Index

A

Adipocyte, see Differentiating cell systems
AGT, see Alkylguanine-DNA alkyltransferase
Akt
high content screening assays for target validation
cell line selection, 368, 373
immunoassays of phosphorylated proteins, 372, 373–375
materials, 368
multiplexed apoptosis and proliferation assay, 373–375
reagent identification, 368–370, 373, 374
pathway profiling with translocation analysis, 411
signaling, 221
translocation inhibitor discovery with high content screening, 380, 383–386
Alkylguanine-DNA alkyltransferase (AGT), SNAP-tag, 181
Anaphase-promoting complex (APC), axonal growth role, 428
Angiogenesis, high content screening, 26–28
APC, see Anaphase-promoting complex
Apoptosis
Akt signaling pathway high content screening assay, 373–375
fluorescent probes, 239, 240
high content screening cancer studies of RNA interference knockdown effects on apoptosis and proliferation cells
seeding on plates, 355, 363
selection of cell lines, 354, 363
data analysis
apoptosis analysis, 362
proliferation analysis, 362, 363
image processing
apoptosis assay, 360–362, 364
proliferation assay, 362
imaging of plates, 356, 357, 359, 360
materials, 353, 354, 363
overview, 353
staining
bromodeoxyuridine, 357–359, 364
Hoechst 33342 counterstaining, 356
YO-PrO-1, 356, 363
transfection, 355, 356
retinal ganglion cells following optic nerve injury, 427, 428
Aptamers, fluorescent fixed end-point high content screening assays, 147
ArrayScan(r) VTI, features, 42, 52, 54
β-Arrestins, protein-fragment complementation assays for dynamics studies, 228–230
Artificial neural networks, see Machine learning
Axiovision, image analysis, 64

B

BacMam, cell engineering, 30
BDNF, see Brain-derived neurotrophic factor
Biocarta, pathway database, 321
Bioinformatics, see Informatics, high content screening
Brain-derived neurotrophic factor (BDNF), axonal growth role, 428
Bromodeoxyuridine, high content screening cancer studies of RNA interference knockdown effects on apoptosis and proliferation cells
seeding on plates, 355, 363
selection of cell lines, 354, 363
data analysis
 apoptosis analysis, 362
 proliferation analysis, 362, 363
image processing
 apoptosis assay, 360–362, 364
 proliferation assay, 362
imaging of plates, 356, 357, 359, 360
materials, 353, 354, 363
overview, 353
staining
 bromodeoxyuridine, 357–359, 364
 Hoechst 33342 counterstaining, 356
 YO-PrO-1, 356, 363
transfection, 355, 356

C
Caged compounds
 advantages, 253, 254
 batch transfection, 256
cage requirements, 253
delivery to cells, 254, 256
delivery to cells, 254, 256
elements and properties, 254–256
small interfering RNA and gene
 knockdown experiments
glycerophosphate
 dehydrogenase knockdown, 258, 259
light–dosage working curve
 generation, 258, 261
materials, 257
photoactivation, 259–261
rationale, 256
reagent preparation, 257, 258, 260, 261
transfection, 258, 261
transfection, 258, 261
UCOM instrumentation for high content
screening, 254
Calcium flux
 fluorescent probes
 protein sensors, 236, 237, 235, 236
 small molecule probes, 235, 236
mechanisms, 235
CARD, see Catalyzed reporter enzyme
deposition
Catalyzed reporter enzyme deposition
 (CARD), fixed end-point high
 content screening assays, 147
CellCard™
 antiproliferative compound assessment in
 several cell types simultaneously
 carrier mixing and microtiter plate
 dispensing, 131, 132
 CellCard preparation, 130, 131, 137
 compound addition, 132
 examples, 133, 134, 136, 137
 experimental design, 130, 131
 image analysis and data visualization,
 133
 materials, 130
 scanning, 132, 133
 staining, 132, 137
tissue culture, 131
 overview of system, 129, 130
Cell counting, fluorescence assays, 240, 241
Cell Lab IC 100, features, 42, 52
Cellome, definition, 3
Cellomics
 definition, 4
 overview, 5, 6
Cell plating, automated
 materials, 109
 plating, 111, 117
 single cell suspension generation, 111,
 117
CellProfiler, image processing and analysis,
 37
CellwoRx, features, 42, 54
Chemical complementation assay, see
 Protein phosphatases
Chemotaxis
 automated assay
 chemokinesis assay, 111,
 112, 118
 materials, 110, 111
 single cell kinetic and
 immunocytochemical assay, 114–
 119
 directed algorithm for analysis,
 76, 77
Coimmunoprecipitation, protein–protein
interactions, 322
Index

Collagen thin film
 alkanethiol-coated support preparation, 102, 103
 automated quantitative microscopy of cells, 99, 104–106
 cells
 culture and specimen preparation, 103
 fixation and staining
 morphology analysis, 104
 green fluorescent protein quantification, 104, 106
 film preparation and characterization, 103, 105, 106
 materials for quantitative measurements of cells, 101, 102
 reference extracellular matrix application, 96–99
 variability within cell populations, 99, 100

Computer vision
 image analysis workflow, 84, 85
 limitations of conventional imaging systems, 85–87

Cytotoxicity
 assay limitations and effective criteria, 419–421
 cellular functions in assessment, 421, 422
 drug discovery
 assay design, 423
 implementation of cytotoxicity assessment, 422, 423
 importance of cytotoxicity assessment, 415, 416
 genotoxicity, high content screening assays, 381, 384–386
 hepatotoxicity quad probe assay, 424
 mechanisms
 calcium dyshomeostasis, 419
 cell membrane effects and transport, 416
 lysosomal effects and autophagy, 417
 mitochondrial effects and energy homeostasis, 416, 417
 nuclear effects and cell proliferation, 416
 oxidative stress, 416–418, 419
 necrosis
 conventional assays, 423
 high content screening, 423, 424

D
 Data mining, see Informatics, high content screening
 Data visualization
 combining data, 307, 308
 data sources, 302, 303
 data transformation, 303–307
 filtering, 311
 interactive visualization, 311
 overview, 301, 302, 312
 prospects, 311, 312
 related data visualization, 310
 spatial and temporal views, 309
 tools, 275, 276
 well- and plate-level information, 309, 310

Differentiating cell systems
 adipocytes
 preadipocyte culture, 122, 123, 126, 127
 triglyceride accumulation assay, 123, 124, 127
 applications, 121, 122
 materials, 122, 125, 126
 osteoclasts
 precursor culture, 124, 127
 resorption assay, 125, 127

Directed algorithms
 associated target identification and measurement, 70, 71
 automated directed algorithm analysis steps, 66
 BioApplications, 64
 developer tools versus specific algorithms, 65, 66
 high content screening problems
 categorization of problems
 cell cycle, 78
 cell health and toxicity, 79
 cell movement, 76, 77
 cell size and shape changes, 75, 76
 colocalization, 74, 75
 counting objects, 73, 74
 interconnected tubular object analysis, 76
 intracellular intensity changes, 72, 73
 neurite outgrowth, 78
 overview, 72, 73
Index

receptor internalization and translocation, 77, 78
spot analysis, 74
translocation, 77
practical utilization of directed algorithms, 79, 80
raw measurement analysis, 71, 72
primary objects identification, 68
property measurements, 68
Discovery-1, features, 42, 54, 55
Dual-specificity phosphatases, see Protein phosphatases

E–F
Extracellular matrix protein, see Collagen thin film
FIAsH applications, 210, 211, 218, 219
protein conformation studies, 210, 218
protein labeling in live cells
background staining reduction/suppression, 216–218
expression, 214, 215, 219
FIAsH loading and staining, 215, 216, 219
fluorescence microscopy, 218, 219
materials, 211, 212
tetracysteine-tagged protein generation, 212, 213, 218
protein tagging, 180, 181
tetracysteine binding and fluorescence induction, 210
Flash photolysis, see Caged compounds
Flow cytometry historical perspective, 6–8
standards, 241
Fluorescence microscopy autofocus and system performance, 48, 49
automation, 11, 64
cameras, 49
confocal versus wide-field systems, 53, 54
FIAsH in living cells, 218, 219
historical perspective, 6–11
immunofluorescence of small interfering RNA treated cells, 249–251
lifetime imaging, 59
light sources, 45, 46
multiwavelength imaging, 45, 59
numerical aperture of objectives, 47, 48
optical performance parameters, 46, 47
standards, 241
Fluorescence resonance energy transfer (FRET), green fluorescent protein applications, 150
Fluorescent probes, see also specific probes brightness, 144
cellular manipulation combination with high content screening, 155
cellular probes, 238–241
classification, 143, 144
collection modalities and options, 234, 235
fixed end-point high content screening reagents
aptamers, 147
catalyzed reporter enzyme deposition, 147
immunoreagents, 145, 146
molecular beacons, 147
quantum dots, 146, 147
four-color multiplexed immunoassay design
cell plating and incubation, 190, 191
materials, 190, 191
overview, 189, 190
plate reading and interpretation, 191
staining, 190–192
ion indicators, 235–237, 239
live cell and kinetic high content screening reagents
fluorescent analog cytochemistry applications, 149
cell loading, 149, 150
green fluorescent protein fusion proteins, 150
living cell probe capture, 150
overview, 147, 148
fluorescent protein biosensors engineering, 152, 153

RAW_TEXT_END
fluorescence resonance energy transfer, 153, 154
pH indicators, 154
prospects, 154
translocation studies, 154
physiological indicator dyes, 147, 148
positional biosensors, 150–152
live cell experiment design, 234, 235
nonspecific binding, 144
perturbing reactions, 145
photobleaching, 144
phototoxicity, 144
prospects, 155, 156
stability, 144
standards, 241, 242
vendors, 233, 234
voltage-sensing dyes, 237
Forkhead assay, principles, 402, 404, 411
FRET, see Fluorescence resonance energy transfer

G
GAPDH, see Glyceraldehyde-3-phosphate dehydrogenase
Gene MicroArray Pathway Profiler, pathway database, 321
Genotoxicity, see Cytotoxicity
GFP, see Green fluorescent protein
Glyceraldehyde-3-phosphate dehydrogenase (GAPDH), caged small interfering RNA knockdown, 258, 259
GPCRs, see G protein-coupled receptors
G protein-coupled receptors (GPCRs)
activation, 20
high content screening of orphan receptors, 21, 22, 30
protein-fragment complementation assays for dynamics studies, 228–230
Green fluorescent protein (GFP) biosensors
engineering, 152, 153
fluorescence resonance energy transfer, 153, 154
pH indicators, 154
prospects, 154
translocation studies, 154, 402

cell engineering for fusion protein expression
cell line selection, 171
cell selection for expression, 177, 178
design elements, 168, 170
fluorescent protein variant selection, 172
stable transfectant validation, 178
target protein selection, 168, 170, 171
vector design, 172, 174, 176
collagen thin film cell fixation and staining for automated microscopy, 104, 106
expression effects on cell cycle, 178–180
fluorescent analog cytochemistry, 150
high content screening application overview, 167, 168
history of research use, 65
limitations, 209
prospects, 180, 181
variants and properties, 165, 166

H
HaloTag™
advantages, 204, 205
cell culture, transfection, and labeling with ligands, 201, 205
cell-based applications, 197
expression vectors, 198–201
fixation and immunocytochemistry, 201
fluorescence detection, 203, 204
hydrolase reporter, 195, 196, 205, 206
ligand structures, 195, 196
materials, 198
protein tagging overview, 181
Western blot analysis, 204
HCS, see High content screening
High content screening (HCS) components, 11–13, 44
data characteristics, 270, 271, 279, 280
definition, 4
drug discovery, 380
fixed end point versus live cell assays, 13, 14, 54, 55
historical perspective, 6–11, 41, 143
informatics, see Informatics, high content screening
installation and operation considerations, 56, 57
market and commercial suppliers, 43
overview, 4, 5, 379
prospects, 14–16, 31
spatial resolution, 34, 44
throughput, 43, 56
time-resolved assays, 35, 36
whole-tissue assays, 36
HPRD, see Human Protein Reference Database
Human Protein Reference Database (HPRD), protein–protein interactions, 323

I
Image analysis, see also Computer vision; Machine learning; Software
data mining, 52, 53
data storage and management, 53
ImageExpress 5000A, features, 42
ImageExpress Micro, features, 42, 49, 54
Imaging, see Fluorescence microscopy; Image analysis; Software
ImageJ, image processing and analysis, 37
ImagePro, image analysis, 50, 64
InCell 1000, features, 42, 54, 55
InCell 3000, features, 42, 45, 55, 56
Informatics, high content screening
 data characteristics, 270, 271, 279, 280
data integration with other systems
 application/software integration, 278, 279
database integration/federation, 289
data-level integration, 278
overview, 276
data management, 275
data mining, 276
database structure, 272
functional workflow, 294, 295
hardware and network considerations, 273–275
high throughput screening, 285–289, 291
implementation decisions, 285
information explosion, 293, 294
information retrieval challenges, 294
metadata structure, 272
organizational structure
 championing research needs, 283
core activities, 283, 284
noncore activities, 284
partnering, 282
results of research organization/information technology partnering, 284
trust building, 283
overview, 269, 270
prospects, 279, 291
research needs for computing, 281, 282
system architecture, 272, 273
Velocity for Life Sciences™, see Velocity for Life Sciences™ visualization, see Data visualization
volume of data, 270, 271
iPath, pathway database, 322

J–M
JNK, see Jun N-terminal kinase
Jun N-terminal kinase (JNK), inhibitor
discovery with high content screening, 380–382
KEGG, pathway database, 321
KineticScan(r), features, 42
Kolmogorov–Smimov statistics, high content single-cell chemical complementation assay analysis, 395
Lead candidates, high content screening, 22, 24–26
Machine learning
custom solutions, 92–94
imaging systems
classification, 87–89
image analysis workflow, 87
segmentation, 89–91
limitations of conventional imaging systems, 85–87
overview, 85
training techniques, 91–93
MetaCore
architecture
Index

block, 327, 328
component, 327
effect, 327
overview, 326
transformation, 327
content, 326
experimental data mapping on networks, 330
genomics data mapping
signature networks for radiosensitive cervical cancer patients, 340
Tat-upregulated genes at G1/S phase, 336, 339
high content screening data mapping on networks, 336
metabonomics data mapping, 336
network algorithm and filters
analyze networks algorithm, 329
analyze transcriptional regulation algorithm, 329
auto expand algorithm, 329
direct interactions algorithm, 329
expand by one interaction algorithm, 330
overview, 328, 329
self regulations algorithm, 329
shortest paths algorithm, 329
network statistical analysis, 330, 332
overview, 345, 346
pathway database, 321, 322
proteomics data mapping,
340–342, 345
p-value and statistical significance evaluation, 332, 333
MetaDrug
applications, 334–336
overview of features, 334, 345, 346
prospects, 334
MetaMorph, image analysis, 50
Mitogen-activated kinase phosphatases, see Protein phosphatases
Molecular beacons, fixed end-point high content screening assays, 147
Morphology profiling, subpopulation dynamics, 35

N
Natural language processing (NLP), data mining, 322
Necrosis, see Cytotoxicity
Networks
definition, 320
information flow in cells, 320, 321
MetaCore, see MetaCore
theory and tools for analysis,
323–326
Neural networks, see Machine learning
Neurite outgrowth
activator discovery with high content screening, 381, 384, 386
automated assay
addition of analytes, 112, 118
fixation and labeling, 113, 114, 118
imaging of plates, 114
materials, 110
directed algorithm for analysis, 78
retinal ganglion cell growth promoter screening
cell purification and culture, 431
image analysis, 432
materials, 430
principles, 429–431
staining and imaging, 431, 432
statistical analysis, 432
validation of hits, 432, 433
NLP, see Natural language processing
N-tier architecture, informatics systems, 273
Nuclear translocation, see Protein translocation

O–P
Opera, features, 42, 45, 54, 56
Organelles, fluorescent probes, 239
Osteoclast, see Differentiating cell systems
p53, Hdm2 interaction assay, 404
PathArt, features, 334
Pathway

databases, 320–323
definition, 320
high content translocation assays, see Protein translocation
information flow in cells, 320, 321
profiling in drug discovery, 402
PathwayAnalysis, features, 333
Pathway HT, features, 42, 54–56
Pathway Studio, features, 334
PCA, see Protein-fragment complementation assay
Phosphatases, see Protein phosphatases
Phosphatidylinositol-3-kinase (PI3K), translocation analysis of pathway, 411
PI3K, see Phosphatidylinositol-3-kinase
PKA, see Protein kinase A
PKC, see Protein kinase C
Plating, see Cell plating, automated
Potassium, fluorescent probes, 239
Protein kinase A (PKA), fluorescent cyclic AMP biosensors, 150–152
Protein kinase C (PKC), translocation inhibitor discovery with high content screening, 380, 383, 384, 386
Protein Lounge, pathway database, 321
Protein phosphatases
dual-specificity phosphatases, 389
high content single-cell chemical complementation assay
cell transfection, treatment, and processing, 392–394, 399
data set evaluation
archived image inspection, 396, 397
false-positives, 395, 396
Kolmogorov–Smimov statistics, 395
software, 394, 395, 399
subpopulation analysis, 395, 399
image acquisition and analysis, 394
materials, 391, 392
principles, 390
prospects, 398, 399
secondary assays, 397, 398
mitogen-activated kinase phosphatases, 389
Protein translocation
directed algorithms, 77
fluorescent proteins, 154, 401, 402
high content screening
nuclear translocation
Forkhead assay, 402, 404, 411
materials, 380
transcription factor activation, 382, 383, 385, 386
pathway profiling
Akt pathway, 411
cell lines, 404, 405, 411, 412
clone testing, 408
expression vectors, 405, 406
fluorescent protein selection and orientation, 405, 406
optimization of assay, 408, 409
overview, 401, 402
pathway function assessment, 410–413
phosphatidylinositol-3-kinase pathway, 411
target selection, 405
target validation, 409, 410
transfectant selection and testing, 407, 408
transfection, 406, 407
plasma membrane translocation
GLUT4 assay, 404
materials, 380
p53-Hdm2 assay, 404
protein kinase C/Akt assay, 383–386
Protein-fragment complementation assay (PCA)
drug discovery advantages, 226
drug effect studies, 230
pharmacological profiling, 230, 231
principles, 223–225
protein complexes
drug interactions, 221–223
dynamics studies, 228–230
localization and quantification in cells, 223–225
subcellular localization of protein complexes, 226, 228
p-value, network statistical significance evaluation, 332, 333

Q–R
Quantum dots, fixed end-point high content screening assays, 146, 147
Raf, protein-fragment complementation assays for dynamics studies, 229, 230
Index

Ras, protein-fragment complementation assays for dynamics studies, 229, 230
ReAsH, principles, 210
Reference standards, high content screening, 57, 58
Retinal ganglion cell (RGC) apoptosis following optic nerve injury, 427, 428
axonal growth factors and identification, 428, 429, 433
neurite outgrowth promoter screening cell purification and culture, 431
image analysis, 432
materials, 430
principles, 429–431
staining and imaging, 431, 432
statistical analysis, 432
validation of hits, 432, 433
pathology, 427
RGC, see Retinal ganglion cell
RNA interference, see also Small interfering RNA
genomic screens for gene target identification, 245
high content screening cancer studies of gene knockdown effects on apoptosis and proliferation cells seeding on plates, 355, 363
selection of cell lines, 354, 363
data analysis apoptosis analysis, 362
proliferation analysis, 362, 363
image processing apoptosis assay, 360–362, 364
proliferation assay, 362
imaging of plates, 356, 357, 359, 360
materials, 353, 354, 363
overview, 353
staining bromodeoxyuridine, 357–359, 364
Hoechst 33342 counterstaining, 356
YO-PrO-1, 356, 363
transfection, 355, 356
immunofluorescence study validation cell plating for transfection, 246, 247
immunofluorescence of small interfering RNA treated cells, 249–251
materials, 246, 251
overview, 245, 246
siIMPORTERTM transfection reagent, 247, 251
small interfering RNA expression plasmids oligonucleotide design and cloning, 248
transfection, 248
transfection complex, 248, 251
transfection with small interfering RNA duplexes, 247, 248
physiological functions, 245
sample manipulation, 36
target validation, 409, 410
siRNA, see Small interfering RNA
Small interfering RNA (siRNA), see also RNA interference
caged small interfering RNA and gene knockdown experiments
glyceraldehyde-3-phosphate dehydrogenase knockdown, 258, 259
light–dosage working curve generation, 258, 261
materials, 257
photoactivation, 259–261
rationale, 256
reagent preparation, 257, 258, 260, 261
transfection, 258, 261
transfection, 258, 261
profiling, 28
SNAP-tag, protein tagging, 181
Sodium, fluorescent probes, 239
Software commercial sources by application, 50–52
customization, 28–30, 92–94
directed algorithms, see Directed algorithms
imaging, see also Computer vision acquisition and control, 50
analysis, 37, 50–52
integration between systems, 278, 279
machine learning, see Machine learning prospects for automated assay development, 59
statistical analysis, 394, 399
Systems cell biology
definition, 4
levels, 5

T
Target validation
Akt signaling pathway high content screening assays
cell line selection, 368, 373
immunoassays of phosphorylated proteins, 372, 373–375
materials, 368
multiplexed apoptosis and proliferation assay, 373–375
reagent identification, 368–370, 373, 374
directed algorithms, 70, 71
overview of process, 367

Tetracysteine, see FlAsH
Transcription factors, high content screening, 26, 402, 404, 411

V–Y
Velocity for Life Sciences™ (VVLS)
advantages, 300
content integration, 296, 297
document clustering, 296
intelligent query routing, 296–300
Visualization, see Data visualization
Voltage-sensing dyes, fluorescent probes, 236, 237
VVLS, see Velocity for Life Sciences™
Western blot
HaloTag protein fusions, 204
target validation, 409, 410
Yeast, high content screening applications, 33, 34
Yeast two-hybrid system, protein–protein interactions, 322