive physical examination, 27
Interference pattern, 28, 68, 107
The International Society of Electrophysiological Kinesiology (ISEK), 20, 31
Intraspinal stenosis vs. foraminal stenosis, 111–112
Ischiatica, 77
Ischiofemoral ligament, 83, 84f, 87, 104

J
Jendrassic maneuver, 29, 91, 112
Journal de Medicine, 5

K
Kelly, B., 104
Kimura, J., 31
Kratzenstein, 5
Krueger, J. C., 5
Kyphosis (postural abnormalities), 68

L
Largus, S., 3
Latency, see Distal motor latency; H-reflex latency; Proximal motor latency (PML)
Leyden jar, 5, 7, 10
Local circuit theory/theory of neuronal transmission (Hermann), 13, 16f
Lumbar spinal stenosis vs. herniated disc, 43–44

M
Magiendie, 10
Matteucci, C., 11, 11f
Mickelson, C., 103
Mixter, W. J., 77
Muscle-as-Leyden-jar theory (Galvani), 7
Musculoskeletal ultrasound, 49
Myoneural junction, 67, 68f, 106

N
Narke, 3
Neural scans, 19, 41–42, 79, 92, 105
Neurological thoracic outlet syndrome (NTOS), 38, 44, 47–61, 65–75
clinical study, solving the patient’s problem
Allen’s test, findings, 50f, 56–57
nerve/vascular syndrome, identification, 55
NTOS using provocative maneuvers, indications, 55
provocative test validation, exclusion criteria, 60
functional identification of ‘diagnosis of exclusion,’ 47
grown girl with guitar, case study, 56–61
Allan’s maneuver, PML and F wave comparison in, 58
average PML delay induced by the Allen test, 60t
electrophysiological version of the Allen test, 58, 58f
patients restricted from study, 57
new test, 54–55
Allen test, review, 54
prolongation of PMLs, detection, 54
standard test, 53
electrophysiological studies, 53
MRI study, 53
somatosensory evoked potentials, 53
symptoms
mean of diagnosis, 48
means of diagnosis, 49–53
signs, mechanisms of causation, 49–53
treatment
conservative treatment, 54
surgical methods, 54

Nollett, 5

Non-disc sciatica, 42, 93
NTOS, see Neurological thoracic outlet syndrome (NTOS)
NTOS, mechanisms of causation, 49–53
Allen or Hallstead test, 50f
MRI study, findings, 49
scalene maneuver, 50f
serial abduction, cause of neurological compression, 51f–52f

NTOS treatment by provoked electromyographic sign
analysis of the data, 69
botulinum neurotoxin type B (Bt-B), 66–67
clinical study, 67
inhibition of acetylcholine at neuromuscular junction, 67
local action, 67
injection, 67–68
EMG needle, 68
patients injected at scalenus anticus and medius muscles, 67, 68f
physical therapy, 68–69
kyphosis, five-stage program for, 68
results, 69–70
delay (more than 1.0 ms) in Allen’s maneuver, 70f
results of scalenus injections and physical therapy, 70–75
controls and injected patients, VAS values, 73f
delay of PML in Allen test, 71f
fractional reduction of PML delay, 71f
fractional reduction of PML delay after Bt-B injection, 74t
percent of initial pain on VAS/functional delay in the Allen test, 72f
reduction in PML and VAS after Bt-B injection, 73f
VAS values after Bt-B with controls, 71f
scheduled follow-up visits, 69
treatment of thoracic outlet syndrome based on dynamic changes in nerve conduction, 65–66
Bt-B injections with physical therapy, 66

control/intervention patient groups, IRB-authorized study, 65, 66t

O
Oburator internus, 83f
Odds ratio, 102, 103t
Oppian, 4
Overdiagnosis, piriformis syndrome, 95

P
Pancoast tumor, 37, 39, 49, 56
Paraesthesias, 48, 51, 57–58, 84, 86, 96, 118, 124t, 137, 140, 142, 147, 155, 161
Pathogenetic mechanism, 25, 36, 52, 75, 85, 87, 108, 139, 153t
Pathognomonic, 28, 37, 47–61, 79
Pectoralis, major and minor, 150

See also Electrodiagnosis and the physical examination
Physical therapy, 41–43, 60, 65–75, 98–99, 99t, 100t, 105, 131–133, 136–137, 139–140, 142–143, 155, 158
for piriformis syndrome, 98–99, 99t
Piriformis syndrome, 39–42

See also Piriformis syndrome, electrophysiology vs. anatomical assumption; Treatment of piriformis syndrome
Piriformis syndrome, diagnostic methods, 41–42
EMG techniques, 41, 42f
neural scans, 41–42f
physical therapy, 41
Piriformis syndrome, electrophysiology vs. anatomical assumption
cadaveric studies of anomalous sciatic-piriformis intersection anatomy close-up, 83, 84f
signs, see Signs of piriformis syndrome symptoms, 84–85
clinical and electrophysiological findings, 84
electrophysiological suggestion of piriformis syndrome, 85–86
evidence, 86–87
need for classical radiculopathy, indications, 86
gardenpathogenesis, 82–83
sciatic nerves passing through piriformis muscle, 83f
H loop, measurement of delay, 89
Piriformis Syndrome (cont.)
motor/sensory nerve conduction velocity, discrepancy, 89, 90f–91f
operationally defined
diagnoses after evaluation/treatment of patients with non-disc sciatica, 79t
incidence and prevalence (Dr. Filler), 81
magnetic resonance neurography findings, 80f
neural scans, features, 79
non-specific test, justifications, 79
piriformis as cause of sciatica, case study/investigations, 78
piriformis-caused sciatica, indications (Friberg), 78
salient characteristics of piriformis syndrome (Robinson), 78
sciatica (ischiatica), defined, 77, 81
results, 91–93
EMG/MRI, efficacy, 92
frequency distribution of FAIR-test values of patients, 92f
prolonged H reflex by FAIR test, 88, 92t
technical metrics, 88
technique, 87–88
FAIR position (patient positioning), 88f
Pliny, 3
PML, see Proximal motor latency (PML)
Positionally exacerbated spinal stenosis (PESS), 115f, 118, 120, 125t
Pronator syndrome, 96, 145
Provocative electrophysiological techniques, 145
Provocative maneuvers, 29–30, 32, 37, 55, 60, 69, 72, 75, 87–88, 97, 105, 112–113, 146–147, 159–160
Proximal motor latency (PML), 54, 56, 59f, 72, 71f–72f, 74t, 153
“Pseudosciatica,” 81

Q
Quadratus femoris, 83f–84f

R
Radial nerve, 51f, 58, 61t, 66, 70, 147, 152–153
Radiculopathy, 48, 57, 86, 96, 99, 111–127, 141, 150–151
Radiculopathy vs. spinal stenosis
analysis of patient’s pain in spondylolisthesis and spinal stenosis
changes in H reflexes due to delayed extension, 125t
3-min extension test used to identify pain generators, 119–120, 121t–124t
intraspinal stenosis vs. foraminal stenosis, 111–112
diagnoses, dissimilar treatments, 111
extension and flexion as evocative/provocative maneuvers, 112
procedure
changes in H reflex with extension, factors, 120–127
spondylolisthesis, 117–119
3-min extension test, 117, 118t
strategies and methods, 112–117
H reflex delay, MRI-documented lumbar spinal stenosis, 115–117, 116t
H reflex latency, comparison in anatomical position/3-min extension, 113–114, 114f
less/more extreme extension, effects on lumbar stenosis, 112, 115f
tripartite strategy, 112

Resting potential, 18
Ringel, S., 39, 41, 105, 161
Robinson, D. R., 78
Rozbruch, J., 104

S
Sarlandiere, 10
Scalenus anterior syndrome, see Neurological thoracic outlet syndrome (NTOS)
Scalenus anticus, 37, 49, 57, 65–67, 68f, 72
Scalenus medius, 49, 57, 67
Scapula, 56, 60, 147–150, 157
Schrechter, 5
Sciatic nerve, 8, 8f, 40–42, 40f, 78, 80f, 81–89, 82t, 83f–84f, 90f–91f, 92, 95–97, 98f, 99, 102, 104–106, 126, 143, 154, 156
Sensitivity, 91–92, 108, 113, 161
Shelley, M., 6
See also Signs of piriformis syndrome
Signs of piriformis syndrome
buttock pain, 85
positive SLR, 85
weakened abduction of the flexed thigh, 85
SLR, see Straight leg raise (SLR)
Somatosensory evoked potentials (SSEP), 55f, 152, 158
Index

Specificty, 75, 91–92, 99, 108, 113, 161
See also Treatment of spinal stenosis by evoked electromyographic sign
Spinal stenosis treatment by evoked electromyographic sign asymmetrical on both sides, 141
45-year-old with bilateral sciatica and intermittent lower back pain, case study, 141
Aye, Where’s the Rub?, 132–133
62-year-old with nagging back ache, case study, 132–133
embarrassment of riches, 138–139
53-year-old with left more-than-right sciatica, case study, 138–139
evocative maneuver, 131–132
39-year-old with left lower back pain and sciatica, case study, 131–132
ex pluribus unum, 141
simple solutions when there were too many diagnoses, 141
fusion and confusion, 131
39-year-old with history of lumbar fusion from L3 to S1, case study, 131
he who hesitates was right, 143–144
if it walks like a duck, 134
53-year-old with left lower back pain and sciatica, case study, 134
illustrative examples, 129
less there than meets the MRI, 139–140
67-year-old with lower back pain, case study, 139–140
less there than meets the MRI, 142
83-year-old with bilaterally circumductive gait, case study, 142
less was probably more, 136–137
87-year-old with thoracolumbar rotatory levoscoliosis, case study, 136–137
long shot, 137–138
42-year-old with back pain radiating to right lower extremity, case study, 137–138
long-standing problem with sitting, 141–142
41-year-old with left-sided sciatica, case study, 141–142
now you see it, now you don’t, oh there it is again, 140–141
37-year-old with pain in his lower back, left buttock and leg, case study, 140–141
recreational therapy, 133–134
66-year-old with bilateral pseudoclaudication, case study, 134–135
small change, 135
61-year-old with spastic cerebral palsy and gait disorder, case study, 135
stenosis or thrombosis, 130–131
72-year-old with right lower back, hip, buttock, and leg pain, case study, 130–131
tale of the horse’s tail, 129–130
60-year-old with prostatic cancer, case study, 129–130
when therapy is not enough, 136
80-year-old with bilateral sciatica that worsened with walking, case study, 136
the woman with everything, 142–143
65-year-old with left buttock pain and mild sciatica, case study, 142–143
Spondylolisthesis, 43–44, 82, 100, 111, 116t, 117–120, 121t–124t, 132–133, 137, 142, 160
SSEP, see Somatosensory evoked potentials (SSEP)
Standardization, 31
Stewart, J. D., 95–96, 99
Straight leg raise (SLR), 56, 85, 87, 134, 139, 141, 146, 154
Suprascapular nerve, 57, 61t, 70, 145
Sural sensory nerve, 40–41, 86, 102, 141
Surgery for piriformis syndrome, 103–106
Symptoms of NTOS signs
false-positive tests of diagnosis, 48
hyperabduction maneuver, versions, 48–49
mechanisms of causation, 49–53
musculoskeletal ultrasound, 49
vascular and neurologic responses, assessment, 48
Synaptobrevin, 67
T
Thales of Miletus, 2
“The piriformis syndrome is overdiagnosed,” 95
Thoracic outlet syndrome, 30, 37–39, 111, 145
See also Neurological thoracic outlet syndrome (NTOS)
Thoracodorsal nerve conduction, 70, 70t

Treatment of NTOS by provoked electromyographic sign analysis of the data, 69

Bt-B, 66–67
- clinical study, 67
- inhibition of acetylcholine at neuromuscular junction, 67
- local action, 67
- injection, 67–68
- EMG needle, 68
- patients injected at scalenus anticus and medius muscles, 67, 68f
- physical therapy, 68–69
 - kyphosis, five-stage program for, 68
 - results, 69–70
 - delay (more than 1.0 ms) in Allen’s maneuver, 70t
 - results of scalenus injections and physical therapy, 70–75
 - controls and injected patients, VAS values, 73t
 - delay of PML in Allen test, 71f
 - fractional reduction of PML delay, 71f
 - fractional reduction of PML delay after Bt-B injection, 74t
 - percent of initial pain on VAS/functional delay in the Allen test, 72f
 - reduction in PML and VAS after Bt-B injection, 73f
 - VAS values after Bt-B with controls, 71f
 - scheduled follow-up visits, 69

Treatment of thoracic outlet syndrome based on dynamic changes in nerve conduction, 65–66

Bt-B injections with physical therapy, 66

Treatment of piriformis syndrome
- characteristics of patients with positive FAIR tests, 100–101
- dual diagnosis, effects on treatment, 100
- FAIR test, usefulness in conservative treatment and surgery, 101t
- patients with/without positive MRIs, 100, 100t
- leg study cases, outcome statistics of physical therapy protocol, 98–99, 99t
- treatment, 97–98, 98f
- locating the piriformis muscle, 107–108
- botulinum neurotoxin, no ‘interference pattern,’ 107, 107t

interference pattern attainment, 107
parallel course of pain and delay in FAIR test, 108, 108f
prolongation of H-reflex latency in FAIR position vs. sciatica, 108, 109t
patients identified by functional EMG, 95–97
criteria to define a piriformis syndrome, 95
Stewart’s set, evidence of “diagnosis of exclusion,” 96
pre- and post-surgical FAIR tests, 105, 105t
results, 101–103
concomitants of piriformis syndrome, 103t
FTP patients, response to piriformis injection/physical therapy, 100, 101t
overall utility of the FAIR test, 104t
overuse and trauma, causes of piriformis syndrome, 102t
surgical corroboration of the FAIR test, 103–106
characteristics/outcomes of patients with/without piriformis, 104t
efficacy of surgery, 105
neurolysis of sciatic nerve, 104
study with botulinum neurotoxin, 105–106, 106f

Treatment of spinal stenosis by evoked electromyographic sign asymmetrical on both sides, 141
45-year-old with bilateral sciatica and intermittent lower back pain, case study, 141

Aye, Where’s the Rub?, 132–133
62-year-old with nagging back ache, case study, 132–133
embarrassment of riches, 138–139
53-year-old with left-more-than-right sciatica, case study, 138–139
evocative maneuver, 131–132
39-year-old with left lower back pain and sciatica, case study, 131–132
ex pluribus unum, 141
simple solutions when there were too many diagnoses, 141
fusion and confusion, 131
39-year-old with history of lumbar fusion from L3 to S1, case study, 131
he who hesitates was right, 143–144
if it walks like a duck, 134
53-year-old with left lower back pain and sciatica, case study, 134
illustrative examples, 129
less there than meets the MRI, 139–140
67-year-old with lower back pain, case study, 139–140
less there than meets the MRI, 142
83-year-old with bilaterally circumductive gait, case study, 142
less was probably more, 136–137
87-year-old with thoracolumbar rotatory levoscoliosis, case study, 136–137
long shot
42-year-old with back pain radiating to right lower extremity, case study, 134–135
long-standing problem with sitting, 141–142
41-year-old with left-sided sciatica, case study, 141–142
now you see it, now you don’t, oh there it is again, 140–141
37-year-old with pain in his lower back, left buttock and leg, case study, 140–141
recreational therapy, 133–134
66-year-old with bilateral pseudoocludication, case study, 133–134
small change, 135
61-year-old with spastic cerebral palsy and gait disorder, case study, 135
stenosis or thrombosis, 130–131
72-year-old with right lower back, hip, buttock, and leg pain, case study, 130–131
tale of the horse’s tail, 129–130
60-year-old with prostatic cancer, case study, 129–130
when therapy is not enough, 136
80-year-old with bilateral sciatica that worsened with walking, case study, 136
the woman with everything, 142–143
65-year-old with left buttock pain and mild sciatica, case study, 142–143

U
Ulnar nerve, 48, 53, 56, 60, 152, 155
Underdiagnosis, 36, 79
Utility of FAIR test, 104t

V
VAMP, 67
Variably permeable membrane, 10
Vascular thoracic outlet syndrome, 37, 49, 55
Virchow-Troisier lymph nodes, 49
Visual Analogue Scale (VAS), 65–66, 69–71, 71f–73f, 73t, 74, 107t, 109t
Vitalists, 24–25
Volta, A., 7–10, 24
Voltaic cell, 18
Von Helmholtz, H., 12
Von Hermann, L., 13, 16f

W
Western Journal of Medicine, 85