## Table 1

### Valuable Reference Sites

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>BMI and BMI z-calculations</td>
<td><a href="http://stokes.chop.edu/web/zscore/">http://stokes.chop.edu/web/zscore/</a></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Activity</th>
<th>Met</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sleeping</td>
<td>0.9</td>
</tr>
<tr>
<td>Watching television</td>
<td>1.0</td>
</tr>
<tr>
<td>Sitting quietly</td>
<td>1.0</td>
</tr>
<tr>
<td>Desk work</td>
<td>1.8</td>
</tr>
<tr>
<td>Walking &lt;2 mph</td>
<td>2.0</td>
</tr>
<tr>
<td>Housework</td>
<td>2.5–3.5</td>
</tr>
<tr>
<td>Home exercises</td>
<td>3.6</td>
</tr>
<tr>
<td>Lifting continuously</td>
<td>4.0</td>
</tr>
<tr>
<td>Biking &lt;10 mph</td>
<td>3–6</td>
</tr>
<tr>
<td>Walking 3–5 mph</td>
<td>4–8</td>
</tr>
<tr>
<td>Hiking cross-country</td>
<td>6</td>
</tr>
<tr>
<td>Swimming</td>
<td>6–10</td>
</tr>
<tr>
<td>Jogging</td>
<td>7</td>
</tr>
<tr>
<td>Tennis, soccer</td>
<td>6–10</td>
</tr>
<tr>
<td>Biking &gt;10 mph</td>
<td>8–12</td>
</tr>
<tr>
<td>Vigorous calisthenics</td>
<td>8</td>
</tr>
<tr>
<td>Aerobic step, 10–12 in.</td>
<td>7–10</td>
</tr>
<tr>
<td>Running</td>
<td>8–18</td>
</tr>
</tbody>
</table>

MET (metabolic equivalent) = multiple of resting metabolic rate (∼1 kcal (4.184 kJ)/kg/h).
Table 3
Medications That Can Alter Triglyceride and HDL Levels

<table>
<thead>
<tr>
<th>Medication</th>
<th>Triglycerides</th>
<th>HDL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Estrogens</td>
<td>Increased</td>
<td>Increased</td>
</tr>
<tr>
<td>Androgens</td>
<td>Increased</td>
<td>Decreased</td>
</tr>
<tr>
<td>Progestins</td>
<td>Decreased</td>
<td>Decreased</td>
</tr>
<tr>
<td>Glucocorticoids</td>
<td>Increased</td>
<td>Increased</td>
</tr>
<tr>
<td>Thiazides</td>
<td>Increased</td>
<td>Decreased</td>
</tr>
<tr>
<td>Beta-blockers</td>
<td>Increased</td>
<td>Decreased</td>
</tr>
<tr>
<td>Valproic acid</td>
<td>Increased</td>
<td>Decreased</td>
</tr>
<tr>
<td>Isotretinoin</td>
<td>Increased</td>
<td>Decreased</td>
</tr>
<tr>
<td>Cyclosporin</td>
<td>Increased</td>
<td>Increased</td>
</tr>
<tr>
<td>Tacrolimus</td>
<td>Increased</td>
<td>Increased</td>
</tr>
<tr>
<td>Protease inhibitors</td>
<td>Increased</td>
<td>–</td>
</tr>
</tbody>
</table>

Subject Index

Note: The letters ‘f’, and ‘t’ following locators refer to figures and tables respectively.

Abnormal/abnormalities
- autonomic nervous system (ANS), 54
- behavioral, 40, 55, 58
- bone-skeletal, 56
- cardiovascular, 115
- definition of, 180–181
- dental and sensorineural, 54
- glucose metabolism, 116
- hemodynamic, 228
- hormonal, 244
- lipid, 175, 177, 179, 181–188, 188t, 191t, 193, 304
- menstrual, 364
- metabolic, 116, 183–184, 229, 360
- neurological, 51t, 57
- PCOS, 360
- phenotypic, 37, 180–181
- renal, 50t, 55
- respiratory, 244
- in sympathetic nervous function, 406
- triglyceride and HDL-C levels, 180

Activity thermogenesis, 138
- exercise activity thermogenesis (EAT), 138
- non-exercise activity thermogenesis (NEAT), 138

Acute lymphoblastic leukemia (ALL), 377, 378t

Adipogenesis, 24, 155, 156t, 158, 160

Adipokines, 77, 229, 411, 414f
- and blood pressure, 234f
- brain interactions during fasting/caloric restriction, 411
- adiponectin receptor 1 (AdipoR1), 411

Adiposity and insulin resistance in PCOS
- adiposity in PCOS, 361–362
- area of visceral and gluteal subcutaneous fat, 361f
- central adiposity, 361
- free testosterone index, 362
- relationship between, 361
- developmental origin/evolution during childhood, 358–359
- activation of hypothalamic-pituitary-ovarian axis, 358
- androgen exposure, 358
- hypothalamic-pituitary-ovarian axis or at puberty, 358
- sex hormone binding globulin (SHBG), 358
- diagnostic investigation, 362
- Serum 17OH progesterone levels, 362
- symptoms of hyperandrogenism, 362
- trans-abdominal ultrasound, 362
- genes and PCOS, 359

fibrillin 3 gene (FBN3), 359
- obesity-associated gene (FTO), 359
- management of adolescents, 362–363
- combined oral contraceptive pill (COCP), 363
- cosmetic management, 363
- cyproterone acetate, 363
- hirsutism and acne, 363
- objectives, 362
- symptoms of androgen excess, 362
- treatment with COCP and/or anti-androgens, 363
- mechanism of insulin resistance, 360–361
- glucose metabolism, 361
- inhibited insulin-stimulated tyrosine phosphorylation, 360
- insulin-dependent glucose transporter GLUT4, 360–361
- in ovary, 361
- Serine phosphorylation of IRS1, 361
- metabolic dysfunction, 359–360
- BMI-matched groups of women with oligomenorrhea, 360f
- dyslipidaemia, 359
- insulin sensitivity and hyperinsulinaemia, 359
- metabolic syndrome (MBS) in adolescents, 362
- polycystic ovary syndrome (PCOS), 357–358
- features, 357

Adjustable gastric band (AGB), 384, 390, 392f

Adolescence
- bariatric surgery, 389–394, see also Bariatric surgery
- in adolescents
- cardiovascular risk factors, 267, see also Cardiovascular disease
- (CVD)/abnormalities
- CATCH study, 203, 316, 332, 431
- emotional distress in, 371
- FABS, 213
- hirsutism and acne
- in adolescent girls, 159
- management of adolescents with PCOS, 363
- metabolic syndrome (MBS), 117, 362
- National Longitudinal Study of Adolescent Health, 426
- obesity, definition, 309
- obesity prevention/treatment, see Socio-cultural context for
- obesity prevention and treatment in children and adolescents
- orlistat, effects of, 344–345
- overweight adolescents, 4, 167
- with PCOS, management of, 362–363
- Roux-en-Y-gastric (RYGB) bypass, 213
- SCALE, 203
- sibutramine, effects of, 344
- sociocultural differences in Black adolescents, 81t
- TAAG, 316, 325t, 326, 328–329, 330t, 331t, 432
- TODAY study, 83
treatment of sleep-disordered breathing (SDB), 245–247
variety of co-morbidities, 390
Adrenarche, precocious, 157f, 158–159, 348, 358–359
Adrenocorticotrophic hormone (ACTH), 38, 52, 159–160, 379, 382
Adult obesity, 4, 113, 254–255, 369, 395
Adult treatment panel (ATP) III recommendations, 180
Advertising, 427–428, see also Technology, media, and advertising
environments
Afferent and efferent energy balance systems, 21
Afferent system, components of, 15–26
metabolic afferents controlling energy balance, 19–20
insulin, 20
leptin, 19
promoting hunger, 17
afferent vagus, 17
ghrelin, 17
promoting satiety, 17–19
central regulation of leptin signaling, 18f–19f
cholecystokinin (CCK), 19
glucacon-like peptide-1 (GLP-1), 17–19
peptide YY3–36 (PYY3–36), 17
Afferent vagus, 17
Agouti-related protein (AgRP), 16f, 20–21, 25, 36f, 159, 342, 406–411, 413–414
Alanine aminotransferase (ALT), 203, 207, 209, 210t, 344
Albright hereditary osteodystrophy (AHO), 48f–51f, 54–55
clinical features, 54
diagnostic considerations, 55
etiology, 54–55
incidence, 54
overview, 54
treatment and future research, 55
Alimentary system, 380
Alpha1-anti-trypsin deficiency, 209
Alstrom syndrome (AS), 48f–51f, 56–57
clinical features, 56
diagnostic considerations, 57
etiology, 56–57
incidence, 56
overview, 56
treatment and future research, 57
American Academy of Pediatrics, 179, 428, 454
American Society for Reproductive Medicine (ASRM), 358
American Society of Metabolic and Bariatric Surgery (ASMBS), 394, 396
Aminotransferase
alanine aminotransferase (ALT), 203
aspartate aminotransferase (AST), 203
raised levels of, 224
serum aminotransferase, 203, 213–215
Amygdala, 23, 409
and stress pathway of food intake, 24, 26f
Androgen Excess Society (AES), 358
Angiotensinconverting enzyme (ACE) inhibitors, 57, 227, 229, 233
Anovulation
irregular menstrual cycles, 357
mechanism of, 360
oligo- or anovulation and hyperandrogenism, combination of, 358
Antenatal metabolic programme, 107
Antenatal pathogenesis
animal models, 105–106
fetal growth restriction, 105
intrauterine growth restriction, 105
maternal periconceptional B vitamin and methionine, 105
reproductive period in sheep, 106f
short-term discrete exposures, 105
“thrifty phenotype” hypothesis, 106
human studies, 106–107
antenatal nutritional restriction, 106
gestational diabetes or pre-eclampsia, 107
“growth-restricted” infants, 107
insulin secretion or insulin responsiveness, 106
magnetic resonance imaging (MRI), 107
maternal micronutrient (vitamin B12 and folate) deficiencies, 107
maturity-onset diabetes in the young (MODY), 106
non-nutritional factors, 107
periconceptional famine exposure, 107
“thrifty genotype” hypothesis, 106
Anti-obesity agents
chemical structures of, 342f
mechanisms of action, 343f
Antioxidant agents, 213–214
vitamins, 185–186, 213
Antipsychotics
excess weight gain in patients treated with atypical, 371–373
nonpharmacologic interventions, 371–372
group programs, school-based exercise program, 372
self-regulation skills, 372
pharmacologic interventions, 371–373
amantadine, 372
fluoxetine, 372
metformin, higuanide oral hypoglycemic, 373
Modafinil, 372
orlistat, 372
sibutramine, 373
Topiramate, 372
Apnea
central, 242f
central sleep, 242
childhood sleep, 245
definition, 228, 242
–hypopnea index, 243
mild obstructive sleep, 391f
mixed, 242f
obstructive sleep apnea (OSA), 228
repetitive, 242f
sleep, 242
Apnea–hypopnea index, 243
Apolipoprotein E, 176, 184
Appetite-regulating hormones, 249
Arcuate nucleus
AGRP/NPY in, 413
CNS targets for leptin-regulated neurons in, 407–409
of hypothalamus, 36, 342, 406, 411, 414f
neurons, 406–408, 410–411, 413–414
NPY mRNA in, 413
Aspartate aminotransferase (AST), 203, 209, 210t
“At risk of overweight,” prevalence of, 76, 255
Atherogenesis and adult cardiovascular disease
pediatric obesity and atherosclerosis, 265–271. see also 
Atherosclerosis
natural history, 265–271
prevention of adult coronary heart disease, 271–272
Atherosclerosis, 181–185, 265–274
and cardiovascular disease, 266f
fatty streaks, 265
fibrous plaque, 265
lipid accumulation, 265–266
natural history, 265–271
obesity as risk factor, 267–270
risk factors for cardiovascular disease, 266–267
and endothelial dysfunction, 270–271
acetylcholine-induced relaxation, 270
endothelial dysfunction, 270
flow-mediated dilation, 270
hypercholesterolemia, 271
problem in linking, 271
and risk factors and in youth, autopsy studies, 267–270
combined risk factor effects, 269–270
immutable risk factors, age/sex and race, 267–268
mutable risk factors, 268
obesity, 268
Pathobiological Determinants of Atherosclerosis in Youth (PDAY) Study, 267, 269t
and risk factors in youth, cohort studies, 270
ATP-binding membrane cassette (ABC) transporter, 176
Atypical antipsychotics, major behavioral disorder
effects of medications and drugs, 370–371
atypical antipsychotic agents, 370
combination of antipsychotics, 371
drugs commonly associated with weight gain, 370t
emotional distress in adolescents, 371
olanzapine-treated subjects, 370
weight gain and metabolic complications, 371
excess weight gain, 371–373. see also Atypical antipsychotics, major behavioral disorder
nonpharmacologic interventions, 371–372
pharmacologic interventions, 372–373
Autonomic nervous system (ANS), 48t, 52, 54, 408
BALANCE (six urban communities in USA), 330
Ballooning, 204f, 222t
degeneration, 204–205, 210
hepatocellular, 211
necrosis, 210t, 214
obvious, 211t
occasional, 211t
Panacinar steatosis obvious, 211t
Bardet–Biedel syndrome (BBS), 48f–51f, 55–56
clinical features, 55
diagnostic considerations, 56
etiology, 55–56
incidence, 55
overview, 55
treatment and future research, 56
Bariatric Outcomes Longitudinal Database (BOLD), 394
Bariatric surgery in adolescents, 213
follow-up of adolescent bariatric surgery (FABS), 213
outcomes/complications and post-operative considerations, 395–397
BMI and co-morbidities, 395–396
complications, 396–397
depth vein thrombosis (DVT), 396
follow-up, 397
glycemic control in glucose-intolerant subjects, 396
mechanisms of weight loss, 396
post-operative vitamin deficiencies, 396
pregnancy, safe after RYGB and AGB, 397
patient/procedure selection, 390
pre-operative considerations, 394–395
operative team, 394
pre-op assessment, 394–395
questions regarding patient age and informed consent, 395
surgical approaches, 390–394
adjustable gastric band (AGB), 390–391
band systems, 391
candidates for adolescent obesity surgery, 391t
Roux-en-y gastric bypass (RYGB), 390, 392, 393f
sleeve gastrectomy (SG), 390, 392, 393f
variety of co-morbidities, 390
Barker hypothesis, 104
adulthood disease risks, 104
early size adjusted for later size, 104
low birth weight and coronary heart disease, 104
placental dysfunction, 104
preterm infants, 104
Be Active Eat Well (BAEW), 317t, 321t, 326, 327t, 328–329, 330t, 331t
Behavior change techniques, 286–287
self-monitoring and logging approaches, 286–287
stimulus control, 286–287
Behavioral economics theory, 284
Behavioral interventions (family-based)
behavior change techniques, 286–287
self-monitoring and logging approaches, 286–287
stimulus control, 286–287
dietary modification, 285–286
consumption of SSB, 285
“free-choice” approach, 286
good fats/high-fiber foods, 285
high-energy density (HED) foods, 285
low-energy density (LED) foods, 285
Traffic Light Program, 285
energy balance equation, 284
energy expenditure modification, 286
decreased sedentary behavior and increased physical activity, 286
focus on reducing time spent in sedentary behaviors, 286
moderate- to vigorous-intensity activities, 286
family involvement and support, 287–289
family-based incentive system, 288f
parental involvement in family-based behavioral interventions, 289f
internet-based prevention psycho-education programs (cost-effective interventions), 284
Behavioral issues. see Wall-less learning
Bile acid sequestrants, 187, 188t, 192t
Bipolar disease, 370
Birth weight
Barker hypothesis, 104
definition, 95
high, 95
low-birth-weight (LBW) infants, 96
of mother and early weight gain in childhood, 99
neonatal macrosomia, 103
timing of nutrient restriction, effects, 96
Blood pressure (BP)
diastolic, 39, 54, 186, 224, 228, 245, 257, 259, 344, 395
elevated systemic, 223
high, 84, 224f
homeostasis, 225–227
mean arterial, 115
systolic, 39, 115–116, 224, 227–228, 257, 259, 344, 351, 395
Body image
self-perceptual factors, 291
sociocultural factors, 81
and weight concern, 430
unhealthy weight control behaviors, 430
Body mass index (BMI), 372
Bogalusa Heart Study, 77, 179, 180t, 181, 183, 259, 270, 272
Bone
demineralization, 396
density, 39
hyperparathyroid bone disease, 55
loss, 214
maturation, 157–158, 160
mineral density, 53
mineralization/calcium homeostasis and fractures, 160–161
-skeletal abnormalities, 56
-strengthening physical activity, 286
Bone mineralization. see Calcium homeostasis/bone mineralization and fractures
Brain tumor, 245, 377–378
Brain-derived neurotrophic factor (BDNF), 36f, 39–40, 58–59, 70, 409
and tropomyosin-related kinase B, 39–40, 48f–51f, 58–59
clinical features, 58
clinical phenotypes, 40
diagnostic considerations, 58
etiology, 58
11p heterozygous deletions, 40
incidence, 58
partial deficiency, 40
treatment and future research, 58–59
WAGR syndrome, 40
Breast feeding, 97–98, 428. see also Infant
beneficial effects, 98
bisphenol-A (BPA), 98
dose–response effect, 97
factors influencing for, 98
maternal prepregnancy overweight or obese status, 98
nutrition for infants, 98
randomized controlled trials (RCT), 97
reduces odds of childhood obesity, 97
Brown adipose tissue (BAT), 22, 171, 342, 407–408, 410–411
Calcium homeostasis/bone mineralization and fractures, 160–161
high-fat feeding, 161
PPARγ, 160
prevalence of vitamin D deficiency, 160
reductions in 25OH vitamin D levels, 160
California Food Policy, 454
Caloric deprivation
fasting or, 25, 407, 412
negative feedback-response to, 24–25
neuroendocrine response to, 414–415
and weight loss, 414–415, 414f
gastric O-acetyl transferase (GOAT), 415
induction of leptin receptor signaling, 415
Calorie-dense snacks, 454
Cancer
chemotherapy, 15
colon cancer, 341, 348
pancreatic cancer, 341, 348
risk for colon cancer, 341, 348
therapy, 377
Candidate gene, 36, 41–42, 52, 66, 70, 359
analysis, 66
and genome-wide approaches, 66
Cardiovascular disease (CVD)/abnormalities, 5, 115–116
and atherogenesis
pediatric obesity and atherosclerosis, 265–271
prevention of adult coronary heart disease, 271–272
and atherosclerosis, 266f
fatty streaks, 265
fibrous plaque, 265
lipid accumulation, 265–266
natural history of atherosclerosis, 265–271
obesity as risk factor, 267
risk factors for cardiovascular disease, 266–267
development, 181
endothelial dysfunction (ICAM-1/VCAM-1/E-selectin), 115
gestational diabetes, consequences, 115–116
index pregnancy, 116
lipid metabolism and development of, 181
and metformin, 347
offspring of diabetic pregnancies, 115
premature atherosclerotic, 179
and race, 82–83. see also Race
Caregivers. see also Socio-cultural variation
intergenerational, 428–429
involvement of non-parental or multiple, 428
Carotid intima-media thickness (CIMT), 181, 183–184, 341
Catecholamines, 308
excretion, urinary, 226
and NPY, 24
rate-limiting enzyme in, 343
responses to exercise, 307–309
Center for Science in the Public Interest and the California Center for Public Health Advocacy, 446
Centers for Disease Control and Prevention (CDC), 4, 94, 425t
Central nervous system (CNS), 407–409
dorsomedial nucleus, 408
brown adipose tissue, 408
regulation of thermogenesis, 408
lateral hypothalamus, 409
dopamine, 409
melanin-concentrating hormone (MCH), 409
NPY (Y1 and Y5) receptors, 408
paraventricular nucleus (PVN), 407–409
hypothalamic dorsomedial nucleus (DMN), 408
leptin-responsive α-MSH/CART, 410
melanocortin (MC3R and MC4R), 410
modest obesity syndrome, 410
NPY (Y1 and Y5) receptors, 410
Sim1 gene, 407
targets for leptin-regulated neurons in arcuate nucleus, 407–409
tumor. see Brain tumor
ventromedial nucleus (VMN)

brain-derived neurotrophic factor (BDNF), 409

Central processing
anorexigenesis, POMC/α-MSH, and CART, 20
melanocortin receptors (MCR) and central neural integration, 22
neuroendocrine modulators of energy balance, 21–22
orexigenesis, NPY, and AgRP, 20–21

Central reinforcement systems, 15
Central sleep apnea, 242–243, 247
Cerebral salt wasting (CSW) syndrome, 382
Cesarean delivery and traumatic birth injury, 114

CHANGE (eight rural communities in USA), 330
Child and Adolescent Trial for Cardiovascular Health (CATCH) study, 203, 316, 332, 431
Child and adult care feeding program (CACFP), 452–454
calorie-dense snacks, 454
improvement in standard, 453
nutrition standards, 452

Childhood growth, 114–115
amniotic fluid insulin, 114
Diabetes in Pregnancy Center at Northwestern University, 114
Diabetes in Pregnancy Study, 114
Growing Up Today Study, 115
maternal BMI, 115
Pima Indian Study, 114
prediabetic or non-diabetic women, 114
rates of obesity and diabetes, 115
symmetry index, 114–115

Children’s Advertising Review Unit (CARU), 446
Cholesterol
absorption inhibitors, 187–191
consumption in children, 285
dietary restrictions, 179
esterified/unesterified, 176
esters, 176
high total, 180
high-density lipoprotein (HDL), 82, 166, 175, 177t, 182t, 183t, 186t, 192t, 259, 267–268, 269t, 344
low-density lipoprotein (LDL), 177t, 183t, 186t, 192t, 259, 267, 271, 310
non-HDL, 268, 269t
serum, 310

Cholesterol ester transfer protein (CETP), 176–177, 178f
Chronic renal dialysis or transplantation, 56
Chronic renal disease (mixed dyslipidemia), 185, 191t
Chylomicrons, 176
Cirrhosis
cryptogenic, 82
liver, 210
risk of, 202
stages of, 205

Classroom
elements of NEAT solutions, 145–146
drawbacks, 146
open-format classrooms, 145
un-roomed classrooms, 145–146
NEAT-promoting school of future, 145f

Cocaine/amphetamine-regulated transcript (CART), 20–21, 25, 38, 406–413, 414f
Community

based interventions. see School and community based interventions
biracial, 181
broader, 315
level, weight loss maintenance treatment, 294
local, 289t
Native American, 431
pediatric, 339
school–community intervention trials, 316
scientific, 458
Continuous positive airway pressure (CPAP), 246–248
Coronary artery calcification. see Intima-media thickness (IMT)
Coronary artery disease, 185, 341, 369, see also Atherosclerosis
Coronary Artery Risk Development in Young Adults (CARDIA), 270
Coronary heart disease (CHD), prevention of, 271–272
50% myth, 272
prevention programs for adult CHD, 271
risk factor prevention in childhood, 272
Corticotropin-releasing hormone (CRH), 19, 21
Cortisol
adipose, 160
administration, 24
increased secretion, 160
overproduction of, 155
serum and urinary, 39
Counseling. see also Family-based behavioral interventions and dietary counseling
dietary, 260
exercise, 340
healthy lifestyle and weight management, 175
intensive lifestyle, 341
Craniofacial syndromes
records of children with, 382
treatment, 378
Cultural targeting and cultural tailoring, concepts of, 431
Cushing’s syndrome, 160, 394
Cyproterone acetate, 363
Cytoprotective and antioxidants agents, 213–214

Deep vein thrombosis (DVT), 396
Dental and sensorineural abnormalities, 49t, 54
Developmental origin
of PCOS and evolution during childhood, 358–359
activation of hypothalamic-pituitary-ovarian axis, 358
androgen exposure, 358
hypothalamic-pituitary-ovarian axis in infancy or at puberty, 358
sex hormone binding globulin (SHBG), 358

Developmental origin of health and disease hypothesis (DoHAD), 104

“catch-up” growth, 105
gold standard 4-component model for body composition, 105
lifecourse epidemiology, 104
MRI assessment of visceral fat in adults, 105
prenatal nutrition and postnatal nutrition, 104
rapid infancy weight gain, 105
Diabetes. see also Insulin resistance (IR)

biochemical, 256
early-onset type 2, 350
frank, 114, 117, 395
gestational. see Gestational diabetes
insipidus (DI), 379, 381–382
maternal, 114–119
mellitus (DM), 86, 184t, 191t, 266
overt, 166, 168–169, 256
parental history of, 258–259
in pregnancy or gestational, 93, 95–96, 103, 107, 113–119, 167, 259, 347, 350. see also Gestational diabetes
type 1 diabetes, 83, 115–116, 118–119, 167, 185, 271
type 2 diabetes, 19, 54–58, 68
Diabetes Genetics Initiative (DGI), 70
Diabetes Prevention Program (DPP), 182, 346–347
Diabetes Prevention Program Outcomes Study (DPPOS), 347
Diet
balanced, 212, 447
complexity of, 129
energy-dense, 81, 285
fat- and cholesterol-restricted, 185
global, 7
glucose-enriched, 212
healthy, 130, 371, 447
high-calorie, 225, 255
high-fat, 78, 208, 227, 235, 408, 412
highly palatable “cafeteria,” 107
hypocaloric, 214, 310
intervention for
long-term metabolic complications of childhood obesity, 259–260
low-calorie, 260, 342, 345, 372
low-carbohydrate, 212, 295–296, 396
low-energy, 345
low-fibre, 130–131
low-saturated-fat, 271
maternal, 93, 98–99, 105, 106f
nutrient-rich, 453
obesogenic, 128
poor, 125, 369, 451
role of, 125–132
dietary energy density, 127–128
dietary fat, 127
eating behavior, 131–132
fibre intake, 127
foods, 128–129
foods and dietary patterns, 129–131
variation in energy requirements, 126f
Dietary counseling
family-based behavioral interventions and, 282–284
recommendations for targeting lipid abnormalities, 186t
Dietary energy density (DED), 127–128
Avon Longitudinal Study of Parents and Children (ALSPAC), 128
constant weight of food, 127
effect of energy intake (EI), 127
energy-dense foods, 128
top quintile of fat mass index, 128
top tertile of change in fat mass index, 128
Dietary Guidelines, 453
for Americans, 454
Dietary habits and physical activity, maternal, 98–99
consuming non-preferred vegetable, 99
healthier weight and balanced dietary habits, 98
healthy behaviors and habits, 99
maternal activity patterns, 98–99
medium chain triglycerides (MCT), 98
satiety, 98
Dietary management, 185–186
Dietary modification, 285–286
consumption of SSB, 285
“free-choice” approach, 286
good fats/high-fiber foods, 285
high-energy density (HED) foods, 285
low energy density (LED) foods, 285
Traffic Light Program, 285
Docosahexaenoic acid, 186
Doubly labeled water methods, 140
Drug therapy, 187, 188t–190t, 192t
Drugs/hormones for treating obesity, 349
diethylpropion, 349
ephedrine, 349
mazindol, 349
phentermine, 349
rimonabant, 349
Topiramate, 349
Duodenal switch procedures, 391. see also Bariatric surgery in adolescents
Dyslipidemia, pathogenesis and management of, 175–193. see also Lipid metabolism
clinical aspects
assessment and interpretation, 178–185
intervention, 185–193
pathophysiologic aspects
basic lipid metabolism, 176–178
Early intervention, importance of, 281–282
Early weaning, 125
Eating behavior, 131–132
obesogenic-type diet, 132
Viva la Familia study, 131
Education and the Public Interest Center and Commercialism in Education Research Unit, 457
Effector system
efferent vagus and energy storage, 22–23
sympathetic nervous system (SNS) and EE, 22
“Efficiency and regimentation” of fast-food production styles, 444
El Paso Child and Adolescent Trial for Cardiovascular Health, 431
Endocannabinoids (EC), 21–22
–brain interactions, 412–413
cannabinoid receptors, type 1 (CB1), 412
importance of cannabinoids in regulation of energy homeostasis, 412
mesolimbic dopamine system, activation of, 413
type 2 (CB2), 412
Endothelial dysfunction and atherosclerosis, 270–271
acetylcholine-induced relaxation, 270
endothelial dysfunction, 270
flow-mediated dilation, 270
hypercholesterolemia, 271
problem in linking, 271
Energy balance, 15–26
concurrent shifts in physical activity, 8
endocannabinoids (EC), 21–22

endocannabinoids (EC), 21–22

endocannabinoids (EC), 21–22

equation, 284

increased intake of animal source foods, 6–7
daily beverage consumption trends of Mexican children, 6f
dairy/beef/pork/poultry/fish and eggs, 6f
edible oil consumption still rising in China, 7f
predicted probability of snacking behavior in China, 7f
large increases in edible oil, 6
marked shifts in patterns of eating, 7–8
melanin-concentrating hormone (MCH), 21
norepinephrine (NE), 21
orexins A and B, 21
serotonin (5-HT), 21
sweetening of child diets, 5–6

Energy density
dietary energy density (DED), 127–128
high-energy density (HED) foods, 285, 289t
low energy density (LED) foods, 285, 289t

Energy expenditure above resting energy expenditure (EE-REE) vs. time, 139
Energy expenditure (EE) in children, role of NEAT, 137–149
classroom
examples of NEAT solutions, 145–146
components of TDEE
activity thermogenesis, 138f
basal metabolic rate, 138
thermic effect of food, 138
individual
examples of NEAT solutions, 144–145
measurement
basal metabolic rate and REE, 139
defining exercise and NEAT, 140
energy expenditure of physical activities, 139–140
NEAT energy expenditure, 140
thermic effect of food, 139
NEAT children, 143–144
NEAT in weight gain and obesity, 141–143
NEAT school, 144
NEAT variability, 141
out-of-school environment
possible NEAT solutions, 148
school
possible NEAT solutions, 146–148
Energy expenditure modification, 286
decreased sedentary behavior and increased physical activity, 286
focus on reducing time spent in sedentary behaviors, 286
moderate- to vigorous-intensity activities, 286
Energy requirements, 108, 125, 126f, 138
Ethnicity
and gender, obesity prevalence among US children by age, 423–432
and race, see Race
racial differences, 75–86, see also Racial differences, pathogenesis and complications
European Society for Human Reproduction & Embryology (ESHRE), 358
Exercise
effects of chronic exercise training on food and macronutrient consumption., 309
hormonal effects of exercise in obese children, 307–308
blunted GH response to exercise, reasons, 308
effects of intense exercise on growth hormone (GH)/IGF, 307, 307f
pre- and post-exercise insulin levels, 308
reduced central dopaminergic tone, 308
obesity and fitness, 306–307
cross-sectional relationship between fitness determined by VO2max, 306f
maximal oxygen consumption (VO2max), 306
reduced economy of movement, 307
“wasteful activity pattern,” 307
and lipids, 186–187
obesity and habitual physical activity, 305–306
increased sedentary behaviors, 305
patterns of daily life, 305
post-exercise increase in energy and protein intake, 309
training and treatment of childhood obesity, 309–311
endurance type training program, 310
3-month multi-disciplinary program, 310f
nutritional–behavioral–physical activity intervention, 309
young children knowledge about nutrition and exercise, 303–305
nutritional intervention studies in kindergarten, 304
photo-pair food and exercise questionnaire, 304
Exercise activity thermogenesis (EAT), 138, 140, 427, 430
“Exogenous” obesity, 53, 157, 160
Extramyocellular lipid (EMCL) content, 165, 165f
Familial combined hyperlipidemia, 183–184, 184t, 190t
Familial dysbetalipoproteinemia, 184–185, 184f
Family involvement and support, 287–289
Family-based behavioral interventions and dietary counseling, 282–284, see also Behavioral interventions (family-based)
family-based weight loss maintenance treatment, 290–294
components of family-based, multi-level maintenance intervention, 292–294
expanding scope of maintenance treatment, multi-level approach, 291–292
goal of, 284
importance of early intervention, 281–282
key treatment components of family-based behavioral interventions
behavior change techniques, 286–287
dietary modification, 285–286
energy balance equation, 284
energy expenditure modification, 286
family involvement and support, 287–289
internet-based prevention psycho-education programs (cost-effective interventions), 284
meta-analyses of pediatric weight loss studies, 283t
parental obesity, 283
parents in lifestyle interventions, 285
problem of weight regain, 290
behavioral phenotypes/appetitive traits, 290
new eating and activity behaviors, 290
social cognitive theory, 284
Family-based incentive system, 287, 288f
Family-based weight loss maintenance treatment, 290–294
components/multi-level maintenance intervention, 292–294
expanding scope/multi-level approach, 291–292
Fast foods
China, penetration of, 445
companies on defensive, 446–447
global production and consumption, dissemination of, 445
industry practices, changing, 446
marketing and distribution. see Marketing and distribution of fast food revolution, 444
in US, rise of fast-food chains
- demands of fast-food brands on their suppliers, 443
  fast food by subsector, food service value (2002–2007), 441f
  fast food by subsector, unit restaurants (2002–2007), 442f
- global brand owner shares of chained fast food in US, 442f
  KFC, 443
origin and influence of, 445
spur imitation by competitors, 443
standards placed on farmers and food suppliers, 445
Fasting
- adiponectin-brain interactions during, 410–411
- caloric deprivation, 25, 407, 412
- glucose level, 114
  impaired fasting glucose (IFG), 166
  levels of insulin or C-peptide, 169
  lipid abnormalities, 182t
  lipid profiles, 175, 179–180, 182–183, 185, 192t
  mean fasting lipid value, 183f
  or post-prandial insulin levels, 170
  state and muscle affects glucose metabolism, 166
- “upper normal” fasting glucose level, 170
Fat
- dietary, 127
  energy dense macronutrient, 127
  ‘Growing Up Today’ cohort, 127
  distribution, race/obesity and body, 80
in liver, accumulation of, 206
dietary free fatty acids (FFA), 206
hepatic lipids (de novo lipogenesis), 206
insulin receptor substrate (IRS) proteins, 206
Toll-like receptors (TLR), 206
triglyceride accumulation, 206
Fat mass and obesity-associated gene (FTO), 66, 68–69
early-onset obesity, 68
fat cell lipolysis, 69
Fto catalysis on Fe(II), 69
Fto disruption, 69
loss-of-function mutations, 69
non-synonymous mutation (Arg316Gln), 69
rs9939609, 68
T2DM, 68
Fatty liver disease, 201–215
causes of fatty liver, 202t
diagnostic approaches
- grading and staging of NAFLD, 210–212
  imaging techniques, 210
  liver biopsy, 210
  serum markers, 209
epidemiology, 202–203
etiopathogenesis
- accumulation of fat in liver, 206
  function of inflammatory cytokines and adipokines, 208–209
  impact of oxidative stress, 207–208
  role of insulin resistance, 207
histological findings
- ballooning, 204f, 205
fibrosis, 205–206
  inflammation, 205
  steatosis, 204
  lipid-lowering drugs, 214–215
NAFLD/NASH
  appearance of fibrosis, 206f
  current non-invasive techniques for diagnosis, 210t
  diagnostic criteria, 211t
  epidemiological data, 203t
  grading system, 211t
  histological features, 204t
  natural history, 202
  pathogenesis of, 207f
  treatment of fatty liver disease
- bariatric surgery, 213
  cytoprotective and antioxidants agents, 213–214
  insulin sensitizers, 214
  lifestyle changes, 212–213
Federal feeding programs, 452–456
Federal WIC Reauthorization Act, 454
Fetal growth, 114
and adiposity, programming of, 116–117
  frank diabetes, 117
  GDM mothers, 117
  maternal glucose intolerance, factors associated, 116
  metabolic syndrome during adolescence, 117
  National Longitudinal Survey of Youth, 117
  risk of fetal growth restriction, 116
  cesarean delivery and traumatic birth injury, 114
  degree of hyperglycemia, 114
  increased adiposity, 114
  insulin, 114
  macrosomia, 114
  maternal fasting glucose level, 114
Fetal malprogramming of hypothalamic neurons, 118
  endogenous functional teratogens, 118
  functional teratogenesis, 118
  malprogramming of hypothalamic neuropeptidergic neurons, 118
Fetal over-nutrition, 114, 118
Fibrates, 191, 192t, 214–215
Fibre/fiber
- high-fibre cereals/foods, 128, 132, 185–186, 186t, 285, 289t
- type 2 glycolytic fibers, 80
- type 1 oxidative fibers, 80
Fibric acid derivatives. see Fibrates
Fibrospy, 205–206
  “chicken wire” pattern, 205
  portal/perportal and bridging fibrosis, 205
  steatohepatitis, 205
Filtration fraction, definition, 230
Fish oil/consumption, 175, 186
Fitness and obesity, 306–307
  cross-sectional relationship between fitness determined by
  VO_2max, 306f
  maximal oxygen consumption (VO_2max), 306
  reduced economy of movement, 307
  wasteful activity pattern, 307
Fleurbaix-Laventie Ville Santé (FLVS), 316, 317t, 322t, 326, 327t, 328, 330t, 331t
Flow-mediated dilation, 270
Fluorescence in situ hybridization (FISH), 52–53
Focal segmental glomerulosclerosis (FSGS), 230, 232
Follicle-stimulating hormone (FSH), 159, 159f, 357, 362, 381
Food, 128–129, see also Fast foods and agriculture systems, 447
ALSPAC study, 128
comfort, 24
competitive, 427, 455
composition, 304
and dietary patterns, 129–131
contribution of different food groups, 130f
data from ALSPAC, 131f
data-driven methods, 129
energy-dense, high-fat, and low-fibre diet, 129
food frequency questionnaires, 130
‘healthy eating’ cluster, 130
‘infant guidelines’ pattern, 129
National Heart, Lung, and Blood Institute Growth and Health Study, 130
Southampton Women’s Survey (SWS), 129
‘Growing Up Today’ cohort, 129
high consumption of fruits and vegetables, 129
high- or low-calorie drink, 128
high-energy density (HED), 285, 289t
high-fat foods, 128
high-fibre foods, 128
industry, 451, 456–457
intake and physical activity, 429–430
fast foods and sugar-sweetened beverages, 429
National Heart, Lung, and Blood Growth and Health study, results, 430
low energy density (LED), 285, 289t
low-glycemic index foods, 213
sugar-sweetened beverages (SSB), 128
value chains, interaction of global and local, 440f
Women, Infants and Children (WIC), 129
Food and Drug Administration, 213, 372, 391
Food Policy (California), 454
Food Stamp Program, 3–4
Foods of minimal nutritional value (FMNV), 455
Formula feeding, 97, 125, 428
Framingham Heart Study, 68
Free androgen index, 357
Free testosterone index, 362
Friedewald formula, 179
Fructose
dietary, 25, 132
higher, 185, 212
Fuel-mediated teratogenesis hypothesis, 118
Genetic Investigation of ANthropometric Traits (GIANT) consortium, 70
Genetic/familial or specific intrauterine effects, 117–118
discordant siblings, 117
fuel-mediated teratogenesis, 117
Growing Up Today Study, 117
insulin resistance, 117
non-diabetic siblings, 117
offspring of diabetic woman, 117
sibling pairs, examining, 117
Genome-wide association studies (GWAS), 40, 42, 65–71, 359
Gestational diabetes, 113–119
clinical and public health implications, 119
consequences
abnormal glucose tolerance and risk for type 2 diabetes, 115
cardiovascular abnormalities, 115–116
childhood growth and obesity, 114–115
fetal growth, 114
fetal programming, 114
genetic/familial or specific intrauterine effects, 117–118
maternal diabetes, 116
mechanisms for intrauterine effects
defective insulin secretion in offspring, 118–119
dysregulation of adipo-insular axis, 118
fetal malprogramming of hypothalamic neurons, 118
programming of fetal growth and adiposity, 116–117
Gestational weight gain, 95
gestational diabetes (GDM) status, 95
and higher birth weight, 95
LGA infants, 95
low maternal BMI, 95
in overweight women, 95
Ghrelin, 17, 249–250, 308, 340, 351, 396, 411–413, 415
–brain interactions during fasting/caloric restriction, 411–412
direct binding of ghrelin to receptors (GHS-R), 411
gut peptides affecting appetite and satiety, 412f
in humans, 412
Girls Health Enrichment Multi-site Studies (GEMS) studies, 431–432
Global dynamics in childhood obesity, 3–9
broad shift in energy balance
concurrent shifts in physical activity, 8
increased intake of animal source foods, 6–7
large increases in edible oil, 6
marked shifts in patterns of eating, 7–8
sweetening of child diets, 5–6
global patterns and trends
comparative levels of childhood obesity, 4–5
rich vs. poor sectors of society, 5
underlying changes, 8–9
Global food chain, 440, 444
Global patterns and trends, childhood obesity
comparative levels, 4–5
annual change in prevalence of overweight and obesity, 5f
prevalence of overweight plus obesity, 4f
rich vs. poor sectors of society, 5
studies in China between 1991 and 2004, 5
Global Strategy on Diet, Physical Activity, and Health, 446
Global value chains (GVC) model, 439–441
Glocalisation, 446
Glomerulopathy, see Obesity-related glomerulopathy (ORG)
Glucocorticoids, 110, 160
Genes and PCOS, 359
fibrillin 3 gene (FBN3), 361
obesity-associated gene (FTO), 359
Gamma glutamyl transferase (GGT), 9, 20, 203, 210t
Gastric band, 390, 392f. see also Adjustable gastric band (AGB)
production and turnover, 160
Cushing’s syndrome, 160
11βHSD1, overexpression of, 160
polymorphisms in glucocorticoid receptor, 160
use of high-dose, 156
Glucosamine-6-phosphate deaminase 2 (GNPDA2), 70
Glucose metabolism, altered
epidemiology of, 166–167
impaired fasting glucose (IFG), 166
impaired glucose tolerance (IGT), 166
SEARCH study, 167
type 2 diabetes (T2DM), 166
pathophysiology of, 167–168
disposition index (DI), 167
euglycemia, 168
failure of beta cell function, 167
first-phase insulin secretion, 167
IFG/IGT, 168
increased peripheral insulin resistance, 167
oral glucose tolerance tests (OGTT), 167
pre-diabetic conditions, 167
predisposing factors, 167
relation of OGTT-derived indexes, 168f
second-phase insulin secretion, 167
Glucose tolerance and risk for T2DM, abnormal, 115
oral glucose tolerance tests, 115
prediabetic mothers, 115
SEARCH Case–Control Study (SEARCH CC), 115
Gonadal function and pubertal development, 159–160
ACTH and LH, 159
everal sexual maturation, 159
free and total testosterone levels, 159–160
FSH, 159
GnRH, increased, 159
gynecostasia, 159f, 160
hyperprolactinemia, 160
insulin suppresses hepatic SHBG expression, 159
ovarian hyperandrogenism, 159, 159f
precocious adrenarche, 159
prolactin levels, 159
risks of precocious thelarche and reduce age of menarche, 159
Gonadotropin releasing hormone (GnRH), 159
Growth hormone (GH), 52, 155–157, see also Exercise
hormonal effects of exercise in obese children
blunted GH response to exercise, reasons, 308
effects of intense exercise on growth hormone
(GH)/IGF, 307, 307f
pre- and post-exercise insulin levels, 308
reduced central dopaminergic tone, 308
Growth hormone secretagogue receptor (GHS-R), 17, 411
Growth-restricted infants, 107
Gynecomastia, 159f, 160
Habitual physical activity and obesity, 305–306, see also Physical activity(ies)
increased sedentary behaviors, 305
patterns of daily life, 305
Harder’s meta-analysis, 97
Healthy catch-up growth, future strategies, 109
IGF-I levels, 109
SGA pathway of rapid postnatal catch-up weight gain, 109f
“the catch-up dilemma,” 109
Hedonic pathway of food reward, 23–24
Hedonic reward system, 21
Hepatic steatosis. see Fatty liver disease
High-density lipoprotein (HDL) levels, 82, 84, 115, 166, 175–176, 177t, 178f, 179–182, 180t, 181–187, 182t, 183f, 183t, 185t, 186t, 188t, 190t, 191, 192t, 253, 257, 259, 263–268, 269t, 343–344, 346, 349, 351, 395, 463f
High-energy density (HED) foods, 285, 287, 289t
Higher fructose consumption, 185
Highly palatable “cafeteria” diet, 107
High-risk individual-based strategy, 178
Hip Hop to Health program, 431
Hirsutism and acne
in adolescent girls, 159
cause deep distress, 363
in females, 56
management of adolescents with PCOS, 362
reduction in, 352
symptoms of androgen excess, 357
Home environments, 427
High 5 Intervention, 427
Project EAT, 427
resources and cues for physical activity or inactivity, 427
technology, media, and advertising environments, 427–428
Hormonal disorders/effects
cause excess fat deposition, 155–157
of exercise in obese children, 307–308
blunted GH response to exercise, reasons, 308
effects of intense exercise on growth hormone
(GH)/IGF, 307, 307f
pre- and post-exercise insulin levels, 308
reduced central dopaminergic tone, 308
mechanisms of weight gain in, 156f
Human BDNF haplo-insufficiency, 40
3-Hydroxy-3-methyl-glutaryl coenzyme A (HMG-CoA) reductase, 176, 187, 189t
11β-Hydroxysteroid dehydrogenase 1 (11β-HSD1), 155, 160
Hyperandrogenaemia, definition, 357
Hyperinsulinemia, 25, 77–79, 118, 157, 227–228
Bogalusa Heart Study, 77
insulin concentrations/in vivo insulin sensitivity/adiponectin levels, 78f
lifestyle differences in dietary habits, 78
low adiponectin levels in black vs. white children, 77
oral glucose tolerance test (OGTT), 77
primary factors, 254
Hyperleptinemia, 118
Hyperprolactinemia, 59, 156, 156t, 160, 381
Hypertension, 223–229
blood pressure homeostasis, 225
definition, 225
homeostatic mechanisms, 225
perturbed autonomic regulation, 225
epidemiology, 223–224
adiposity and hypertension, 224
impact of obesity rise on hypertension in children, 224f
obesity–hypertension relationship, 224
mechanisms, obesity-associated hypertension, 226f
pathophyslogic mechanisms, 225–229
adipose tissue-related factors, 228–229. see also Adipose tissue-related metabolic factors
Ang II is, 227
hyperinsulinemia/insulin resistance, 227–228
obstructive sleep apnea (OSA), 228
renin–angiotensin–aldosterone system (RAAS), 227
sympathetic nervous system activity, 225–227

Hypertriglyceridemia, 25, 54, 56, 82, 183, 184t, 212, 253
Hypocalcemia, 54–55
Hypoparathyroidism, 49t, 55
Hypopnea
and apneas, 53, 242, 244f, 245
definition, 242
respiratory event, 242
Hypopneic and apneas, 53, 242, 244f, 245
definition, 242
respiratory event, 242
Hypothalamic damage or disease, 156, 378–379
Hypothalamic feedback systems, 23
Hypothalamic obesity, 23, 156, 156t, 254, 349, 377–385
diagnosis, 382
oral glucose tolerance testing (OGTT), 382
incidence and risk factors, 377–379
acute lymphoblastic leukemia (ALL), 377
hypothalamic insult with death of VMH neurons, 378
obesity in ALL survivors, 378t
predictive parameters, 379
occurrence, 377
pathogenesis, 379–381
children with, 379–380
organic leptin resistance, 379
sympathetic nervous system hypofunction, 380
syndrome of hypothalamic obesity, 379
vagal hyperfunction, overlapping mechanisms, 380–381
presentation
adrenocorticotropic hormone (ACTH) deficiency, 382
cerebral salt wasting (CSW) syndrome, 382
gonadotropin deficiency, 381
growth hormone (GH) deficiency, 381
stalk effect, 381
syndrome of hypothalamic obesity, 382
treatment, 382–384
insulin secretion (CIRgp) vs. sensitivity (CISI) in, 383f
pharmacotherapy, 383–384
Roux-en-Y gastric bypass, 382
serotonin or norepinephrine reuptake inhibitors, 383
surgery, 384
ventromedial hypothalamus (VMH), 377
Hypothalamic tumors. see Hypothalamic obesity
Hypothalamus
arcuate nucleus (ARC) of, 36f, 37
dorsomedial, 21
lateral hypothalamus (LH), 408–409, 412–413, 414f
mediobasal, 406, 410
paraventricular nucleus (PVN) of, 16f, 19–22, 36f, 40–41, 58, 407–411, 413, 414f
ventromedial hypothalamus (VMH), 16, 16f, 17, 19–22, 19f, 24–25, 26f, 40, 58, 377–382
Hypothyroidism
hypothalamic, 37
primary, 54, 56
state of central, 410

Hypoxia
cardiac, 347
intermittent, 228, 242f, 243, 245

Imaging techniques, 210
hepatic MRI, 210
transient elastography (TE) by FibroScan, 210
ultrasound, 210

Imprinting center (IC), 48t, 52–53
Inadequate nutrition, 114
Income
high/higher, 5–6, 9, 147, 453
low/lower, 3–6, 8–9, 94, 98, 127, 137, 326, 428–429, 431, 453
middle, 3, 8
moderate, 5
parental, 81
poverty, 425t
upper, 4

Incretin mimetics and selective serotonin receptor agonists,
348–349
exenatide, 348
liraglutide, 348–349
lorcaserin, 349
oxymetazoline and peptide YY, 349

Infant
feeding, 428
exclusive breastfeeding, 428
Supplemental Nutrition program for Women, Infants, and Children (WIC), 428
mortality rates, 104

Inflammatory bowel disease, 202t
Inflammatory cytokines and adipokines, function of, 208–209
adiponectin, 208–209
dysregulation of adipocytokines, 208
IL-6 is cytokine, 208
leptin, 209
plasminogen activator inhibitor (PAI)-1, 209
resistin, 209
retinol-binding protein-4 (RBP4), 209
rise in TNF-alpha, 208
visfatin, 209
Insulin. see also Insulin resistance (IR)
acute and chronic intracerebroventricular insulin infusions, 20
–brain interactions during fasting/caloric restriction, 410–411
dopamine uptake transporter (DAT), 411
hyperphagia, 410
chronic peripheral insulin infusions, 20
CNS insulin action, 20
defective secretion in offspring, 118–119
fetal development programs, 119
impaired insulin secretion, 119
streptozotocin injection or glucose infusion, 118
regulate food intake, 20
role in energy balance, 20
sensitizers, 214
Diet plus pioglitazone, 214
metformin and thiazolidinediones, 214
short-term insulin, 20
signal transduction pathway, 20
Insulin resistance (IR). see also Hyperinsulinemia and glucose intolerance, pathogenesis of, 163–170
dynamics of pre-diabetic conditions, 168–169
Subject Index

epidemiology of altered glucose metabolism, 166–167
insulin resistance (metabolic) syndrome, 169–170
pathophysiology of altered glucose metabolism, 167–168
pathophysiology of IR, 164–166
and long-term risks of childhood obesity, 254, 256–258
population-based cross-sectional studies/risk of
future T2DM, 257
prevalence of T2DM, studies on, 256
metabolic syndrome, 169–170, 257–259
cardiovascular risk factors, 169
degree of insulin sensitivity, 170
fasting or post-prandial insulin levels, 170
insulin resistance syndrome, 169
rise in triglyceride levels, 170
upper normal fasting glucose level, 170
and metabolic syndrome
Bogalusa Heart Study, 259
parental diabetes, 259
prevalence of BMI and, 258
visceral fat, 164f
and obesity, 254
pathophysiology of, 164–166
beta cell insulin secretion, 166
dyslipidemia, 166
effect of lipid, 165
fasting state and muscle affects glucose metabolism, 166
hepatic fat accumulation, 165
hepatic steatosis, 166
hyperglycemia, 166
hyperinsulinaemia, 166
IMCL and EMCL content, 165f
increased visceral fat accumulation, 164
lipid partitioning, 164
metabolic sink, 165
post-prandial glucose, 165
preservation of insulin signaling pathways, 166
relation of IMCL and EMCL content, 165f
sensitivity to hormones, 164
visceral fat and insulin sensitivity, 164f
role of, 207
hepatic insulin resistance, 207
measure of, 207
tracking of obesity and IR from childhood into adulthood,
254–255
Insulin-induced gene 2 (INSIG2), 68
SNP (rs7566605), 68
whole-genome scan (100k Affymetrix), 68
Insulin-like growth factor-I (IGF-I) levels, 53, 106–107, 109,
157–159, 308
Insulin-like growth factor binding proteins, 157–159
Intergenerational caregiving, 428–429
Intermittent hypoxia, 228, 242, 242f, 243, 245
International Diabetes Federation, 182, 182t
International expansion of fast food, 443–445
International Obesity Task Force (IOTF), 4, 5f
Internet-based prevention psycho-education programs
(cost-effective interventions), 284
Intima-media thickness (IMT), 223, 225, 270–271
Intraflagellar transport (IFT) process, 50t, 55
Intramyocellular lipid (IMCL) content, 165, 165f
Intrauterine effects, see Genetic/familial or specific intrauterine
effects

Intrauterine growth retardation (IGUR), 103–109
antenatal pathogenesis
animal models, 105–106
human studies, 106–107
Barker hypothesis, 104
early postnatal pathogenesis
animal models, 107–108
human studies, 108
future strategies, healthy catch-up growth, 109
health and disease hypothesis, developmental origins,
104–105
Ischaemic heart disease mortality rates, 104
Kahnawake School Diabetes Prevention Project (KSDPP), 318t,
323t, 326–331, 327t, 330t, 331t
Kaiser Family Foundation survey, 427
Kawasaki disease, 185, 191t
Labeling Education and Nutrition (LEAN) Act, 446, 456
Lap band, 391, see also Adjustable gastric band (AGB)
Large-for-gestational-age (LGA) babies, 94
Lecithin cholesterol acyl transferase (LCAT), 176, 178f
Leptin, see also Melanocortin/leptin pathway
167-amino acid hormone, 19
on appetite/energy homeostasis and behavior, effects of, 407
effects of NPY on hypothalamic pituitary-thyroid axis, 407
brain interactions during fasting/caloric restriction, 406–410
effect on blood pressure, 229
effects on growth, 157–158
effects on thyroid function, 158–159
melanocortin pathway, 36f
neuronal signals
activation of cytoplasmic Janus kinase 2 (JAK2), 19
ATP-sensitive potassium channel, 19
insulin receptor substrate 2/phosphatidylinositol-3-kinase
(IRS2/PI3K), 19
signal transduction and transcription (STAT-3), 19
production by adipocytes, 19
receptor isoforms by splicing, 19
ObRa/ObRb/ObRc and ObRe, 19
resistance, 25–26
leptin threshold, 25
limbic triangle, 26f
serum leptin concentrations, 19
signaling, 406–407
AMP-activated protein kinase (AMPK) activity, 406
excitatory postsynaptic currents (EPSC), 407
inhibitory postsynaptic currents (IPSC), 407
mammalian target of rapamycin complex (mTOR), 406
PI3-K activation, 406
STAT3 signaling, 406
on thyroid hormone regulation, effects of, 409–410
effects on hypothalamic arcuate and ventromedial nuclei, 410
fasting or caloric restriction, 410
on hypothalamic-pituitary-thyroid axis, 410
regulation of EE by obligatory/adaptive thermogenesis, 409
TRH gene expression in hypophysiotropic neurons, 410
Leptin–brain interactions during fasting/caloric restriction,
406–410
CNS targets for leptin-regulated neurons in arcuate nucleus, see
Central nervous system (CNS)
effects of leptin on appetite, energy homeostasis, and behavior, 407
NPY on hypothalamic-pituitary-thyroid axis, 407
effects of leptin on thyroid hormone regulation, 409–410
fasting or caloric restriction, 410
hypothalamic arcuate and ventromedial nuclei, 410
on hypothalamic-pituitary-thyroid axis, 410
regulation of EE by obligatory/adaptive thermogenesis, 409
TRH gene expression in hypophysiotropic neurons, 410
leptin signaling, 406–407
AMP-activated protein kinase (AMPK) activity, 406
excitatory postsynaptic currents (EPSC), 407
inhibitory postsynaptic currents (IPSC), 407
mammalian target of rapamycin complex (mTOR), 406
PI3-K activation, 406
STAT3 signaling, 406
Lifestyle interventions, definition, 282
Lifestyle management, 185
Linear growth and bone maturation, 157–158
effects of IGF-1 on growth and bone maturation, 158
“free” IGF-1 levels, 158
leptin deficiency, 158
plasma growth hormone (GH) concentrations, 157
plasma insulin concentrations, 157
reductions in plasma IGF BP-1 or 2 concentrations, 158
total IGF-1 and IGF binding protein (BP)-3 concentrations, 157
total IGF-2 concentrations, 157
Lipid metabolism, 79–80
abnormalities
assessment, 177–180
as components of definitions of metabolic syndrome, 181–183
definition of abnormal, 180–181
familial combined hyperlipidemia, 183–184
familial dysbetalipoproteinemia, 184–185
to other dyslipidemias and risk conditions, 183
and development of cardiovascular disease, 181
basic, 176–178
FFA and hyperglycemia, 178
lipid triad, 177–178
lipoprotein particles, 176
overproduction of VLDL, 177
pathogenesis of obesity-related lipid abnormalities, 177
transport and metabolism of endogenous/exogenous lipids, 176
hyperinsulinemia, 79
intervention
bile acid sequestrants, 187
cholesterol absorption inhibitors, 187–191
dietary management, 185–186
drug therapy, 187, 188t–190t
fibrin acid derivatives or fibrates, 191
lifestyle management, 185
nicotinic acid formulations, 191
physical activity and sedentary pursuits, 186–187
recommendations, drug therapy, 192t
risk factors and risk conditions, 191t
phosphorous nuclear magnetic resonance spectroscopy, 80
puberty, 79
rate of whole body lipolysis, 79, 79f
reduced postabsorptive fat oxidation, 79
skeletal muscles of obese or type 2 diabetic adults, 80
substrate oxidation, factors influencing, 80
thrifty genotype hypothesis, 79
Lipid triad, 177–178, 177f, 184
Lipid-lowering drug therapy, 175, 179
Lipodystrophy syndromes, 202t
Lipolysis, 16f, 18f, 22, 24–25, 69, 79, 155, 156t, 163, 166, 206, 229, 380–381, 408
Lipoprotein particles, 82, 176, 179, 183, 185
Liraglutide, 342f, 348–349
Liver
biopsy, 203, 203t, 210, 214–215
cirrhosis, 210t
ELF (enhanced liver fibrosis) markers, 209
non-alcoholic fatty liver disease (NAFLD), 82, 201
cryptogenic cirrhosis, 82
histological patterns, 210
NAFLD activity score (NAS), 211
necro-inflammatory activity, 211
pediatric liver disease and liver damage, 82
scoring system, 211
semiquantitative system, 211
three-tier grading system, 211
Study of Child and Adolescent Liver Epidemiology (SCALE), 203
Lobular infiltrates composition, 205
Long-limb gastric bypass, 392
Long-term metabolic complications of childhood obesity
black–white differences in plasma insulin and obesity and progression over time, 255–256
glomerular filtration rate, 255
protection of renal function, 255
centrality of childhood obesity, 254f
childhood metabolic syndrome and adult T2DM and CVD, 258–259
childhood obesity/insulin resistance (IR) and metabolic syndrome
Bogalusa Heart Study, 259
parental diabetes, 259
population-based cross-sectional studies/risk of future T2DM, 257
prevalence of T2DM, studies on, 256
prevalence of T2DM, studies on, 256
obesity and insulin resistance (IR), 254
polycystic ovary syndrome (PCOS), 259
risk factors and risk conditions, 191t
tracking of obesity and IR from childhood into adulthood, 254–255
Low energy density (LED) foods, 285, 289t
Low-density lipoprotein (LDL) particles, 82, 166, 175–176, 177t, 178–181, 178f, 183–185, 183f, 186t, 187, 188f, 190t, 192t, 193, 215, 235, 259, 267, 271, 310, 344, 346–347, 351, 395
Luteinizing hormone (LH), 159, 159f, 357–359, 362–363, 381, 408–409, 414f
Macronutrient composition, 163
Macrosomia, 114
fetal, 95, 114
neonatal, 103
Magnetic resonance imaging (MRI), 53, 105, 107, 164f, 210, 210t, 214, 306f, 361, 379f, 406
Magnetic resonance spectroscopy, 80, 214
Mallory–Denk bodies, 205, 211t
Malnutrition, 3, 202t
Marketing and distribution of fast food
fast-food companies on defensive, 446–447
attempts to counter criticism, 447
Center for Science in the Public Interest and the California Center for Public Health Advocacy, 446
fast-food industry practices, changing, 446
Global Strategy on Diet, Physical Activity, and Health, 446
McDonald’s, criticism for low nutritional value, 447
modification of business practices, 447
trans-fat, eliminating, 447
global value chains (GVC) model, 439–441
interaction of global and local food value chains, 440f
international expansion of fast food, 443–445
dissemination of global fast-food production and consumption, 445
efficiency and regimentation of fast-food production styles, 444
fast-food revolution, 444
penetration of fast foods, China, 445
McDonald’s global operations, 444f
power of marketing, 445–446
marketing campaigns/promotional initiatives, 446
rise of fast food in US, 441–443
stream of causation model, 439
Maternal determinants, weight gain/smoking/breastfeeding, 93–100
breastfeeding, 97–98
maternal dietary habits and physical activity, 98–99
maternal weight status
effects of maternal undernutrition, 96
gestational weight gain, 95
postnatal maternal weight status, 96
pregnancy weight gain in overweight and obese women, guidelines, 95–96
pregravid weight status, 94–95
other influences, 99
grandparental obesity, 99
low socioeconomic status (SES), 99
short sleep duration, 99
television watching, 99
smoking, 96–97
Maternal diabetes, 116
amniotic fluid insulin levels, 116
birth weight, 116
deregree of fetal hyperinsulinemia, 116
impaired glucose tolerance, 116
pre-existing type 1/type 2 or gestational diabetes, 116
pre-gestational type 1 diabetes, 116
Maternal obesity, 94–95, 103, 115–117, 119, 429
Meat
high-fat, 454
low-fat, 132
meat/meat substitute, 454
processed, 6, 132
red, 6
white, 6
Melanin-concentrating hormone (MCH), 21, 409, 413
Melanocortin receptors (MCR), 20–22, 39, 67, 70, 410
melanocortin (MC3R and MC4R)
paraventricular nucleus (PVN), 407–408
melanocortin-4 receptor gene (MC4R), 67–68
Ile251Leu polymorphism, 67
rs17782313 downstream of MC4R, 67
Val103ile polymorphism, 67
Melanocortin/leptin pathway
leptin and leptin receptor deficiency, 36–37
carriers of frameshift or two missense mutations, 37
heterozygous carriers of deleterious mutations in LEP, 37
heterozygous carriers of LEPR mutations, 37
homozygous G→A mutation, 37
hyperphagia, 37
hypogonadotropic hypogonadism, 37
hypothalamic hypothyroidism, 37
leptin administration, 37
neurons, types, 36
pathogenic mutations, 36
positional cloning, 36
melanocortin 4 receptor deficiency, 39
D90N mutation, 39
gonadotropin secretion and pubertal development, 39
heterozygous MC4R mutations, 39
homozygous or compound heterozygous pathogenic mutations, 39
hyperphagia and body fat accumulation, 39
non-obese mutation carriers, 39
rhodopsin and adrenergic receptors, 39
proopiomelanocortin (POMC) deficiency, 38
alpha-MSH (25) or beta-MSH, 38
biologically active proteins, 38
heterozygous carriers of C6906del mutation, 38
pheomelanin and eumelanin, 38
treatment with glucocorticoids, 38
proprotein convertase 1 deficiency, 38
heterozygous or homozygous mutations, 38
PC1/3 mutations, 38
prohormones into functional hormones, converts, 38
α-Melanocytestimulating hormone (α-MSH), 20, 36f, 38
Menarche, reduce age of, 105, 159, 348
Menu Education and Labeling (MEAL) Act, 456
Metabolic and hormonal disorders
causing excess fat deposition, 155–157
overproduction of cortisol, 155
precocious puberty, 156
use of high-dose glucocorticoids, 156
Metabolic rate
basal, 138
components of TDEE, 138
and resting energy expenditure (REE), 139
Metabolic syndrome (MBS) in adolescents, 169–170, 181–185, 362
childhood obesity, insulin resistance (IR)
Bogalusa Heart Study, 259
prevalence of BMI and metabolic syndrome, 258
definitions, 181–183
Metformin, 214, 345–348, 351
adverse side effects, 348
and cardiovascular disease, 347
effects of, 346–347
fatty liver, 214
intervention with
long-term metabolic complications of childhood obesity, 259–260
lactic acidosis, 348
reduction of hepatic glucose production, 346
Mitochondrial carrier 2 (MTCH2), 70
Monogenic obesity, 36–42
caused by mutations in leptin/melanocortin pathway
leptin and leptin receptor deficiency, 36–37
melanocortin 4 receptor deficiency, 39
proopiomelanocortin (POMC) deficiency, 38
proprotein convertase 1 deficiency, 38
gene screening strategies, 41f
monogenic obesity with neurological features
brain-derived neurotrophic factor and its receptor TrkB, 39–40
single-minded 1 transcription factor, 40
and polygenic obesity, continuum between, 40
gain-of-function V103I and I251L, 40
genome-wide association studies (GWAS), 40
loss-of-function mutations in MC4R gene, 40
risk for polygenic obesity, 40
“three-headed” Cerberus obesity gene, 40
Mood disorders, 372
Multiorgan disorder, 50t, 56
Muscatine Study
risk factors and atherosclerosis in youth, cohort studies, 270
NASH Clinical Research Network (NASH CRN), 204, 214
National Health and Nutrition Examination Survey (NHANES), 76, 81, 83, 93–94, 137, 180–183, 193, 203, 224, 257, 424
National Heart, Lung, and Blood Institute Growth and Health Study, 76, 130, 179
National Longitudinal Study of Adolescent Health, 426
National school breakfast and lunch programs, 454–456
competitive foods, 455
foods of minimal nutritional value (FMNV), 455
National School Breakfast Program (NSBP), 452, 454–455
National School Lunch Program (NSLP), 452, 454–455
school wellness policy (SWP), 455
features, 455
local districts to write their own policies, impact of, 455
responsibility on school districts, 455
2009 Trust for America’s Health, 455
National School Breakfast Program (NSBP), 452, 454–455
National School Lunch Program (NSLP), 452, 454–455
school wellness policy (SWP), 455
features, 455
local districts to write their own policies, impact of, 455
responsibility on school districts, 455
2009 Trust for America’s Health, 455
National School Breakfast Program (NSBP), 452, 454–455
National School Lunch Program (NSLP), 452, 454–455
NEGR1 (neuronal growth regulator 1), 42, 70
Neighborhood and community environments. see also Physical
environments; School and community based interventions
crime, 426
gender and ethnic differences, 426
Neonatal macrosomia, 103
Nephrotic syndrome, 184t, 191t, 231
Neuroendocrine and metabolic adaptations in CNS facilitating
weight regain
adipocytin–brain interactions during fasting/caloric restriction, 411
adiponectin receptor 1 (AdipoR1), 411
CNS targets for leptin-regulated neurons in arcuate nucleus, 407–409
effects of leptin on appetite, energy homeostasis, and behavior, 407
effects of leptin on thyroid hormone regulation, 409–410
endocannabinoid–brain interactions, 412–413
cannabinoid receptors, type 1 (CB1), 412
importance of cannabinoids in regulation of energy homeostasis, 412
mesolimbic dopamine system, activation of, 413
type 2 (CB2), 412
ghrelin–brain interactions during fasting/caloric restriction, 411–412
direct binding of ghrelin to receptors (GHS-R), 411
gut peptides affecting appetite and satiety, 412t
in humans, 412
insulin–brain interactions during fasting/caloric restriction, 410–411
dopamine uptake transporter (DAT), 411
hyperphagia, 410
integration, neuroendocrine response to caloric deprivation and weight loss, 414–415
gastric O-acetyl transferase (GOAT), 415
induction of leptin receptor signaling, 415
leptin–brain interactions during fasting/caloric restriction, 406–410
nutrient sensing during fasting/caloric restriction, role of, 413–414
hypoglycemia, 413
long chain fatty acids (LCFA), 414
Neuroendocrine axis, 16
afferent arm, 16
hunger and peripheral metabolism, 16
central processing unit, 16–17
hypothalamus. see Hypothalamus
efferent arm, 17
dorsal motor nucleus of the vagus (DMV), 16f, 17, 18f, 380
locus coeruleus (LC), 17
Neuroendocrine control of energy balance, 15–26
amygdala and stress pathway of food intake, 24
central processing
anorexigenesis, POMC/α-MSH, and CART, 20
MCR and central neural integration, 22
neuroendocrine modulators of energy balance, 21–22
orexigenesis, NPY, and AgRP, 20–21
components of afferent system, 15–26
metabolic afferents controlling energy balance, 19–20
promoting hunger, 17
promoting satiety, 17–19
efferent system
efferent vagus and energy storage, 22–23
SNS and energy expenditure, 22
hedonic pathway of food reward, 23–24
homeostatic pathway of energy balance, 16f
leptin resistance, 25–26
negative feedback–response to caloric deprivation, 24–25
Neuropeptide Y (NPY) mRNA, 17, 20
NHLBI Growth and Health Study (NGHS), 255
Nicotinic acid, 191, 204
Niemann–Pick C1 gene (NPC1), 70
NIH Expert Panel recommendations, 180
NIH multi-disciplinary “consensus” conference of 1990, 358
Nocturnal polysomnography, 243
Non-alcoholic fatty liver disease (NAFLD), 82, 201
cryptogenic cirrhosis, 82
grading and staging
histological patterns, 210
NAFLD activity score (NAS), 211
necro-inflamatory activity, 211
scoring system, 211
_semiquantitative system, 211
three-tier grading system, 211
pediatric liver disease and liver damage, 82
Nonalcoholic steatohepatitis (NASH), 201
type-1 NASH, 204
type-2 NASH, 204
Non-esterified free fatty acids (NEFFA), 228
Non-exercise activity thermogenesis (NEAT), 138
children, 143–144
daily activity and school, 143
health and fiscal reasons, 143
physical activity, 143
school infrastructure and operational systems, 144
screen time in children, 143
EE, 140
doily labeled water method, 140
gas and/or heat exchange (room calorimetry), 140
TOTAL NEAT = TEE – (REE+TFE+EA T), 140
measurement of energy expenditure
basal metabolic rate and resting energy expenditure, 139
defining exercise and NEAT, 140
energy expenditure of physical activities, 139–140
NEAT energy expenditure, 140
thermic effect of food, 139
school, 144
variability, 141
role of occupation, 141
substantial, 141
in weight gain and obesity, 141–143
fat gain vs. changes in NEAT, 142f
human fat gain, 142
NEAT-o-type, 142
standing/walking time in children, 143
Non-HDL-C, 183
Non-responsive parenting, 428
Norepinephrine (NE), 21
Normal glucose tolerance (NGT), 256
Nucleus tractus solitarius (NTS), 17
Nutrient sensing during fasting/caloric restriction,
role of, 413–414
hypoglycemia, 413
long chain fatty acids (LCFA), 414
Nutrition
inadequate, 114
and physical activity knowledge and preferences, 304, 304f
_nutritional intervention studies in kindergarten, 304
_photo-pair food and exercise questionnaire, 304

“Obesogenic,” 424, 429
Obesity, definition, 425
Obesity prevention. see School and community based interventions
and treatment in children and adolescents. see Socio-cultural
context for obesity prevention and treatment in children and
adolescents
Obesity single gene disorders, 35
fast and ongoing strategies, 42f
Obesity-related glomerulopathy (ORG), 230, 232f, 233
idiopathic focal segmental glomerulosclerosis (FSGS), 230
microalbuminuria and glomerular filtration rate, 230
proteinuria, 230
Obesity-related lipid abnormalities
contribution of, 183
cornerstone of therapy for, 185
management of, 191
pathogenesis of, 177
primary therapy of, 185, 187
treatment of, 191
Obessive-compulsive disorders, 370
Obstructive sleep apnea (OSA), 228, 230, 242, 244, 247, 382, 390, 391t, 396
Obstructive sleep apnea syndrome (OSAS), 242–246
Octreotide, 18f, 53, 349, 383–385
Oil
-calorie intake, 6
consumption, 7f
edible, 6–7
fish, 175, 186
flax seed, 212
rapeseed or canola, 185
vegetable, 6
Oligo- or anovulation and hyperandrogenism,
combination of, 358
Oral contraceptives, 370
Orexins A and B, 21
Orlistat, 344–345, 351
development of cases of gall bladder disease, 345
effects in obese adolescents, 344–345
intestinal lipases, 344
malabsorption of vitamin K, effect of, 345
reduction of absorption of thyroxine/amiodarone and
cyclosporine, 345
therapy in adults, 344
Out-of-school environment, 144, 148
possible NEAT solutions, 148
Over-nutrition or fuel-mediated teratogenesis,
fetal, 114
Overweight, 4
adolescents, 4, 167
in American youth, 76
among women, 94
“at risk of overweight,” 76
childhood, 76
children’s daily practices, 282
eighth graders, 83
Hispanic children, 83
infants, 305
maternal, 94
non-overweight black and white youths, 83
or obese phenotype, 37
parent, 294
pediatric, 281
plus obesity, 4, 4f
predispose neonatal, 114
pre-pregnancy, 98
pre-pubertal children, 309
white youths, 83
Oxidative stress, impact of, 207–208
development and progression of NAFLD, 208
glutathione to oxidized glutathione (GSH/GSSG), 208
intracellular GSH/GSSG ratio to pathogenesis of NAFLD/NASH, 208
mitochondrial beta-oxidation, 208
mitochondrial hypertrophy, 208
reactive oxygen species (ROS), 208

Pancreatitis, 193, 341
Parathyroid hormone (PTH), 54, 160
Paraventricular nucleus (PVN), 16, 36f, 40–41, 58, 407, 414f
melanocortin (MC3R and MC4R), 408
Parental diabetes, 258–259
Parental involvement in family-based behavioral interventions, 289t
Parental obesity, 283, 395
grandparental obesity, 99
Passive overconsumption, 127
Pathobiological Determinants of Atherosclerosis in Youth (PDAY) Study, 267–270, 269t
Pediatric candidates identification for pharmacological therapy, 350
goals of any intervention or treatment, 350
Pediatric metabolic syndrome, definition, 257
Pediatric weight loss studies, meta-analyses of, 283t
Peers, role of, 428–429
Pentoxyfilline, 215
Peptide YY, 16f, 17, 77, 348–349, 396
Peptidergic systems, 410
Peroxisome proliferator-activated receptor (PPAR), 160, 191, 212, 214, 234
Personal leptin threshold, 24
Phosphotriesterase-related gene (PTER), 70
Physical activity(ies)
energy expenditure of, 139–140
standing energy expenditure, measuring, 140
steady-state energy expenditure, 140
and nutrition, knowledge and preferences of kindergarten children, 304
and obesity, 305–306
increased sedentary behaviors, 305
patterns of daily life, 305–306
and sedentary pursuits, 186–187
Physical environments, 426–428
home environments, 427
High 5 Intervention, 427
Project EAT, 427
resources and cues for physical activity or inactivity, 427
technology, media, and advertising environments, 427–428
neighborhood and community environments, 426
crime, 426
gender and ethnic differences, 426
school environments, 426–427
competitive foods and drinks, 427
food and activity options, 427
technology, media, and advertising environments, 427–428
effects of food advertising, 427
outdoor and in-school advertising, 427–428
Planet Health study, 432
Plant sterols/stanols, 186–187
Plasma lipid concentrations, classification of, 180t
Podocyte foot process effacement, 233
Policy-based interventions (local and national) to improve children’s nutrition
food policies, changes in, 452
default nutrition environment, impact of, 452
policy interventions to change food industry actions, 456–457
Council of Better Business Bureaus, 457
food marketing to youth, 456–457
Labeling Education and Nutrition (LEAN) Act, 456
Menu Education and Labeling (MEAL) Act, 456
menu labeling, 456
strengthening federal feeding programs, 452
child and adult care feeding program (CACFP), 452
national school breakfast and lunch programs, 454–456
women, infants, and children program (WIC), 453
Polycystic kidney disease, 55
adiposity in, 361–362
area of visceral and gluteal subcutaneous fat, 361f
central adiposity, 361
free testosterone index, 362
relationship between, 361
features, 357–358
management of adolescents with, 362–363
combined oral contraceptive pill (COCP), 363
cosmetic management, 363
cyproterone acetate, 363
hirsutism and acne, 363
goals of any intervention or treatment, 363
symptoms of androgen excess, 363
treatment with COCP and/or anti-androgens, 363
mechanism of insulin resistance in, 360–361
insulin metabolism, 361
inhibited insulin-stimulated tyrosine phosphorylation, 360
insulin-dependent glucose transporter GLUT4, 360–361
in ovary, 361
serine phosphorylation of IRS1, 360
metabolic dysfunction in, 359–360
dyslipidaemia, 359
insulin sensitivity and hyperinsulinemia, 359
Insulin sensitivity in women with oligomenorrhea and PCOS, 360f
Polygenes
for body weight, 66
inter-individual heterogeneity, 66
thrifty genotype hypothesis, 66
identified in genome-wide association studies, 69–70
Polygenic obesity, 65–71
candidate gene analysis and GWAS, 66
fat mass and obesity-associated gene (FTO), 68–69
insulin-induced gene 2 (INSIG2), 68
melanocortin-4 receptor gene (MC4R), 67–68
more polygenes identified in recent (GWAS), 69–70
polygenes for body weight, 66
Polysonomography, 242
nocturnal, 243
obstructive apnea and hypopnea, 242f
Postnatal pathogenesis, early
animal models, 107–108
antenatal growth restriction and postnatal growth acceleration, 107
antenatal metabolic programme, 107
highly palatable “cafeteria” diet, 107
postnatal leptin administration, 108
Potassium channel tetramerization domain (KCTD15), 70
Power of marketing, 445–446
Prader-Willi syndrome (PWS), 17, 47–54, 48t–51t, 57–58, 232, 245, 308, 349
clinical features, 52
diagnostic considerations, 52–53
etiology, 52
incidence, 52
overview, 47
treatment and future research, 53–54
Precocious adrenarche, 157f, 158–159, 348
Pre- and peri-pubertal obese children
normal or increased rates of growth and bone
maturation, 157f
background, 339–340
major metabolic complications, 339–340
powerful stimulants and appetite suppressants, 339
safer pharmacologic approaches, 340
chemical structures of anti-obesity agents, 342f
dynamics conditions, 168–169
beta cell dysfunction, 169
defect in beta cell function, 168
fasting levels of insulin or C-peptide, 169
IGT to T2DM, 168
at mid-puberty, 168
progression of glucose intolerance, 169f
effects of pharmacologic agents in obese subjects, 341–342
incretin mimetics and selective serotonin receptor agonists, 348–349
kind of medication, 351
length of treatment, 352
metformin, 345–348
adverse side effects, 348
and cardiovascular disease, 347
Diabetes Prevention Program, 346–347
effects of, 346–347
Indian Diabetes Prevention Program, 347
lactic acidosis, 348
reduction of hepatic glucose production, 346
orlistat, 344–345
development of cases of gall bladder disease, 345
effects of orlistat in obese adolescents, 344–345
intestinal lipases, 344
malabsorption of vitamin K, effect of, 345
reduction of absorption of thyroxine/amiodarone and
cyclosporine, 345
therapy in adults, 344
other drugs/hormones, 349
diethylpropion, 349
ephedrine, 349
mazindol, 349
phentermine, 349
rimonabant, 349
topiramate, 349
pediatric candidates identification for pharmacological
therapy, 350
goals of any intervention or treatment, 302
rationale for pharmacotherapy, 340
intensive lifestyle counseling, 341
limits of lifestyle intervention, 340
long-term risks of T2D, 341
prevalence of T2D, 341
progression to glucose intolerance, 341
time commitments and costs of lifestyle changes, 340
sibutramine, 342–344
appetite reduction and increase satiety, 342
brief lifestyle intervention, 343
effects of sibutramine in obese adolescents, 344
factors in adults predicting weight loss, 343
timing of intervention with pharmacotherapy and bariatric
surgery, 350–351, 351f
Pregnancy
consequences of exposure to diabetes during, 114–116. see also Gestational diabetes
early, 96
first half of, 106
index pregnancy, 116
last trimester of, 106
late, 105
low pre-pregnancy BMI, 96
maternal obesity during, 116
maternal pre-pregnancy, 98
maternal smoking in early, 96
or gestational diabetes, 93, 95–96, 103, 107, 113–119, 167, 259, 349, 352. see also Gestational diabetes
weight gain in overweight and obese women, guidelines, 95–96, 96t
Institute of Medicine (IOM), 95
Pregnancy Risk Assessment Monitoring System (PRAMS), 95
in young female post-operative RYGB patients, 397
Pregnancy Risk Assessment Monitoring System (PRAMS), 95
Pregravid obesity, 94
weight status, 94–95
BMI and odd ratios (OR), 94
BMI Z-score differences, 94
large-for-gestational-age (LGA) babies, 94
maternal obesity, 94
pregravid obesity, 94
Premature atherosclerotic cardiovascular disease, 179
Preventing Chronic Diseases, 439
Primary snoring, 242
Princeton Follow-up Study (PFS), 255, 258
Prohormone convertase, 35, 36f, 38
Prolactin, 156, 160, 362, 381
inhibitory factor, 381
Prolonged QT syndrome, 344
Pro-opiomelanocortin (POMC), 20, 36f, 38, 40, 56, 342, 406–408, 411, 414
3-Proprotein convertase 1 deficiency, 38
Proteimuria, 223, 230–233, 235
in ORG, 231
Pseudohypoparathyroidism, 49t, 54, 157
Psychiatric disorders, autism, 370
Psychiatric illness. see Atypical antipsychotics, major behavioral
disorder
Psychotropic medications, effects of. see Atypical antipsychotics, major behavioral disorder
PsycINFO, 316

Puberty
changes in body composition, 138
delayed, 37, 379
energy requirements, 138
with increased fat oxidation, 79
mid-puberty, 168
onset of, 159, 255, 348
precocious, 156–157, 381
reduced fat oxidation, 79
transient insulin resistance of, 163

Race. see also Racial differences, pathogenesis and complications
and cardiovascular disease, 82–83
aortic fatty streaks, 82
fatty streak, lesion of atherosclerosis, 82
and lipids, 82
ratio of LDL-C to HDL-C, 82
total serum cholesterol, 82
VLDL subclass, increased, 82
and metabolic syndrome, 83–85
characteristics of youths, 84
circulating biomarkers of endothelial dysfunction and IL-6, 85f
higher in overweight vs. non-overweight youths, 83
by quartiles of in vivo insulin sensitivity, 84f
glyceride concentrations, 83, 84f
and nonalcoholic fatty liver disease, 82
obesity, and genetics, 76–77
genome-wide admixture mapping scans, 77
ghrelin, hunger peptide, 77
insulin-induced gene 2 (INSIG2), 77
peptide YY (PYY), 77
single nucleotide polymorphism (SNP) genotypes, 77
and prediabetes and type 2 diabetes (T2DM), 83
and genetic/biological differential in risk of obesity
and genetics, 76–77
hyperinsulinemia/insulin resistance, 77–79
lipid metabolism, 79–80
treatment of obesity, 85

Rationale for pharmacotherapy, 340–341
intensive lifestyle counseling, 341
limits of lifestyle intervention, 340
long-term risks of T2D, 341
prevalence of T2D, 341
progression to glucose intolerance, 341
time commitments and costs of lifestyle changes, 340
Regulation of growth/thyroid function/sexual development and
calcium homeostasis, 155–161
calcium homeostasis, bone mineralization, and fractures, 160–161
effects of obesity on linear growth and bone maturation, 157–158
glucocorticoid production and turnover, 160
gonadal function and pubertal development, 159–160
metabolic and hormonal disorders causing excess fat deposition, 155–157
thyroid function, 158–159
Renal disease, pathogenesis of, 230–235
adiponectin is essential to normal podocyte function, 234f
clinical spectrum of ORG, 230
idiopathic FSGS, 230
microalbuminuria and glomerular filtration rate, 230
proteinuria, 230
hemodynamics, 230–231
Ang II action in obese subjects, 231
glomerular filtration rate (GFR), 230
metabolic/adipocyte factors, 233–235
morphology, 232
of ORG, 232f
proteinuria, 231
renin–angiotensin–aldosterone system (RAAS), 233
tubuloglomerular feedback (TGF), 231
Renal disease, pathophysiologic mechanisms, 232
adiponectin is essential to normal podocyte function, 234f
metabolic/adipocyte factors, 233–235
adipocytokines, relevance for damage, 235
levels of interleukin-6 (IL-6), rise of, 234
lipid disturbances, 235
SREBP-1, 235
renin–angiotensin–aldosterone system (RAAS), 233
aldosterone antagonism, 233
angiotensin-converting enzyme (ACE), 233
Renal hemodynamics, 229–231
Ang II action in obese subjects, 231
glomerular filtration rate (GFR), 230
Renal morphology, 232
morphologic changes of obesity-related glomerulopathy, 232f
Renin–angiotensin–aldosterone system (RAAS), 35, 225, 227–229, 233
Respiratory disturbance index (RDI), 244
Respiratory quotient (RQ), 17, 407
Resting energy expenditure (REE), 25, 53, 139–140, 155, 156t, 158, 305, 311, 379
Reverse cholesterol transport, 176
Reward
centers in mesolimbic system, 412
contingent, 287
family-based reward systems, 286, 289f
food, 26f, 37
hedonic reward system, 21, 23–24
include contracting and incentives, 287
self-, 372
Risk factors and atherosclerosis in youth
autopsy studies, 267–270
combined risk factor effects, 269–270
immutable risk factors, age/sex/race, 267–268
mutable risk factors, 268
obesity, 268
Pathobiological Determinants of Atherosclerosis in Youth (PDAY) Study, 267, 269t
cohort studies, 270
Rod–cone dystrophy, 50, 55–56
ROHHAD or ROHHADNET syndrome, 59
Rotterdam criteria, 358
Roux limb. see Long-limb gastric bypass
Roux-en-y gastric bypass (RYGB), 384, 390, 393f
“Save on sodium,” 447
Scavenger receptor type I, 176
Schizophrenia or schizoaffective disorders, 373
School environments, 428–428
competitive foods and drinks, 427
food and activity options, 426–427
lunch. see National school breakfast and lunch programs
possible NEAT solutions/infrastructural considerations, 146–148
adequate space, 147
allocating time in school week for physical activity, 147
building new schools, 148
leadership, 146–147
lesson organization to promote NEAT, 147
physical infrastructure, 148
recess, 147
school-based physical activity, 147–148
School and community based interventions
community measures, 329
interviewing school principals, 329
description of intervention trials, 316
discussion, 330–332
changing environment around schools/communities, 331
costs for future assessment of trials, 331
intervention cost summary, 331t
health outcomes, 328
intervention components inside/outside schools, 326–328
community organizations, 328
Integrated Health Promotion Plan, 328
Municipal Public Health Plan, 328
types of intervention strategies, 327t
Zuni Diabetes Prevention Program (ZDPP), 328
process evaluation, 328
psychosocial measures and behavioral impacts, 328
school–community intervention trials, 316
school–community programs for obesity prevention, articles of, 316
study design and results, school–community intervention trials, 321t–325t
study impact and target age summary, 330t
study results, 329–330
impact on BMI and anthropometric measures, 329
impact on community, 329–330
impact on psychosocial factors and behavior, 329
target populations, 326
theoretical and participatory approaches, 326
theory and intervention strategies used in ten school–community, 316, 317t–320t
School–community programs, 315–316, 330–332
School Feeding Programs, 3–4
School Nutrition Dietary Assessment-III study, 454
School Nutrition Policy Initiative (SNPI), 318t
School wellness policy (SWP), 455
Second messenger system (IRS2/PI3K), 19
Serotonin, 16f, 21, 85, 342–344, 348–349, 372–373, 383
or norepinephrine reuptake inhibitors, 383
Serotonin syndrome, 344, 373
Serum β-human chorionic gonadotropin, 394
Serum markers, 209
alcohol abuse, 209
alpha-anti-trypsin deficiency, 209
apolipoprotein A1
BARDA NAFLD score, 209
ELF (enhanced liver fibrosis) markers, 209
FibroMeter, Fibrotest/FibroSure, 209
NAFLD/NASH, factors, 209
serum levels of ALT, AST, and GGT, 209
Wilson’s disease, 209
Sex hormone binding globulin (SHBG), 159, 163, 207, 358
SH2B adaptor protein 1 (SH2B1), 70
Short sleep duration, definition, 99
Short stature, 52, 54, 56, 157
and decreased height velocity, risk factors, 157
Sibutramine, 342–344
appetite reduction and increase satiety, 342
brief lifestyle intervention, 343
diabetic adults predicting weight loss, 343
in obese adolescents, effects of, 344
Signal transduction and transcription (STAT-3), 19
“Simple steps to trim fat,” 447
Simvastatin, 189t–190t, 215, 267
Single-minded 1 transcription factor, 40
Drosophila Sim, 40
Prader–Willi-like (PWL) syndrome, 40
role of SIM1 haplo-insufficiency, 40
Single-minded homologue 1 (SIM1) deletion syndrome, 36f, 40, 48f–51f, 51t, 57–58, 407–408
clinical features, 57
diagnostic considerations, 58
etiology, 57–58
incidence, 57
overview, 57
treatment and future research, 58
Single-nucleotide polymorphisms (SNP), 58
Skeletal muscle
glucose uptake, 20, 346
of obese or type 2 diabetic adults, 80
oxidative metabolism, 80
post-prandial glucose uptake and utilization, 165
Sleep apnea in obesity, 242–249
Prader–Willi syndrome, 245
diagnostic criteria and obesity index, 244
tonsillar hypertrophy, 244
waist circumference or visceral fat content, 244
waist-to-hip ratio, 244f
Sleep deprivation, 249
Sleep duration and childhood obesity, 248–250
calorie intake and energy expenditure, 248
epidemiological evidence, 248–250
mechanisms linking short sleep duration to obesity, 248–249
appetite-regulating hormones, 249
possible mechanisms linking sleep restriction with obesity, 248f
sleep deprivation, 249
Sleep-disordered breathing (SDB), 241–248
apnea-hypopnea index, 243
complications, 245
common problems of SDB, 245
intermittent hypoxia, 245
metabolic and cardiovascular morbidity, 245
complications of, 245
common problems of SDB, 245
intermittent hypoxia, 245
metabolic and cardiovascular morbidity, 245
definition, 241–242
nocturnal polysomnography, 243
in obese children/adolescents, treatment of, 245–247
adenotonsillectomy, 246
continuous positive airway pressure (CPAP), 246
individualized, 246
overweight child with OSAS, 246f–247f
obesity as risk factor of sleep-disordered breathing in children, 243
pathogenesis of sleep apnea in obesity, 244–245
Prader–Willi syndrome, 245
respiratory disturbance index (RDI), 244
tonsillar hypertrophy, 244
waist circumference or visceral fat content, 244
waist-to hip ratio, 244f
polysomnography showing obstructive apnea and hypopnea, 242f
prevalence of OSAS, studies on, 243
treatment of SDB in obese children and adolescents, 245–247
adenotonsillectomy, 246
continuous positive airway pressure (CPAP), 246
individualized, 246
overweight child with OSAS, 246f–247f
Sleeve gastrectomy (SG), 390, 392
Small-for-gestational-age (SGA), 96–97, 105, 107, 109
Smoking, 96–97
effects of smoking cessation, 97
maternal smoking and adverse outcomes, 96
risks of LBW and SGA, 97
Snoring, 242–244, 247
SNURF-SNRPN gene, 52
Social cognitive theory, 284, 319t–320t
Social facilitation maintenance treatment (SFM), 291, 293f
Socio-cultural context for obesity prevention and treatment in children and adolescents
addressing socio-cultural and influences in interventions, 430–432
concepts of cultural targeting and cultural tailoring, 431
El Paso Child and Adolescent Trial for Cardiovascular Health, 431
five levels of influence, socio-ecological model, 430
GEMS studies, 432
Girls Health Enrichment Multi-site Studies (GEMS), 433
Hip Hop to Health program, 431
Planet Health study, 432
Trial of Adolescent Activity in Girls study (TAAG), 432
background, 424–426
Early Childhood Longitudinal Study, 424
obesity prevalence among US children by age, ethnicity, and gender, 425
obesity prevalence in children age 2–19 years by ethnicity and income level, 425
physical environments, 426–428
socio-cultural variation, 428–430
Sociocultural differences, 81
in Black adolescents, 81t
body image, 81
food promotion and distribution patterns, 81
Socio-cultural variation, 428–430
body image and weight concern, 430
unhealthy weight control behaviors, 430
caregiver, family, and peer influences, 428–429
intergenerational care giving, 428
involvement of non-parental or multiple caregivers, 428–429
non-responsive parenting, 428
prevalent maternal obesity, 429
role of peers, 428–429
social support and healthy role modeling from family, 429
food intake and physical activity, 429–430
fast foods and sugar-sweetened beverages, 429
National Heart, Lung, and Blood Growth and Health study, results, 430
infant feeding, 428
exclusive breastfeeding, 428
Supplemental Nutrition program for Women, Infants, and Children (WIC), 428
Socioeconomic status (SES), 81
higher SES, 81
lower SES environments, 81
parental SES, 81
Sonic Hedgehog (Shh) signaling, 56
Special Turku Coronary Risk Factor Intervention Project (STRIP), 185
Spironolactone, 363
Splicing, 19, 52
Stalk effect, 381
Stand-alone procedure, 390–391
Statin, 187, 191–193, 271
Steatosis, 204
hepatic, 24, 166, 204, 215, 341
macrovesicular steatosis, 204
pathologic steatosis, 204
severity, 204
Sterol regulatory element binding transcription factor-1 (SREBP-1), 235
Stimuli to eat
hunger/reward and stress, 17
Stimulus control, definition, 287
Stream of causation model, 439
Stress
cold/mental, 226
ischemic, 270
nitrosative/nitrative, 208
oxidative, 206–208, 213, 228–229, 234–235, 245
pathway of food intake and amygdala, 24
Studies to Treat or Prevent Pediatric Type 2 Diabetes (STOPP-T2D), 83
Study of Child and Adolescent Liver Epidemiology (SCALE), 203
Subtotal foot process effacement, 232f
Sugar, 81
beverages, 329
high sugar foods, 285, 323t, 453
simple, 212
sugary cereals, 285
sugary drinks, 128
-sweetened beverages (SSB), 81t, 128–129, 131f, 287, 291t, 429, 452
-sweetened drinks, 129, 186t
white, 323t
Supermarkets
global access to, 8
in Latin America, role of, 8
local large, 8
modern, 8
multinational/regional, 8
traditional, 8
“Supersize Me” (2004 documentary), 447
Switch study, 330
Sympathetic nervous system (SNS), 16f, 18f, 21–22, 54, 166, 225–228, 380, 407, 411
activity, 225–227
and energy expenditure, 22
hypofunction, 380
Syndromic obesity, 47–59, 48f–51f
Albright hereditary osteodystrophy, 54–55
Alstrom syndrome (AS), 56–57
Bardet–Biedel syndrome (BBS), 55–56
BDNF and tropomyosin-related kinase B, 58–59
Prader–Willi syndrome (PWS), 47–54
ROHHAD or ROHHADNET syndrome, 59
SIM-1 deletion syndrome, 57–58
Technology, media, and advertising environments, 427–428
effects of food advertising, 427
outdoor and in-school advertising, 427
Teenagers. see Adolescence
Teen-Longitudinal Assessment of Bariatric Surgery (Teen-LABS), 394
Testosterone, 57, 159, 259, 347, 358, 362–363
free testosterone index, 362
Thelarche, risks of precocious, 159
Thermic effect of food (TEF), 138–141
EE-REE vs. time, 139
measurement of REE, 139
Thiazolidinedione (TZD), 214, 346, 363, 370
“Think global, act local;” 446
ThirdWorld, 3
“Thrifty genotype” hypothesis, 66, 79
“Thrifty phenotype” hypothesis, 106
Thyroid
function, 158–159
effects of caloric excess and deprivation, 158
hyperleptinemia and nutrient-dependent conversion, 158f
leptin treatment, 158–159
plasma T4 and TSH levels, 158
thyroid hormone levels, 158
hormone regulation, effects of leptin on, 409–410
fasting or caloric restriction, 410–411
hypothalamic arcuate and ventromedial nuclei, 410
on hypothalamic-pituitary-thyroid axis, 410
regulation of EE by obligatory/adaptive thermogenesis, 409
TRH gene expression in hypophysiotropic neurons, 410
Tic disorders, 370
Toll-like receptors (TLR), 206, 215
Tonsillar hypertrophy, 244–247
Total daily energy expenditure (TDEE), components of, 138f
activity thermogenesis, 138f
basal metabolic rate, 138
thermic effect of food, 138
Traffic Light Program, 285
Training, chronic exercise
on food and macronutrient consumption, effects of, 309
and treatment of childhood obesity, 309–311
endurance type training program, 310
3-month multi-disciplinary program, 310f
nutritional–behavioral–physical activity intervention, 309
trans-fat, eliminating, 447
Transmembrane protein 18 (TMEM18), 70
Transnational corporations (TNC), 440, 444
Treatment Options for type 2 Diabetes in Adolescents and Youth (TODAY) study, 83
Trial of Adolescent Activity in Girls study (TAAG), 316, 325t, 326, 328–329, 330t, 331t, 432
Triglycerides, 80, 83–84, 166, 175–177, 179–181, 183–185, 187, 191, 212, 229, 257, 259, 395
dietary, 176
medium chain triglycerides (MCT), 98
serum, 177t, 343, 346–347, 349
Tropomyosin-related kinase B (TrkB), 36, 39, 58
Tubular fluid composition, 231
Tubuloglomerular feedback (TGF), 231
Type 2 diabetes mellitus (T2DM)
co-morbid problems, 294
development, rate of, 345, 350
early onset of, 119, 350
glucose metabolism, altered, 166
incidence of, 166–167
new-onset, 345
parental history of, 259
prediabetes, rates of, 83
pre-surgical, 395
prevention, 346
and race. see Race
rate of progression, 347
risk, 104, 106, 116–117, 170, 341
SEARCH for Diabetes in Youth Population Study, 83
STOPP-T2D, 83
TODAY study, 83
treatment of, 348, 373
Type-1 diabetes (mixed dyslipidemia), 185, 233
Uncoupling protein-1 (UCP-1), 22, 408
Undernutrition, 453
effects of maternal, 96
low-birth-weight (LBW) infants, 96
manifestations, 96
nutrient restriction, 96
short-term nutrient restriction, 96
small-for-gestational-age (SGA), 96
trimester nutrient restriction, 96
Underweight
  maternal, 94–95
  mothers, 95
Uniparental disomy (UPD), 52
United States Department of Agriculture (USDA), 441
US National Health and Nutrition Examination Survey (NHANES), 424
USDA farmer’s market nutrition program, 453

Vagal hyperfunction, 380–381
Vagus, 380–381, 409, 411
  afferent, 17
  dorsal motor nucleus of the vagus (DMV), 16f, 17, 18f–19f, 22–23, 380–381
  efferent, 22–23
Ventral tegmental area (VTA), 23, 26f, 411
Ventromedial hypothalamus (VMH), 16, 16f, 26f, 40, 58, 377
Very-low-density lipoproteins (VLDL), 176
  overproduction of, 177
Visceral fat, 164f
  content or waist circumference, 244
  increased accumulation, pathophysiology of, 164
  and insulin sensitivity, 164f, 170, 228
  MRI assessment in adults, 105
Visceral obesity, 80
Vitamin D
  1,25 diOH, 160
  deficiency, 49t, 55, 133, 160
  25OH vitamin D levels, 160, 345
Vitamin deficiency, 391–392, 396–397

Waist-to hip ratio, 243–244, 244f
Wall-less learning, 46
“Wasteful activity pattern,” 307
Weight gain
  abdominal, 160
  antipsychotic-induced, 374
  childhood, 94, 99, 311
  diet-induced, 108
  fat intake, 256
  gestational, 95–96
  higher rates of, 79, 81
  increased/decreased, 128
  infancy, 105
  maternal determinants, 93–99. see also Maternal determinants,
  weight gain/smoking/breastfeeding
  medication-induced, 372
  NEAT in, 141–143
  olanzapine-associated, 372
  pathogenesis of, 53
  persistent, 26
  population, 6
  post-operative, 246, 248
  pregnancy, 95–96, 98, 117
  pubertal, 348
  reduced, 69
  unhealthy, 316, 321t, 329
Weight loss maintenance treatment, family-based
  behavioral skills maintenance treatment (BSM), 291
  components of multi-level maintenance intervention, 292–294
  community level, 296
  enhanced social facilitation/ecological model, 291–292, 293f
  family-based approaches, 293
  individual/family level, 293
  peer/social level, 293
  expanding maintenance treatment, multi-level approach, 291–292
  socio-ecological model of weight regain, 291, 292f
  social facilitation maintenance treatment (SFM), 291
Weight loss surgery (WLS), 390, 394–395, 397
Weight regain
  neuroendocrine and metabolic adaptations, 405–415
  problem of, 290–292
  behavioral phenotypes/appetitive traits, 290
  new eating and activity behaviors, 290
White House Report On Childhood Obesity, 458, 461
Wilms’ tumor, aniridia, genitourinary anomalies, and mental retardation (WAGR) syndrome, 40, 58
Wilson’s disease, 202t, 206, 209
Women Infants and Children Program (WIC), 452–453
  reformulation of WIC food package, 453
USDA farmer’s market nutrition program, 453
World Trade Organization, 444

Zuni Diabetes Prevention Program (ZDPP), 320t, 325, 328–329