Index

A
Abbreviated New Drug Application (ANDA), 316–317, 321, 339, 340
Abciximab (RheoPro®), 227
Abicipar pegol, 242
Accelerated approval, 362, 363, 365
Acid alpha glucosidase (GAA), 368, 369
ERT, 27
glycosylated protein, 27
MPR proteins, 25–26
M6P tag, 25
rhGAA efficacy (see Recombinant human GAA (rhGAA))
Acid maltase deficiency. See Pompe disease
Acute lymphoblastic leukemia (ALL), 244
Acute myeloid leukemia (AML), 244, 352
Acylation, 193
Adalimumab (Humira®), 222
Adnectin pharmacokinetic enhancer (AdPKE), 234
Ado-Trastuzumab Emtansine, 223
Albuferon, 278, 279
Albugranin, 278
Albumin-binding domain (ABD), 235, 237, 280–281
α1-antitrypsin (A1AT), 287
Alternative protein scaffolds, 223
Antibody-dependent cell-mediated cytotoxicity (ADCC), 205, 206, 208, 209, 214, 222, 275, 283
Antibody-dependent cellular phagocytosis (ADCP), 206
Antibody engineering approaches
Fab region, 125–126
Fc and hinge regions, 126
modifications, 124–125
Antibody-like molecules
advantages, 203
bispecific targeting, 209–210
clinically-tested bispecific format, 210–212
constant region mediates, 206–207
conventional monoclonal antibodies, 203
engineering of, 204–205
growth-factor induced oncogenic signaling
EGFR blockers, 212–213
ErbB2 blockers, 213
HGFR/c-Met, 215
MM-141 case study, 213–214
VEGF blockers, 212
immune effector function
glycoengineering, 209
isotype optimization, 207–208
targeted mutagenesis, 208–209
immunoglobulin G structure, 205–206
Anticalins
β-barrel, 238
BBP scaffold, 240
Aβ peptide, 241
disease-relevant protein antigens, 239
ED-B positive cells, 240
HB, 238
immunotherapy of cancer, 240
Lcn1 and Lcn2, 239
Lcn1/Tl scaffold, 240
lipocalins, 237
PRS-050, 240
T-cell response, 239
VEGF-A blocks, 240
Anti-drug antibodies (ADA), 51–53, 63–66, 69, 72, 73, 234, 240, 252, 282, 284

© American Association of Pharmaceutical Scientists 2015
Antigen-binding fragments, 223
Antigen-specific VNAR fragments, 230
Anti-HER2 Affibodies, 236
AQB-101, 295–296
Aranesp™ (Amgen), 294, 296, 339, 345, 350
Aurograb, 226
Authorized generic (AG) manufacturers, 316–317

B
Balugrastim, 347
BBB. See Blood–brain barrier (BBB)
Bence Jones homo-dimers, 228
Bence-Jones proteins, 230
Best Pharmaceuticals for Children Act (BPCA), 364–367
Biologics License Application (BLA), 347, 348
Biopharmaceuticals, 322–323, 343–344
Biotechnology Industry Organization (BIO), 327
BiTE®, 243–244
Blinatumomab, 244, 245, 249
Blood–brain barrier (BBB)
disruption, 45
inborn errors of metabolism, 41, 42
intra-thecal enzyme delivery, 42–44
MPSI (see Mucopolysaccharidosis type I (MPSI))
MPSII (see Mucopolysaccharidosis type II (MPSII))
MTH technology
CMT and RMT systems, 45
insulin/Tf, 45
MAb-enzyme fusion protein, 47–48, 59
peptides, 45
peptidomimetic monoclonal antibodies, 45
TH fusion protein, 46–47
nanoparticles, 45
Breakthrough therapy designation, 364

C
Campylobacter jejuni, 287
Caplacizumab, 229
Cation-dependent MPR (CD-MPR), 25–26
Cation-independent MPR (CI-MPR), 25–26
CD4 immunoadhesin, 271
Cerebrospinal fluid (CSF) compartment, 42–44
Certolizumab pegol, 228
Charge variants, 107, 111, 166
Cimzia, 228, 246, 283
Committee for Medicinal Products for Human Use (CHMP)
EMA (see European Medicines Agency (EMA))
follitropin alfa (injection), 354
infliximab (remicade), 353–354
Complementarity-determining regions (CDRs), 222, 224, 227
Complement-dependent cytotoxicity (CDC), 207, 208, 214, 222, 275, 283
Critical product quality attribute (CQA), 138
C-terminal peptide (CTP), 296
Current good manufacturing practices (cGMP), 316

D
Daclizumab, 222
Daily average consumption (DACON), 329
Darleukin, 226
Deamidation
charge variants, 107
evidence, 110–111
extrinsic factors, 109
intrinsic factors, 108–109
mechanism, 107–108
Defined Daily Dosage (DDD), 328–333
Dermatomyositis, 70
Designed ankyrin repeat protein (DARPin)
scaffold, 232, 241–243, 253
Digoxigenin-binding Anticalin (DigiCal), 240
Diketopiperazine (DKP) formation, 115, 116
Disulfide scrambling/rearrangement
cell-based binding assays and ELISA, 121
dimers/oligomers, 121
extrinsic factors, 120–121
Fab-arm exchange, 122–123
IgG2-A and IgG2-B isoforms, 122
intrinsic factors, 120
mechanism, 119
thioether linkages, 121–122
trisulfide variants, 121
Disulfide-stabilized Fv fragments (dsFv), 225
Domain antibodies (dAbs), 229
Dual-affinity re-targeting (DART®) protein, 244–245

E
Efungumab (Mycograb™), 226
Elastin-like polypeptides (ELPs), 293–294
Elonva®, 296
EMA. See European Medicines Agency (EMA)
Enbrel™, 345, 346
Endosomal recycling, 271
Enzyme replacement therapy (ERT) factors, 9, 13
LSD
 Fabry disease, 13
 Gaucher disease, 13, 14
 IPD, 13–14, 16
 MPS, 13
 types, 9–12
revolutionized treatment, 9–10
and rhGAA efficacy (see Recombinant human GAA (rhGAA))
Epi-3D, 68
EpiSweep, 68
Epogen/Procrit, 349, 350
ErepoXen®, 287
ERT. See Enzyme replacement therapy (ERT)
Erythropoietin (EPO), 274–275
Erythropoietin stimulating agent (ESA), 350
EUROCALIN Consortium, 241
European Medicines Agency (EMA), 325–326
 BIO, 327
 DDD, 327–329
erythropoietin alpha, 330, 331
extended units, 329
G-CSFs, 324, 331
guidelines, 323, 324
human follicle stimulating hormone (FSH), 324
IMS Health DACON data, 329
Inflectra, 324
phase II or phase III clinical trial, 327
Remsima, 324
somatropins, 324, 330, 331
standard units, 329
tumor necrosis factor alpha (TNF-α), 324
Extra-domain B (ED-B), 226, 240
G
GAA. See Acid alpha glucosidase (GAA)
Gaucher disease, 3–7, 9, 10, 13
G-CSF. See Granulocyte colony-stimulating factor (G-CSF)
Genzyme Corporation, 7
Glycogen storage disorder type II (GSD II). See Pompe disease
GlycoPolymer technology, 295
Granix™, 347
H
Hatch-Waxman legislation, 316, 319
Heparosan, 287–289
Hepatocyte growth factor receptor (HGF/c-Met), 211, 215, 235
HESylation®, 288, 297
Histamine-binding protein (HBP), 238
Human serum albumin (HSA)
 ABD, 280–281
 ABD034, 281
 acidic protein, 277
 advantage, 280
 AlbudAb™, 282
 Albugranin and Albuferon, 278
 Albuviride, 279
 CD4, 278
 endogenous and exogenous ligands, 281
 FcRn interaction, 277
 immunogenicity, 279
 isoelectric point, 277
 Liraglutide, 280
 PC-DAC™, 279
 pharmaceutically relevant proteins, 278
 yeast-based expression systems, 278
Hunter’s syndrome. See Mucopolysaccharidosis type II (MPSII)
Hydolytic reactions
 deamidation
 charge variants, 107
 evidence, 110–111
 extrinsic factors, 109
 intrinsic factors, 108–109
 mechanism, 107–108
 disulfide rearrangement
 cell-based binding assays and ELISA, 121
 dimers/oligomers, 121
 extrinsic factors, 120–121
 Fab-arm exchange, 122–123
Hydrolytic reactions (cont.)
 IgG2-A and IgG2-B isoforms, 122
 intrinsic factors, 120
 mechanism, 119
 thioether linkages, 121–122
 trisulfide variants, 121
Fc N-glycan hydrolysis
 evidence, 114
 extrinsic factors, 113–114
 intrinsic factors, 113
 mechanism, 111–112
mitigating effects
 antibody engineering approaches, 124–126
 antibody formulation, 124
peptide bond hydrolysis
 β-elimination mediated hydrolysis, 115, 116
 clipping, 115
 direct hydrolysis, 115, 116
 DKP formulation, 115, 116
 evidence, 118
 extrinsic factors, 117
 intrinsic factors, 117
Hydroxyethyl starch (HES), 287–288, 298

I
 Ig novel antigen receptors (IgNARs), 230
 Immuna® screening platform, 225
 Immune Thrombocytopenic Purpura (ITP), 70
 Immunogenicity, 339–342
 antigen specific immune tolerance
 induction, 69–70
 deimmunization, 66–69
 drug-induced immunosuppression, 66
 Pompe disease, 65
 in protein therapeutics, 63–64
 Tregitopes
 characteristics, 70
 immunosuppressive effects, 70–71
 IVIG, 70
 mechanism of action, 71–72
 in silico immunogenicity score, 70
 Tregitope-mediated tolerance
 induction, 72
 Infantile Pompe disease (IPD), 13–14, 16
 Infliximab (Remicade), 353–354
 International Non-proprietary Name (INN), 340–341

K
 Kawasaki syndrome (KS), 70
 Kineret®, 288

L
 Linear solenoid, 241
 Lipinski rule of five, 322
 Lipocalins, 237
 Loop-DARPinS, 253
 Loss of exclusivity (LOE), 316, 318, 321
 Lysosomal storage disease (LSD)
 Fabry disease, 13
 Gaucher disease, 13, 14
 IPD, 13–14, 16
 MPS, 13
 types, 9–12

M
 MAbs. See Monoclonal antibodies (MAbs)
 Macrophage-targeted glucocerebrosidase
 accumulating material, 3, 4
 carboxydrate unit, 5
 catabolism, 3, 4
 enzymatic modification, 5, 6
 mannos-terminal glycoform, 5, 6
 Merrimack’s bispecific antibody MM-111, 213
 Microbial transglutaminase, 288
 Miller Fisher syndrome, 238
 Mitigating effects
 antibody engineering approaches
 Fab region, 125–126
 Fc and hinge regions, 126
 modifications, 124–125
 antibody formulation, 124
 immunogenicity
 antigen specific immune tolerance
 induction, 69–70
 deimmunization, 66–69
 drug-induced immunosuppression, 66
 Tregitopes (see Tregitopes)
 Molecular assessment (MA)
 antibody discovery technology
 advantages, 157–159
 eukaryotic expression systems, 156
 humanization, 156
 phage display, 156
 prokaryotic expression, 156
 variant pool/library construction, 157
 yeast and mammalian
 display, 156
 CDR sequences, 169–170
 de-risking process development
 concentration-dependent precipitation, 163–164
 phase separation, 162–163
 physical instability, 160–161
 site-specific chemical degradation, 160
 viscosity, 162
Index

experimental tools
- accelerated temperature stability study, 165–167
- material requirements, 164, 165
- miscellaneous study, 169
- oxidation hotspots, 167
- solubility study, 168–169
FIH trials, 154
- improved stability, 171–173
- vs. traditional approach, 154, 155
two different mAbs vs. different antigen targets, 170–171
two different mAbs vs. same antigen targets, 171
Molecular entity, Europe
- DDD volume shares, 330, 331
- dollar share, 337–339
- erythropoietin alpha, 330, 331
- revenue shares, 335–337
- volume shares, 331–335, 343
Molecular Trojan Horse (MTH) technology
- CMT and RMT systems, 45
- insulin/Tf, 45
- MAAb-enzyme fusion protein, 47–48, 59
- peptides, 45
- peptidomimetic monoclonal antibodies, 45
- TH fusion protein, 46–47
Monoclonal antibodies (mAbs)
- Adalimumab, 222
- biobetters, 223
- bispecific constructs
 - BiTE®, 243–244
 - DART® protein, 244, 245
 - Fcab™, 245
 - Fynomers®, 246
 - TandAb®, 245
- CDR-grafting, 222
- CDR sequences, 222
- enhancing immune effector functions, 222–223
- Fab to domain antibody
 - Abciximab, 227
 - antigen-binding fragments, 223
 - antimicrobial therapy, 226
 - cameld VHH domains, 228–229
 - Caplacizumab, 229
 - CDRs, 224
 - Certolizumab pegol, 228
 - dAb, 230
 - disadvantages, 224
 - framework region(s), 224
 - functional antibody fragment, 227
 - Fv fragment, 225
 - “heavy-chain” antibodies, 228
- hormones or cytokines insofar, 223
- hypervariable region(s), 224
- immunotoxin, 226
- intact antigen-binding site, 224
- Moxetumomab pasudotox, 226–227
- Ozoralizumab, 229
- PENTRA®body technology, 226
- pharma and biotech companies, 228
- Ranibizumab, 227
- sdIF, 229, 230
- single chain Fv fragment (scFv), 225, 226
- SPECT, 227
- hydrolytic reactions (see Hydrolytic reactions)
- MA (see Molecular assessment (MA))
- mouse hybridoma cell culture, 221
- phage display techniques, 222
- protein scaffolds (see Protein scaffolds)
- structure
 - constant and variable domains, 84
 - Fab-CDRs, 83–85
 - FcR-IgGFc interactions, 86–87
 - hinge region, 87
 - “Y” shaped tetrameric IgG molecule, 82–83
- Motavizumab, 276
- Moxetumomab pasudotox, 226–227
- MTH technology. See Molecular Trojan Horse (MTH) technology
- Mucopolysaccharidosis (MPS), 13
- Mucopolysaccharidosis type II (MPSII)
 - HIRMAB-IDS fusion protein
 - brain homogenate volume of distribution (VD), 55, 57
 - differential distribution, 56, 58
 - intracellular IDS enzyme activity, 55, 56
 - mouse, 59
 - organ uptake, 55–56, 58
 - time-response study, 55, 56
- Mucopolysaccharidosis type I (MPSI)
 - cTIRMAB-IDS fusion protein, 53–54
 - HIRMAB-IDS fusion protein
 - humans and monkeys, 49–50
 - immune responses, 51–53
 - pharmacokinetics, 50–51
- Muromonab-CD3/Orthoclone (OKT3®), 221
- Muscle targeting. See Pompe disease
- Myozyme, 30

N
- Nanoparticle tracking analysis (NTA), 94
- Neglected Tropical Disease (NTD), 367
- Network Biology platform, 213
- Neulasta, 353
Neutropenia, 351–352
Neutrophil gelatinase-associated lipocalin (NGAL), 238
New Drug Application (NDA), 316, 317
NexP™ technology (Alteogen), 295
Non-Ig scaffolds, 254

O
Oncofetal Fn, 240
Orphan Drug Act (ODA), 365, 366
Ozoralizumab, 229

P
Paclitaxel poliglumex (Opaxio™), 289
Particle-flow imaging (PFI), 93
PASylation®, 291–293
Pegasys®, 278
Pegdinetanib, 234
Pegylated immunonanoparticles, 45
Peptide bond hydrolysis
β-elimination mediated hydrolysis, 115, 116
cleavage, 115
direct hydrolysis, 115, 116
DKP formulation, 115, 116
evidence, 118
extrinsic factors, 117
intrinsic factors, 117
Pharmaceutical benefit manager (PBM), 318
Plasma half-life extension
chemical coupling, 288–289
dendosomal recycling, 270, 271
Fc fusion strategies, 272–273
Aprilixir, 274
APSCOVERYT technology, 275
Arcalyst®, 274
CD4 immunoadhesins, 271
cytotoxic T lymphocyte-associated antigen 4, 274
EloctateT, 274
Eylear, 274
FcRn, 271
hybrid Fc (hyFc) technology, 274–275
hybrid proteins via protein A affinity, 274
LAPS-GLP/GCG, 275
MetMAb, 274
MIMETIBODYT platform, 277
non-Ig molecules, 271
peptibody platform, 276–277
RSV, 276
TNF receptor 1, 274
UnibodyT format, 274

gene fusion
PASylation®, 291–293
XTEN (Amunix), 289–291
glycosylated IgGs, 269, 271
HSA (see Human serum albumin (HSA))
immunoglobulins (Igs), 269
PEGylation
Adagen®, 282, 286
clinical trials, 283
Fleximer, 287
KRYSTEXXA™, 284
Lonquex™, 285
Mircera, 284
N- or O-glycosylation sites, 285
Onaspar, 286
Pegasys, 283, 284
PHF or Fleximer®, 286
PLEGRIDY, 283
PSA, 287
ReCODE™ technology, 285
single unpaired thiol side chain, 284
TheraPEG™ conjugation procedure, 285
TransCon, 285
protein glycosylation, 294–296
renal filtration, 270, 271
Polyethylene glycol (PEG) molecules, 193, 196, 240, 242, 275, 282–286, 291, 298
Poly-l-amino acids, 289
Polymyositis, 70
polysialic acid (PSA), 287
Pompe disease
adult/late-onset form, 23–24
clinical manifestations, 23
disease process, 24
GAA
ERT, 27
glycosylated protein, 27
MPR proteins, 25–26
M6P tag, 25
rhGAA efficacy (see Recombinant human GAA (rhGAA))
pathogenesis, 24
p53 protein, 185
Preformed Conjugate-Drug Affinity Complex technology (PC-DAC™), 279
Priority review voucher (PRV) program, 364, 367
Pronectins™, 234
Protein oxidation
enzyme, 138–141
His oxidation, 143
hydroxyl radicals, 142
intramolecular Diels-Alder reaction, 142
Met-252 and Met-428 oxidation, 141
mitigation strategy, 145
pharmaceutical proteins, 144–145
Trp oxidation, 141–143
Tyr oxidation, 141–142

Protein scaffolds
Adnectins, 233–235
Affibodies, 235–237
Anticalins (see Anticalins)
clinical development, 246–251
DARPins, 241–243
definition, 230–231
research on, 231
single domain Ig fragments and advanced alternative, 232
sources, 231

Pseudomonas exotoxin A, 226, 227

R
Ranibizumab, 227
Rare pediatric diseases (RPD), 367
Reactive oxygen species (ROS), 187, 188
Recombinant human GAA (rhGAA)
dosage, 27
glycoengineering
enzymatic modification, 28–29
increase CI-MPR protein level, 32–33
nanocarriers, 33–34
peptide-based tag (IGF-2), 31–32
synthetic glycans conjugation, 26, 29–30
yeast strains plus glycosidase treatment, 30–31
large-scale production, 27

Regulatory landscape
expedited programs
Accelerated approval, 365
breakthrough therapy designation, 364
Fast Track program, 363
PRV, 364
external collaborations, 367–368
incentive programs
BPCA, 366–367
NTD, 367
ODA, 365, 366
PRV program, 367
RPD, 367
Remicade™, 346
Respiratory syncytial virus (RSV), 276
rhGAA. See Recombinant human GAA (rhGAA)
Rituxan™, 345–346
Rituximab, 222

S
Second/third generation antibodies, 223
Single chain Fv fragment (scFv), 125–126, 225–228, 240, 243, 244, 246, 252, 253, 280
Single-photon emission computed tomography (SPECT), 227
Small for gestational age (SGA), 350–351
Small modular immunopharmaceuticals (SMIPs), 253
Small molecules
European market, 318–321
U.S. market, 316–318

T
TandAb®s, 245
Tanzeum, 278
TheraPEG™ conjugation procedure, 285
Therapeutic proteins
acylation, 193
autophagy, 189
degradation/aggregation, 183–184
dysfunctional protein, 184
human biological environments, 185
infection, 185–186
nitric oxide, 186
oxidation, 187–189
p53, 186
ROS, 187, 188
fusion, 195–196
instability, 184
in vivo aggregation
antibody aggregates, 99, 101
biosimilar protein drug formulation, 102
electron microscopy, 94–96, 99–100
fibrils, 100, 101
globular structures, 100, 101
large aggregates formation, 99–101
light microscopy, 93, 95–96
materials, 93
NTA, 94
originator product, 102
particle size distributions, 95, 97–99
PFI, 93
liposomal encapsulation, 194–195
oxidation-resistant forms, 191–192
PEGylation and glycosylation, 192–194
physicochemical and biological considerations, 197
plasma lipoproteins, 99, 101
proteolytic degradation, 192
tissue distribution, 189
Trastuzumab, 93, 108, 110, 126, 184, 213, 222, 236
Tregitopes
characteristics, 70
immunosuppressive effects, 70–71
IVIG, 70
mechanism of action, 71–72
in silico immunogenicity score, 70
Tregitope-mediated tolerance induction, 72
Tresiba®, 280

V
Veltis® technology, 278

X
XTEN (Amunix), 289–291
Xtend Bevacizumab, 276
XYOTAX™, 289