Appendix A: Conversion Factors Between Metric, API, and US Measures

<table>
<thead>
<tr>
<th>Multiply by</th>
<th>to find</th>
<th>Multiply by</th>
<th>to find</th>
</tr>
</thead>
<tbody>
<tr>
<td>acres</td>
<td>hectares</td>
<td>cubic centimeters</td>
<td>3.531×10^3 cu ft</td>
</tr>
<tr>
<td>"</td>
<td>sq ft</td>
<td>"</td>
<td>6.102×10^{-2} cu in.</td>
</tr>
<tr>
<td>acre-feet</td>
<td>m2</td>
<td>"</td>
<td>10^4 m3</td>
</tr>
<tr>
<td>"</td>
<td>bblb</td>
<td>"</td>
<td>2.642×10^4 gal</td>
</tr>
<tr>
<td>"</td>
<td>cu ft</td>
<td>"</td>
<td>3-Oct liters</td>
</tr>
<tr>
<td>atmospheres</td>
<td>gal</td>
<td>"</td>
<td>6.2897×10^6 bblb</td>
</tr>
<tr>
<td>"</td>
<td>cm Hg</td>
<td>cubic feet</td>
<td>0.1781 bbla</td>
</tr>
<tr>
<td>"</td>
<td>in. Hg</td>
<td>"</td>
<td>2.832×10^4 ccb</td>
</tr>
<tr>
<td>"</td>
<td>ft of water</td>
<td>"</td>
<td>7.481 gal</td>
</tr>
<tr>
<td>"</td>
<td>kg/cm3</td>
<td>"</td>
<td>1.728 cu in.</td>
</tr>
<tr>
<td>barrels (API)</td>
<td>psi</td>
<td>"</td>
<td>0.02832 m3</td>
</tr>
<tr>
<td>"</td>
<td>acre-ft</td>
<td>"</td>
<td>28.32 liters</td>
</tr>
<tr>
<td>"</td>
<td>ccb</td>
<td>cubic feet/day</td>
<td>1.18 liters/hr</td>
</tr>
<tr>
<td>"</td>
<td>cu ft</td>
<td>"</td>
<td>1.18×10^{-3} c m/hr</td>
</tr>
<tr>
<td>"</td>
<td>gal</td>
<td>"</td>
<td>0.02832 m3/day</td>
</tr>
<tr>
<td>"</td>
<td>cu in.</td>
<td>"</td>
<td>0.1781 bbl/daya</td>
</tr>
<tr>
<td>"</td>
<td>liters</td>
<td>cubic feet/minute</td>
<td>10.686 bbl/hrb</td>
</tr>
<tr>
<td>barrels/daya</td>
<td>m3</td>
<td>"</td>
<td>256.5 B/Dc</td>
</tr>
<tr>
<td>"</td>
<td>cu ft/D</td>
<td>"</td>
<td>472 cc/s</td>
</tr>
<tr>
<td>"</td>
<td>gal/min</td>
<td>"</td>
<td>7.481 gal/min</td>
</tr>
<tr>
<td>"</td>
<td>liters/hr</td>
<td>"</td>
<td>0.472 liters/s</td>
</tr>
<tr>
<td>"</td>
<td>m3/d</td>
<td>cubic inches</td>
<td>16.39 ccb</td>
</tr>
<tr>
<td>barrels/hourd</td>
<td>m3/hr</td>
<td>"</td>
<td>5.787×10^4 cu ft</td>
</tr>
<tr>
<td>"</td>
<td>cu ft/min</td>
<td>"</td>
<td>1.639×10^{-3} m3</td>
</tr>
<tr>
<td>"</td>
<td>gal/min</td>
<td>"</td>
<td>4.329×10^3 gal</td>
</tr>
<tr>
<td>bars</td>
<td>cu in. /s</td>
<td>"</td>
<td>1.639×10^2 liters</td>
</tr>
<tr>
<td>"</td>
<td>atm</td>
<td>cubic meters</td>
<td>6.2897 bbla</td>
</tr>
<tr>
<td>"</td>
<td>kg/cm3</td>
<td>"</td>
<td>106 ccb</td>
</tr>
<tr>
<td>Multiply by</td>
<td>to find</td>
<td>Multiply by</td>
<td>to find</td>
</tr>
<tr>
<td>------------</td>
<td>---------</td>
<td>------------</td>
<td>---------</td>
</tr>
<tr>
<td>British thermal units</td>
<td>14.5 psi</td>
<td>"</td>
<td>264.2 gal</td>
</tr>
<tr>
<td>"</td>
<td>778.57 ft-lb</td>
<td>"</td>
<td>6.102 X 10^4 cu in.</td>
</tr>
<tr>
<td>"</td>
<td>0.252 kcal</td>
<td>"</td>
<td>35.31 cu ft</td>
</tr>
<tr>
<td>"</td>
<td>0.293 W-hr</td>
<td>"</td>
<td>103 liters</td>
</tr>
<tr>
<td>Btu/minute</td>
<td>0.02357 hp</td>
<td>cubic meters/hour</td>
<td>151.0 B/D³</td>
</tr>
<tr>
<td>"</td>
<td>0.01758 kW</td>
<td>"</td>
<td>847.8 cu ft/D</td>
</tr>
<tr>
<td>"</td>
<td>12.97 ft-lb/s</td>
<td>"</td>
<td>103 liters/hr</td>
</tr>
<tr>
<td>centimeters</td>
<td>3.281 X 10^{-2} ft</td>
<td>cubic meters/day</td>
<td>0.2621 bbl/hr³</td>
</tr>
<tr>
<td>"</td>
<td>0.3937 in.</td>
<td>"</td>
<td>6.2897 B/D³</td>
</tr>
<tr>
<td>"</td>
<td>0.01 m</td>
<td>"</td>
<td>1.471 cu ft/hr</td>
</tr>
<tr>
<td>"</td>
<td>10 mm</td>
<td>"</td>
<td>35.31 cu ft/D</td>
</tr>
<tr>
<td>cm of mercury</td>
<td>0.01316 atm</td>
<td>"</td>
<td>41.67 liters/hr</td>
</tr>
<tr>
<td>"</td>
<td>0.4461 ft H₂O</td>
<td>"</td>
<td>0.04167 m³/hr</td>
</tr>
<tr>
<td>"</td>
<td>0.0136 kg/cm²</td>
<td>days</td>
<td>1,440 min</td>
</tr>
<tr>
<td>cm per second</td>
<td>0.1934 psi</td>
<td>"</td>
<td>86,400 s</td>
</tr>
<tr>
<td>"</td>
<td>1.969 ft/min</td>
<td>feet</td>
<td>30.48 cm</td>
</tr>
<tr>
<td>"</td>
<td>0.03281 ft/s</td>
<td>"</td>
<td>12 in</td>
</tr>
<tr>
<td>"</td>
<td>0.6 m/min</td>
<td>"</td>
<td>0.3048 m</td>
</tr>
<tr>
<td>hectares</td>
<td>2.471 acres</td>
<td>"</td>
<td>1,076 X 10^3 sq ft</td>
</tr>
<tr>
<td>feet of water</td>
<td>0.0295 atm</td>
<td>"</td>
<td>0.01 km²</td>
</tr>
<tr>
<td>"</td>
<td>0.8826 in. Hg</td>
<td>"</td>
<td>0.01 liter</td>
</tr>
<tr>
<td>"</td>
<td>0.03048 kg/cm²</td>
<td>horsepower</td>
<td>42.4 Btu/min</td>
</tr>
<tr>
<td>"</td>
<td>62.43 lb/sq ft</td>
<td>"</td>
<td>33,000 ft-lb/min</td>
</tr>
<tr>
<td>"</td>
<td>0.4335 psi</td>
<td>"</td>
<td>550 ft-lb/s</td>
</tr>
<tr>
<td>feet/hour</td>
<td>0.008467 cm/s</td>
<td>"</td>
<td>1.014 metric hp</td>
</tr>
<tr>
<td>"</td>
<td>5.086 X 10^{-3} m/min</td>
<td>"</td>
<td>10.68 kcal/min</td>
</tr>
<tr>
<td>"</td>
<td>0.01667 ft/min</td>
<td>"</td>
<td>0.7547 kW</td>
</tr>
<tr>
<td>feet/minute</td>
<td>0.508 cm/s</td>
<td>"</td>
<td>745.7 watts</td>
</tr>
<tr>
<td>"</td>
<td>0.01667 ft/s</td>
<td>horsepower-hour</td>
<td>2.544 Btu</td>
</tr>
<tr>
<td>"</td>
<td>0.01829 km/hr</td>
<td>"</td>
<td>641.1 kcal</td>
</tr>
<tr>
<td>"</td>
<td>0.3048 m/min</td>
<td>"</td>
<td>2.737 X 10³ kg-m</td>
</tr>
<tr>
<td>feet/second</td>
<td>30.48 cm/s</td>
<td>"</td>
<td>0.7455 kW-hr</td>
</tr>
<tr>
<td>"</td>
<td>18.29 m/min</td>
<td>inches</td>
<td>2.54 cm</td>
</tr>
<tr>
<td>foot-pounds</td>
<td>1.285 X 10³ Btu</td>
<td>"</td>
<td>8.333 X 10² ft</td>
</tr>
<tr>
<td>"</td>
<td>3.238 X 10⁴ kcal</td>
<td>in. of mercury</td>
<td>0.03342 atm</td>
</tr>
<tr>
<td>foot-pounds/minute</td>
<td>3.030 X 10³ hp</td>
<td>"</td>
<td>1.133 ft H₂O</td>
</tr>
<tr>
<td>"</td>
<td>2.260 X 10³ kW</td>
<td>"</td>
<td>0.03453 kg/cm²</td>
</tr>
<tr>
<td>foot-pounds/second</td>
<td>1.818 X 10³ hp</td>
<td>"</td>
<td>0.4912 psi</td>
</tr>
<tr>
<td>"</td>
<td>1.356 X 10³ kW</td>
<td>in. of water</td>
<td>0.002458 atm</td>
</tr>
<tr>
<td>gallons (U.S.)</td>
<td>0.02381 bbl³</td>
<td>"</td>
<td>0.07349 in. Hg</td>
</tr>
<tr>
<td>"</td>
<td>3.785 cc³</td>
<td>"</td>
<td>0.002538 kg/cm³</td>
</tr>
<tr>
<td>"</td>
<td>0.1337 cu ft</td>
<td>"</td>
<td>0.03609 psi</td>
</tr>
<tr>
<td>"</td>
<td>231 cu in.</td>
<td>kilograms</td>
<td>10³ g</td>
</tr>
<tr>
<td>"</td>
<td>3.785 X 10³ m³</td>
<td>"</td>
<td>2.205 lb</td>
</tr>
<tr>
<td>"</td>
<td>3.785 liters</td>
<td>"</td>
<td>1.102 X 10³ tons (short)</td>
</tr>
<tr>
<td>gallons (imperial)</td>
<td>1.2099 gal (U.S.)</td>
<td>kilogram-calories</td>
<td>3.986 Btu</td>
</tr>
<tr>
<td>gallons/minute</td>
<td>1.429 bbl/hr³</td>
<td>"</td>
<td>3.088 ft-lb</td>
</tr>
<tr>
<td>"</td>
<td>34.286 B/D</td>
<td>"</td>
<td>1.560 X 10³ hp-hr</td>
</tr>
<tr>
<td>"</td>
<td>0.1337 cu ft/min</td>
<td>"</td>
<td>427 kg-m</td>
</tr>
<tr>
<td>"</td>
<td>192.5 cu ft/D</td>
<td>"</td>
<td>1.163 X 10³ kW-hrs</td>
</tr>
<tr>
<td>"</td>
<td>3.785 liters/min</td>
<td>kg-calories/min</td>
<td>0.09358 hp</td>
</tr>
<tr>
<td>"</td>
<td>90.84 liters/hr</td>
<td>"</td>
<td>0.06977 kW</td>
</tr>
</tbody>
</table>
Appendices: Production Logging—Charts and Tables

<table>
<thead>
<tr>
<th>Multiply</th>
<th>by</th>
<th>to find</th>
<th>Multiply</th>
<th>by</th>
<th>to find</th>
</tr>
</thead>
<tbody>
<tr>
<td>grain (avoirdupois)</td>
<td>0.0648</td>
<td>g</td>
<td>kg/cubic meter</td>
<td>10^3</td>
<td>g/cc b</td>
</tr>
<tr>
<td>grains/gal</td>
<td>17.12</td>
<td>ppm</td>
<td>kg/square cm</td>
<td>0.9678</td>
<td>atm</td>
</tr>
<tr>
<td>"</td>
<td>142.9</td>
<td>lb/103 gal</td>
<td>"</td>
<td>0.9807</td>
<td>bars</td>
</tr>
<tr>
<td>"</td>
<td>0.01714</td>
<td>g/liter</td>
<td>"</td>
<td>32.84</td>
<td>ft H$_2$O</td>
</tr>
<tr>
<td>"</td>
<td>15.432</td>
<td>grains</td>
<td>"</td>
<td>28.96</td>
<td>in. Hg</td>
</tr>
<tr>
<td>"</td>
<td>3-Oct</td>
<td>kg</td>
<td>"</td>
<td>14.22</td>
<td>psi</td>
</tr>
<tr>
<td>"</td>
<td>0.3125</td>
<td>oz</td>
<td>kilowatts</td>
<td>56.88</td>
<td>Btu/min</td>
</tr>
<tr>
<td>"</td>
<td>2.205 X 10^3</td>
<td>lb</td>
<td>"</td>
<td>4.427 X 10^4</td>
<td>ft-lb/min</td>
</tr>
<tr>
<td>grams/cc b</td>
<td>62.43</td>
<td>lb/cu ft</td>
<td>"</td>
<td>737.8</td>
<td>ft-lb/s</td>
</tr>
<tr>
<td>"</td>
<td>8.344</td>
<td>lb/gal</td>
<td>"</td>
<td>1.341</td>
<td>hp</td>
</tr>
<tr>
<td>"</td>
<td>0.03613</td>
<td>lb/cu in.</td>
<td>"</td>
<td>103</td>
<td>watts</td>
</tr>
<tr>
<td>grams/liter</td>
<td>58.42</td>
<td>grains/gal</td>
<td>kilowatt-hours</td>
<td>3,413</td>
<td>Btu</td>
</tr>
<tr>
<td>"</td>
<td>860</td>
<td>kcal</td>
<td>"</td>
<td>1.157 X 10^3</td>
<td>days</td>
</tr>
<tr>
<td>liters</td>
<td>3.672 X 10^3</td>
<td>kg-m</td>
<td>"</td>
<td>2.778 X 10^4</td>
<td>hr</td>
</tr>
<tr>
<td>"</td>
<td>6.2897 X 10^3</td>
<td>cu ft</td>
<td>"</td>
<td>1.667 X 10^3</td>
<td>min</td>
</tr>
<tr>
<td>"</td>
<td>0.03531</td>
<td>cu ft</td>
<td>square cm</td>
<td>1.076 X 10^2</td>
<td>sq ft</td>
</tr>
<tr>
<td>"</td>
<td>0.2642</td>
<td>gal</td>
<td>"</td>
<td>0.155</td>
<td>sq in.</td>
</tr>
<tr>
<td>"</td>
<td>61.02</td>
<td>cu in.</td>
<td>"</td>
<td>4-Oct</td>
<td>m3</td>
</tr>
<tr>
<td>"</td>
<td>10^3</td>
<td>m3</td>
<td>"</td>
<td>100</td>
<td>mm3</td>
</tr>
<tr>
<td>liters/hour</td>
<td>0.1509</td>
<td>B/D</td>
<td>square feet</td>
<td>2.296 X 10^3</td>
<td>acres</td>
</tr>
<tr>
<td>"</td>
<td>6.289 X 10^3</td>
<td>bbl/hr a</td>
<td>"</td>
<td>929</td>
<td>cm2</td>
</tr>
<tr>
<td>"</td>
<td>5.885 X 10^3</td>
<td>cu ft/min</td>
<td>"</td>
<td>144</td>
<td>sq in.</td>
</tr>
<tr>
<td>"</td>
<td>0.8475</td>
<td>cu ft/d</td>
<td>square inches</td>
<td>6.452</td>
<td>cm2</td>
</tr>
<tr>
<td>"</td>
<td>10^3</td>
<td>m3/hr</td>
<td>"</td>
<td>0.9929</td>
<td>m2</td>
</tr>
<tr>
<td>"</td>
<td>0.024</td>
<td>m3/d</td>
<td>"</td>
<td>6.944 X 10^3</td>
<td>sq ft</td>
</tr>
<tr>
<td>"</td>
<td>3.281</td>
<td>ft</td>
<td>"</td>
<td>645.2</td>
<td>mm3</td>
</tr>
<tr>
<td>meters</td>
<td>0.103</td>
<td>mm</td>
<td>square meters</td>
<td>10.76</td>
<td>sq ft</td>
</tr>
<tr>
<td>"</td>
<td>6.214 X 10^4</td>
<td>mile</td>
<td>"</td>
<td>2.471 X 10^4</td>
<td>acres</td>
</tr>
<tr>
<td>meters/minute</td>
<td>1.667</td>
<td>cm/s</td>
<td>"</td>
<td>1,550</td>
<td>sq in.</td>
</tr>
<tr>
<td>"</td>
<td>3.281</td>
<td>ft/min</td>
<td>°Cent + 273</td>
<td>1</td>
<td>°K (abs)</td>
</tr>
<tr>
<td>"</td>
<td>1.969</td>
<td>fth/min</td>
<td>°Fahr + 460</td>
<td>1</td>
<td>°R (abs)</td>
</tr>
<tr>
<td>"</td>
<td>0.05468</td>
<td>ft/s</td>
<td>°Cent + 17.8</td>
<td>1.8</td>
<td>°F</td>
</tr>
<tr>
<td>"</td>
<td>5.280</td>
<td>ft</td>
<td>°Fahr – 32</td>
<td>59</td>
<td>°C</td>
</tr>
<tr>
<td>mile</td>
<td>1.609</td>
<td>km</td>
<td>°Cent/100 meters</td>
<td>0.5486</td>
<td>°F/100 ft</td>
</tr>
<tr>
<td>"</td>
<td>44.7</td>
<td>cm/s</td>
<td>°F/100 ft</td>
<td>1.823</td>
<td>°C/100 ft</td>
</tr>
<tr>
<td>"</td>
<td>88</td>
<td>ft/min</td>
<td>tons (long)</td>
<td>1.016</td>
<td>kg</td>
</tr>
<tr>
<td>"</td>
<td>26.82</td>
<td>m/min</td>
<td>"</td>
<td>2.240</td>
<td>lb</td>
</tr>
<tr>
<td>millimeters</td>
<td>0.1</td>
<td>cm</td>
<td>"</td>
<td>103</td>
<td>kg</td>
</tr>
<tr>
<td>"</td>
<td>3.281 X 10^3</td>
<td>ft</td>
<td>"</td>
<td>2,205</td>
<td>lb</td>
</tr>
<tr>
<td>"</td>
<td>0.03937</td>
<td>in.</td>
<td>"</td>
<td>2,000</td>
<td>lb (short)</td>
</tr>
<tr>
<td>minutes</td>
<td>6.944 X 10^4</td>
<td>days</td>
<td>"</td>
<td>6.895 X 10^6</td>
<td>viscosity, lb-s/sq in.</td>
</tr>
<tr>
<td>"</td>
<td>1.667 X 10^3</td>
<td>hrs</td>
<td>"</td>
<td>4.78 X 10^6</td>
<td>viscosity, cp</td>
</tr>
<tr>
<td>parts/million</td>
<td>0.05835</td>
<td>grains/gal</td>
<td>"</td>
<td>8.337</td>
<td>lb/103 gal</td>
</tr>
<tr>
<td>"</td>
<td>7.000</td>
<td>grains</td>
<td>"</td>
<td>1.341</td>
<td>X 10^3 hp</td>
</tr>
<tr>
<td>"</td>
<td>453.6</td>
<td>g</td>
<td>"</td>
<td>0.01433</td>
<td>kcal/min</td>
</tr>
<tr>
<td>"</td>
<td>0.4536</td>
<td>kg</td>
<td>"</td>
<td>103</td>
<td>kW</td>
</tr>
</tbody>
</table>

a Fahrenheit, b cubic centimeter, c commercial centigrade.
Volume Capacity of Pipes

Gallons per 1,000 ft = 40.3 × (ID in inches)^2
Cubic feet per 1,000 ft = 5.454 × (ID in inches)^2
Barrels per 1,000 ft = 0.9714 × (ID in inches)^2
Gallons per mile = 215.4240 × (ID in inches)^2
Barrels per mile = 5.1291 × (ID in inches)^2

Velocity

Feet per minute = 0.127324 (cubic feet per day)/(ID in inches)^2
Feet per minute = 1,029.42 (barrels per minute)/(ID in inches)^2
Feet per second = 0.4085 (gallons per minute)/(ID in inches)^2

Tank Volumes

Barrels per foot in round tank = (diameter, in feet)^2/7.14
Barrels per inch in round tank = (diameter, in feet)^2/85.7
Barrels per inch in square tank = 0.0143 (length, in feet) × (width, in feet)
Cubic feet per inch in square tank = 0.0833 (length, in feet) × (width, in feet)

Oil Gravity

\[
sp.\text{gr.}@60^\circ F = \frac{141.5}{131.5 + \text{API gravity}}
\]

\[
\text{API gravity} = \frac{141.5}{sp.\text{gr.}@60^\circ F - 131.5}
\]
Gas Gravity

\[
\text{Gas specific gravity} = \frac{\text{Density of gas at sc (g/cc)}}{0.00122} = \frac{\text{Density of gas at sc (lb/cuft)}}{0.0762}
\]

\[
\text{Gas specific gravity} = \frac{\text{density of gas}}{\text{density of air at same temp. and press.}} \\
\text{molecular weight of gas} \\
28.966
\]

The metric symbol, cc, for cubic centimeters has been replaced by the SI symbol cm³, but it is still widely used.

The symbol sc (standard conditions) = 60 °F (15.56 °C) and 14.7 psia (one atmosphere).
Appendix B: Average Fluid Velocity Versus Tubing Size

<table>
<thead>
<tr>
<th>Description</th>
<th>Fluid Velocity for Flow Rate of:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1000 B/D</td>
</tr>
<tr>
<td></td>
<td>10 m³/hr</td>
</tr>
<tr>
<td></td>
<td>100 m³/d</td>
</tr>
<tr>
<td></td>
<td>1000 cu ft/D</td>
</tr>
<tr>
<td>Nom. OD</td>
<td>Wt.</td>
</tr>
<tr>
<td>1.9 (48.3)</td>
<td>2.75</td>
</tr>
<tr>
<td>2½ (60.3)</td>
<td>4.00</td>
</tr>
<tr>
<td>3½ (73.0)</td>
<td>6.00</td>
</tr>
<tr>
<td>4 (101.6)</td>
<td>8.60</td>
</tr>
<tr>
<td>5 (127.0)</td>
<td>7.00</td>
</tr>
<tr>
<td>6 (152.4)</td>
<td>9.20</td>
</tr>
<tr>
<td>8 (203.2)</td>
<td>10.20</td>
</tr>
<tr>
<td>10 (254.0)</td>
<td>12.70</td>
</tr>
<tr>
<td>2 (50.8)</td>
<td>9.50</td>
</tr>
<tr>
<td>4 (101.6)</td>
<td>12.6</td>
</tr>
</tbody>
</table>

API upset tubing

<table>
<thead>
<tr>
<th>Nom. OD</th>
<th>Wt.</th>
<th>Int. Diameter</th>
<th>in/min</th>
<th>cm/s</th>
<th>m/min</th>
<th>cm/s</th>
<th>ft/min</th>
<th>cm/s</th>
<th>m/min</th>
<th>cm/s</th>
<th>ft/min</th>
<th>cm/s</th>
<th>m/min</th>
<th>cm/s</th>
<th>ft/min</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.05 (26.7)</td>
<td>1.20</td>
<td>0.824</td>
<td>20.93</td>
<td>322.62</td>
<td>537.7</td>
<td>1053</td>
<td>484.90</td>
<td>808.2</td>
<td>1590.9</td>
<td>201.71</td>
<td>336.21</td>
<td>661.81</td>
<td>57.2</td>
<td>95.3</td>
<td>187.5</td>
</tr>
<tr>
<td>1.315 (33.4)</td>
<td>1.80</td>
<td>1.049</td>
<td>26.64</td>
<td>199.14</td>
<td>331.9</td>
<td>650</td>
<td>299.31</td>
<td>498.6</td>
<td>982.0</td>
<td>124.51</td>
<td>207.50</td>
<td>408.51</td>
<td>35.3</td>
<td>58.8</td>
<td>115.7</td>
</tr>
<tr>
<td>1.660 (42.16)</td>
<td>2.40</td>
<td>1.380</td>
<td>35.05</td>
<td>115.02</td>
<td>191.7</td>
<td>375</td>
<td>172.88</td>
<td>288.1</td>
<td>567.2</td>
<td>71.92</td>
<td>119.85</td>
<td>235.95</td>
<td>20.4</td>
<td>34.0</td>
<td>66.86</td>
</tr>
<tr>
<td>1.9 (48.26)</td>
<td>2.90</td>
<td>1.610</td>
<td>40.89</td>
<td>84.54</td>
<td>140.9</td>
<td>276</td>
<td>127.11</td>
<td>211.8</td>
<td>417.0</td>
<td>52.88</td>
<td>88.11</td>
<td>173.47</td>
<td>15.0</td>
<td>25.0</td>
<td>49.12</td>
</tr>
<tr>
<td>2½ (60.3)</td>
<td>4.70</td>
<td>1.995</td>
<td>50.67</td>
<td>55.02</td>
<td>91.7</td>
<td>180</td>
<td>82.70</td>
<td>137.8</td>
<td>271.3</td>
<td>34.40</td>
<td>57.32</td>
<td>112.86</td>
<td>9.7</td>
<td>16.3</td>
<td>31.99</td>
</tr>
<tr>
<td>3 (76.2)</td>
<td>5.95</td>
<td>1.867</td>
<td>47.42</td>
<td>62.82</td>
<td>104.7</td>
<td>205</td>
<td>94.42</td>
<td>157.4</td>
<td>308.8</td>
<td>39.28</td>
<td>65.48</td>
<td>128.88</td>
<td>18.6</td>
<td>36.53</td>
<td></td>
</tr>
<tr>
<td>4 (101.6)</td>
<td>6.50</td>
<td>2.441</td>
<td>62.00</td>
<td>36.78</td>
<td>61.3</td>
<td>120</td>
<td>55.28</td>
<td>92.1</td>
<td>181.4</td>
<td>22.99</td>
<td>38.31</td>
<td>75.46</td>
<td>11.1</td>
<td>10.9</td>
<td>21.37</td>
</tr>
<tr>
<td>5 (127.0)</td>
<td>8.70</td>
<td>2.259</td>
<td>57.38</td>
<td>42.90</td>
<td>71.5</td>
<td>140</td>
<td>64.48</td>
<td>107.5</td>
<td>211.6</td>
<td>26.82</td>
<td>44.72</td>
<td>88.02</td>
<td>7.6</td>
<td>12.7</td>
<td>24.95</td>
</tr>
<tr>
<td>6 (152.4)</td>
<td>9.30</td>
<td>2.992</td>
<td>76.00</td>
<td>24.48</td>
<td>40.8</td>
<td>79.8</td>
<td>36.79</td>
<td>61.3</td>
<td>120.7</td>
<td>15.30</td>
<td>25.50</td>
<td>50.21</td>
<td>4.3</td>
<td>7.22</td>
<td>14.22</td>
</tr>
<tr>
<td>8 (203.2)</td>
<td>12.95</td>
<td>2.750</td>
<td>69.85</td>
<td>28.98</td>
<td>48.3</td>
<td>94.5</td>
<td>43.56</td>
<td>72.6</td>
<td>142.9</td>
<td>18.12</td>
<td>30.20</td>
<td>58.45</td>
<td>5.1</td>
<td>8.55</td>
<td>16.84</td>
</tr>
<tr>
<td>10 (254.0)</td>
<td>11.00</td>
<td>3.476</td>
<td>88.29</td>
<td>18.12</td>
<td>30.2</td>
<td>59.2</td>
<td>27.23</td>
<td>45.4</td>
<td>89.3</td>
<td>11.32</td>
<td>18.89</td>
<td>38.15</td>
<td>3.2</td>
<td>5.35</td>
<td>10.54</td>
</tr>
<tr>
<td>12 (304.8)</td>
<td>12.75</td>
<td>3.958</td>
<td>100.53</td>
<td>13.98</td>
<td>23.3</td>
<td>45.6</td>
<td>21.01</td>
<td>35.0</td>
<td>68.9</td>
<td>8.74</td>
<td>14.56</td>
<td>28.66</td>
<td>2.4</td>
<td>4.13</td>
<td>8.128</td>
</tr>
</tbody>
</table>
Appendix C: Average Fluid Velocity Versus Casing Size

<table>
<thead>
<tr>
<th>Nom. OD (in.)</th>
<th>Wt. (lb/ft)</th>
<th>Int. Diameter (in.)</th>
<th>1000 B/D</th>
<th>10 m³/hr</th>
<th>1000 m³/d</th>
<th>1000 cu ft/D</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 (114.3)</td>
<td>9.50</td>
<td>4.090</td>
<td>103.9</td>
<td>13.08</td>
<td>21.80</td>
<td>42.70</td>
</tr>
<tr>
<td>5 (127.0)</td>
<td>11.60</td>
<td>4.000</td>
<td>101.6</td>
<td>13.44</td>
<td>22.40</td>
<td>44.70</td>
</tr>
<tr>
<td>6 5/8 (168.3)</td>
<td>13.00</td>
<td>4.244</td>
<td>128.1</td>
<td>12.96</td>
<td>21.60</td>
<td>42.50</td>
</tr>
<tr>
<td>7 (177.8)</td>
<td>15.00</td>
<td>4.044</td>
<td>128.1</td>
<td>12.96</td>
<td>21.60</td>
<td>42.50</td>
</tr>
<tr>
<td>8 7/8 (219.1)</td>
<td>20.00</td>
<td>4.654</td>
<td>155.8</td>
<td>5.82</td>
<td>9.70</td>
<td>19.00</td>
</tr>
<tr>
<td>9 5/8 (244.5)</td>
<td>25.00</td>
<td>4.725</td>
<td>155.8</td>
<td>5.82</td>
<td>9.70</td>
<td>19.00</td>
</tr>
</tbody>
</table>
Appendix C (continued)

<table>
<thead>
<tr>
<th>Column</th>
<th>Value 1</th>
<th>Value 2</th>
<th>Value 3</th>
<th>Value 4</th>
<th>Value 5</th>
<th>Value 6</th>
<th>Value 7</th>
<th>Value 8</th>
<th>Value 9</th>
<th>Value 10</th>
<th>Value 11</th>
<th>Value 12</th>
<th>Value 13</th>
<th>Value 14</th>
<th>Value 15</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 3/4</td>
<td>270.000</td>
<td>258.9</td>
<td>2.10</td>
<td>3.50</td>
<td>6.88</td>
<td>3.17</td>
<td>5.28</td>
<td>10.40</td>
<td>1.32</td>
<td>2.19</td>
<td>4.33</td>
<td>0.374</td>
<td>0.625</td>
<td>1.226</td>
<td></td>
</tr>
<tr>
<td>3/4</td>
<td>40.50</td>
<td>10.050</td>
<td>255.3</td>
<td>2.16</td>
<td>3.60</td>
<td>7.08</td>
<td>3.25</td>
<td>5.42</td>
<td>10.70</td>
<td>1.35</td>
<td>2.25</td>
<td>4.45</td>
<td>0.384</td>
<td>0.641</td>
<td>1.261</td>
</tr>
<tr>
<td>3/8</td>
<td>45.50</td>
<td>9.950</td>
<td>252.7</td>
<td>2.20</td>
<td>3.68</td>
<td>7.22</td>
<td>3.33</td>
<td>5.55</td>
<td>10.90</td>
<td>1.39</td>
<td>2.31</td>
<td>4.53</td>
<td>0.392</td>
<td>0.655</td>
<td>1.286</td>
</tr>
<tr>
<td>3/16</td>
<td>51.00</td>
<td>9.850</td>
<td>250.2</td>
<td>2.25</td>
<td>3.75</td>
<td>7.37</td>
<td>3.39</td>
<td>5.65</td>
<td>11.10</td>
<td>1.41</td>
<td>2.35</td>
<td>4.61</td>
<td>0.400</td>
<td>0.666</td>
<td>1.312</td>
</tr>
<tr>
<td>1/8</td>
<td>55.50</td>
<td>9.760</td>
<td>247.9</td>
<td>2.29</td>
<td>3.82</td>
<td>7.51</td>
<td>3.45</td>
<td>5.75</td>
<td>11.30</td>
<td>1.44</td>
<td>2.39</td>
<td>4.70</td>
<td>0.408</td>
<td>0.679</td>
<td>1.337</td>
</tr>
<tr>
<td>5/32</td>
<td>60.70</td>
<td>9.660</td>
<td>245.4</td>
<td>2.34</td>
<td>3.91</td>
<td>7.66</td>
<td>3.52</td>
<td>5.88</td>
<td>11.50</td>
<td>1.46</td>
<td>2.44</td>
<td>4.78</td>
<td>0.416</td>
<td>0.693</td>
<td>1.364</td>
</tr>
<tr>
<td>1/16</td>
<td>61.70</td>
<td>9.560</td>
<td>242.8</td>
<td>2.40</td>
<td>4.00</td>
<td>7.82</td>
<td>3.60</td>
<td>6.00</td>
<td>11.80</td>
<td>1.50</td>
<td>2.49</td>
<td>4.91</td>
<td>0.425</td>
<td>0.708</td>
<td>1.393</td>
</tr>
<tr>
<td>1/32</td>
<td></td>
</tr>
<tr>
<td>11 3/4</td>
<td>38.00</td>
<td>11.150</td>
<td>283.2</td>
<td>1.76</td>
<td>2.94</td>
<td>5.75</td>
<td>2.64</td>
<td>4.41</td>
<td>8.66</td>
<td>1.10</td>
<td>1.83</td>
<td>3.60</td>
<td>0.312</td>
<td>0.520</td>
<td>1.024</td>
</tr>
<tr>
<td>3/4</td>
<td>42.00</td>
<td>11.084</td>
<td>281.5</td>
<td>1.77</td>
<td>2.96</td>
<td>5.82</td>
<td>2.67</td>
<td>4.45</td>
<td>8.76</td>
<td>1.11</td>
<td>1.85</td>
<td>3.64</td>
<td>0.316</td>
<td>0.526</td>
<td>1.036</td>
</tr>
<tr>
<td>3/8</td>
<td>47.00</td>
<td>11.000</td>
<td>279.4</td>
<td>1.81</td>
<td>3.02</td>
<td>5.91</td>
<td>2.73</td>
<td>4.55</td>
<td>8.96</td>
<td>1.14</td>
<td>1.89</td>
<td>3.73</td>
<td>0.321</td>
<td>0.534</td>
<td>1.052</td>
</tr>
<tr>
<td>1/8</td>
<td>54.00</td>
<td>10.880</td>
<td>276.4</td>
<td>1.84</td>
<td>3.08</td>
<td>6.04</td>
<td>2.79</td>
<td>4.65</td>
<td>9.15</td>
<td>1.16</td>
<td>1.93</td>
<td>3.81</td>
<td>0.328</td>
<td>0.547</td>
<td>1.076</td>
</tr>
<tr>
<td>5/32</td>
<td>60.00</td>
<td>10.772</td>
<td>273.6</td>
<td>1.88</td>
<td>3.14</td>
<td>6.16</td>
<td>2.83</td>
<td>4.73</td>
<td>9.29</td>
<td>1.18</td>
<td>1.97</td>
<td>3.86</td>
<td>0.334</td>
<td>0.557</td>
<td>1.097</td>
</tr>
<tr>
<td>1/16</td>
<td></td>
</tr>
<tr>
<td>13 3/8</td>
<td>48.00</td>
<td>12.715</td>
<td>323.0</td>
<td>1.35</td>
<td>2.25</td>
<td>4.42</td>
<td>2.04</td>
<td>3.40</td>
<td>6.69</td>
<td>0.85</td>
<td>1.41</td>
<td>2.78</td>
<td>0.240</td>
<td>0.400</td>
<td>0.788</td>
</tr>
<tr>
<td>3/4</td>
<td>54.50</td>
<td>12.615</td>
<td>320.4</td>
<td>1.37</td>
<td>2.29</td>
<td>4.49</td>
<td>2.07</td>
<td>3.46</td>
<td>6.79</td>
<td>0.86</td>
<td>1.44</td>
<td>2.82</td>
<td>0.244</td>
<td>0.406</td>
<td>0.800</td>
</tr>
<tr>
<td>3/8</td>
<td>61.00</td>
<td>12.515</td>
<td>317.9</td>
<td>1.39</td>
<td>2.33</td>
<td>4.56</td>
<td>2.11</td>
<td>3.52</td>
<td>6.92</td>
<td>0.88</td>
<td>1.46</td>
<td>2.87</td>
<td>0.248</td>
<td>0.413</td>
<td>0.813</td>
</tr>
<tr>
<td>1/8</td>
<td>68.00</td>
<td>12.415</td>
<td>315.3</td>
<td>1.41</td>
<td>2.36</td>
<td>4.64</td>
<td>2.13</td>
<td>3.53</td>
<td>6.99</td>
<td>0.89</td>
<td>1.48</td>
<td>2.91</td>
<td>0.252</td>
<td>0.420</td>
<td>0.826</td>
</tr>
<tr>
<td>5/32</td>
<td>72.00</td>
<td>12.347</td>
<td>313.6</td>
<td>1.43</td>
<td>2.39</td>
<td>4.69</td>
<td>2.16</td>
<td>3.60</td>
<td>7.09</td>
<td>0.90</td>
<td>1.49</td>
<td>2.95</td>
<td>0.255</td>
<td>0.424</td>
<td>0.835</td>
</tr>
<tr>
<td>1/16</td>
<td></td>
</tr>
<tr>
<td>16 (406.4)</td>
<td>55.00</td>
<td>15.376</td>
<td>390.6</td>
<td>0.92</td>
<td>1.54</td>
<td>3.02</td>
<td>1.39</td>
<td>2.32</td>
<td>4.56</td>
<td>0.58</td>
<td>0.86</td>
<td>1.90</td>
<td>0.164</td>
<td>0.274</td>
<td>0.559</td>
</tr>
<tr>
<td>32 (640)</td>
<td>65.00</td>
<td>15.250</td>
<td>387.4</td>
<td>0.93</td>
<td>1.56</td>
<td>3.07</td>
<td>1.41</td>
<td>2.36</td>
<td>4.63</td>
<td>0.59</td>
<td>0.91</td>
<td>1.92</td>
<td>0.167</td>
<td>0.278</td>
<td>0.548</td>
</tr>
<tr>
<td>64 (1,280)</td>
<td>75.00</td>
<td>15.124</td>
<td>384.2</td>
<td>0.95</td>
<td>1.59</td>
<td>3.13</td>
<td>1.44</td>
<td>2.40</td>
<td>4.72</td>
<td>0.60</td>
<td>0.99</td>
<td>1.96</td>
<td>0.170</td>
<td>0.283</td>
<td>0.557</td>
</tr>
<tr>
<td>128 (2,560)</td>
<td>84.00</td>
<td>15.010</td>
<td>381.3</td>
<td>0.97</td>
<td>1.62</td>
<td>3.17</td>
<td>1.46</td>
<td>2.44</td>
<td>4.79</td>
<td>0.61</td>
<td>1.02</td>
<td>1.99</td>
<td>0.172</td>
<td>0.287</td>
<td>0.565</td>
</tr>
<tr>
<td>20 (508.0)</td>
<td>94.00</td>
<td>19.124</td>
<td>485.8</td>
<td>0.60</td>
<td>1.00</td>
<td>1.95</td>
<td>0.90</td>
<td>1.50</td>
<td>2.96</td>
<td>0.37</td>
<td>0.62</td>
<td>1.23</td>
<td>0.106</td>
<td>0.177</td>
<td>0.348</td>
</tr>
</tbody>
</table>
Appendix D: Average Fluid Velocity

When a production logging tool is present in the casing or tubing, the average fluid velocity in the tool/pipe annulus may be determined from the following charts.

WITH NO PL TOOL IN FLOW STREAM

FLOW RATE IN BARRELS/DAY

AVG. FLUID VELOCITY IN FEET/MINUTE

WITH 1½-IN. PL TOOL IN FLOW STREAM
WITH 2¼-IN. PL TOOL IN FLOW STREAM

FLOW RATE IN BARRELS/ DAY

AVERAGE FLUID VELOCITY IN FEET/ MINUTE
Appendix E: Quick Guide to Biphasic Flow Interpretation

PVT Data

Compute ρ_{hwf} and ρ_{lwf}
Compute q_{hwf} and q_{lwf}
Estimate V_s
Compute $A = \pi \left[\left(\frac{\text{CasingID}}{2} \right)^2 - \left(\frac{\text{ToolID}}{2} \right)^2 \right]$

At each level between perforations
Compute $y_h = \frac{\rho_m - \rho_l}{\rho_h - \rho_l}$
Compute $q_h = y_h q_t - (1-y_h)AV_s l$
Compute $q_l = q_t - q_h$

Where: h is for heavy phase
l is for light phase
m is for mixture

General Bibliography

Dresser Atlas
Casing evaluation services (1983).
Production services (1981).
Wireline services catalog (1982).
DIA-LOG
Borehole sound survey.
General catalog.

N.L. McCullough
Noise logging service (1976).

Petroleum Extension Service, The University of Texas at Austin
Lesson 6—well cementing (1983).

Schlumberger
Fluid conversions in production logging (1974).
Production services (March 1975).
The essentials of cement evaluation (1976).
Reservoir and production fundamentals (1980).
Well evaluation developments-continental Europe (1982).
Fundamental of formation testing (2006)—06-FE-014.
Index

A
- Abbreviations, 18
- Abnormal formation pressures, 1
- Activation logging, 74–75, 156
- Albite, 163, 180
- Alkali olivine basalt, 188
- Allanite, 187, 188
- Aluminum, 162, 247
- American Petroleum Institute (API) gamma ray standard, 148
- American Petroleum Institute (API) units, 144, 148, 152
- Amplitude-frequency analysis, 123
- Amplitude-frequency spectra, 124
- Amplitude measurements, 201–203
- Andesite, 188
- Anhydrite, 188
- Anorthite, 163, 180
- Anti-stokes, 249–251
- Apatite, 188
- Argon, 145
- Array capacitance tools, 74, 96–97
- Artificial shale, 148
- Assisted wireline, 14
- Attenuation measurement, 199, 202
- Attenuation rate, 199–200, 203
- Audible spectrum, 123
- Audio log, 123
- Autunite, 188

B
- Background and quality curves, 161
- Back scattered gamma rays, 90, 94
- Bad cement jobs, 2
- Baltwoodite, 188
- Band-pass filters, 126
- Basalt, 188
- Base gamma ray log, 79
- Basket flowmeters, 62–64
- Bastnaesite, 187
- Bateman, R.M., 151
- BATS. See Borehole audio tracer survey (BATS)
- Bauxite, 154
- Bentonite, 188
- Betafite, 187
- BHTV. See Borehole televiewers (BHTV)
- Biotite, 163, 189
- Biphasic flow, 63, 133, 134, 274
- Bond index, 211
- Borax, 163
- Borehole environment, 11–12
- fluid sampler, 90, 100–101
- sound survey, 123
- television, 242
- video, 227
- Borehole audio tracer survey (BATS), 123
- Borehole televiewers (BHTV), 241–243
- Boron, 162
- Bottom hole gas density, 36
- Bottomhole temperature, 109–110
- Bound water, 182, 183
- Brannerite, 187
- Bravo Dome, 87
- Brillouin scattering, 249, 250, 254
- Bubble flow, 55, 93
- point, 3, 17–21, 24, 38–42, 46
- Bubble-point pressure, 38–44
Cable head, 10
Cable speed, 65, 70, 71
Cadmium, 162
Calcite, 180
Calcium, 180
Calibration of, 70, 95, 96, 127, 138, 148, 223, 234, 253, 254
Calibration of continuous flowmeter, 70
Caliper logs, 227, 228
Calipers, 6, 72, 227–229, 232
Capacitance array tool (CAT), 74, 96–97
Capacitance (dielectric) tools, 90, 96
Capacitance watercut meter, 97
Capture cross sections, 74, 156, 158, 162, 163, 173, 176
Capture gamma ray, 75, 144, 157, 159
Capture units, 158
Carbon, 179–181, 247, 259
Carbonates, 181
Carbon dioxide (CO₂), 87
Carbon/oxygen (C/O), 4
interpretation, 179
logging, 156, 180–181, 274
ratio, 178, 180
Carnallite, 163
Carnotite, 188
Casing-collar locator, 80, 228
Casing-collar logs (CCL), 6
Casing-corrosion, 231–233
Casing dimensions, 223–225
Casing inspection logs, 6, 227–243
Casing leaks, 2, 6, 61, 115
Casing OD weight and thickness, 210, 211
Casing potential logs, 6
Casing potential profile log, 232
Casing profiles, 229–230
Casing/tubing inspection, 13
CAT. See Capacitance array tool (CAT)
Cathodic protection, 231, 232
CBL. See Cement bond logging (CBL)
CBL amplitude interpretation, 210
CBL-VDL, 204, 213–215
CCL. See Casing-collar logs (CCL)
Cement
API classifications of, 196, 197
and channeling, 13
compressive strength, 198, 209–211
effect of accelerator on, 195
physical properties of, 198
Cement bond logging (CBL), 6, 195–225
principles of, 198–200
tool, 203
Cement evaluation tool (CET) presentation, 6
Cement top, 105, 110–111, 219, 220
CET. See Cement evaluation tool (CET)
Chalk, 188
Channel detection, 119, 219
Channeling, 76, 119, 216–218
Cheralite, 187
Chlorine, 156, 162
Chlorite, 163, 190
Choosing production logs, 12–13
Christmas-tree, 11, 12
Cinnabar, 163
Classification of Cements, 197
Clavier, 151
Clay minerals, 147, 150, 182
Clay typing I, 154
C/O. See Carbon/oxygen (C/O)
Combination tools, 67–68, 103, 104
Completion inspection, 6, 229
Completion problems, 1, 2, 4, 6, 79, 89
Composition of natural oils and gases, 23
Compressive strength, 198, 199, 209–211
Condensate reservoirs, 21–22
Coning, 1, 3, 4
Continuous flowmeters, 61, 65–66, 68, 70, 72
Conventional wireline, 14, 254
Conversion factors, 12, 54, 263–267
Conveyance methods, 13–14
Correlation, 75, 127, 144, 249
Corrosion, 2, 227, 228, 231–233, 241, 246, 251
Critical point, 19
Cycle skipping, 203, 205–207, 215
Delta(Δ)-t stretching, 205, 206
Densimeter, 13, 90
Densities of NaCl solutions, 27
Departure curves, 176
Depositional environment, 190
Depth of investigation, 177, 237
Depth positioning, 144
Deviated holes, 72, 208–209, 214
Dew-point, 18–19
Dew-point determination, 20
Diabase, 189
Diagenetic changes, 190
Dielectric constant, 89, 96
Differential-temperature logs, 116–118
Differential-temperature surveys, 117–118
Diodes, 105–107
Diorite, 189
Distributed acoustic sensing (DAS), 245, 247, 248, 251–254, 257–259
Distributed audio system (DAS), 130
Distributed temperature sensing (DTS), 245–248, 250–260
Distributed temperature system (DTS), 130
Dolomite, 23, 163, 165, 180, 188
Dowdle and Cobb method, 108, 110
Dresser atlas nuclear lifetime log (NLL), 156
Drift diameter, 223–225, 234
Dry-gas reservoir, 22
DTS applications, 246, 251, 254–256
Dual-water method, 182–185
Dunite, 189

E
Eddy current principle, 236
Eddy currents, 234, 236–240
Electrical-potential logs, 227, 231–232
Electromagnetic devices, 232
Electromagnetic inspection devices, 227
Electromagnetic thickness tools (ETTs), 7, 13, 232–234, 238, 240
Electronic casing caliper log, 232
Elemental concentration logging, 13, 143, 156
Enhanced oil recovery (EOR), 87
Epidote, 188
Eschynite, 187
Euxenite, 187

F
Fahrenheit, 33
Far counts, 160–161
Fast neutrons, 75, 156, 158, 177, 178
Fergusonite, 187
Fiber optics, 61, 130, 245–248, 250, 252–254, 258
Fiber optic sensors, 130, 245–247
Filter response, 126
Fixed gate, 207, 208
Flexural waveforms, 222
Floating gate, 207, 208
Flow
 laminar, 51–54
 rate of, 12, 17, 24, 27, 39, 46, 51–54, 57–59, 61, 62, 65, 68, 70–72, 74, 76, 80, 82, 83, 88, 92, 93, 117, 127, 133–135, 137–140
 turbulent, 51–53, 198
Flow-measuring devices, 62
Flowmeters, 5, 7, 13, 17, 29, 52, 54, 61–76, 129, 130, 133, 136–140
 basket, 5, 61–64
 correction factor, 71
 packer, 61–65, 68
Flow profiles, 2, 62, 71, 79
Flow regimes, 51–59, 73, 93, 112, 124
Fluid density, 6, 7, 51, 52, 56, 57, 67, 89–93, 95, 127, 136
logging, 93, 94
tool, 90, 93–95
Fluid flow, 51, 91, 92, 119, 123, 124, 128, 134, 218, 251, 256
Fluid identification, 89–104
Fluid properties, 17–50
Fluid resistivity, 90
Fluid resistivity measurements, 97–98
Fluid sampler tool, 90, 100–101
Fluid types, 4, 6, 12, 74, 89, 104
Fluid velocity, 12, 51, 54, 55, 65, 68, 70, 268–273
Flux leakage, 13, 235–237, 240
Formation
 content, 13
 pressure, 1, 3, 181
 resistivity, 143, 144
Formation volume factor (FVF), 17, 24–26, 30–38, 39–45
Fractures, 87, 153, 218, 246, 255, 256
Free gas, 3, 17, 24, 46
Free pipe, 212, 213, 219, 220
Free pipe in deviated hole, 214
Free water, 182
Frequency analysis, 123
Friction
 gradients, 90, 92
 reducer, 68, 70, 94
Froth flow, 55
Full-bore flowmeters, 13, 61, 62, 67
Full-wave display, 204
Full waveform display, 203
FVF. See Formation volume factor (FVF)

G
Gabbro, 189
Gamma ray (GR), 6, 61, 75–76, 79, 80, 86, 87, 90, 93–94, 144–153, 155–159, 176–178, 180, 184, 186, 187
absorption, 90, 93–94
back scattering, 90
corrections, 150
detector, 75–76, 79, 80, 95, 147–149, 156, 176
gamma energy spectrum, 152
spectra, interpretation of, 153–155
Gamma ray (GR) (cont.)
spectral log, 152
spectroscopy, 145, 152–153, 249
test pit, 148
Gamma ray log(s), 4, 76, 79, 83, 86, 87,
144–145, 148, 150–151, 153, 177
perturbing effects on, 150
Gas, 1–3, 5, 17–19, 21–24, 30, 32–39, 46,
55–56, 73–74, 85, 89, 95–100,
113–115, 120, 121, 123–128, 154,
157–161, 168, 171, 172, 178, 180, 195,
220, 228, 231, 246, 249, 258, 267
breakthrough, 1–2
channel, 121
density, 26–27
formation volume factor \(B_g \), 30–38
gravity, 30, 32, 37, 171, 267
holdup tool, 95
injection, 114–115
production, 112–115
solubility in water, 28–29
tracers, 85
viscosity, 37
Gas-cap expansion, 2
Gas/liquid flow regimes, 56
Gating systems, 176, 207–208
Gauging treatment effectiveness, 1–2
Geothermal gradient, 107–108, 112, 130
Glaucenite, 163, 188
Goethite, 163
GR. See Gamma ray (GR)
Gradio, 138, 140
Gradiomanometer, 5, 36, 42, 59, 89–94, 133,
136–140
log, 92, 137–140
tool, 59, 90–92
Grandodiorite, 189
Granite, 189
Gravity drainage (segregation), 2, 3, 63, 73
\(\gamma \)-rays of capture, 75, 144, 156, 158
Graywackes, 190
Grease seal, 10
GST, 4

G
Gypsum, 163, 180

Half-life, 85
Half-wave display, 203, 205
Halite, 163

Hematite, 163
High-resolution thermometer, 106
Holdup, 51, 56–59, 63, 93, 94, 95, 97,
133–140
 equations, 93, 133–136
 and flow rate charts, 138, 139
Horizontal holes, 14, 73–74
Horner plot, 102
HRT. See High-resolution thermometer
Huttonite, 187
Hydraulic fracturing, 153, 246, 251, 256
Hydraulic seal, 110, 195, 211–212
Hydrogen, 87, 156, 162, 247
Hydrolog, 90

I
Ideal gas law, 30
Illite, 147
Inelastic gamma, 4, 177–178, 180
 log, 4
 ray logging, 177–178
Inelastic gamma logs (IGT), 4
Injection profiles, 1, 2, 61, 115
Iron, 231, 236
Isolation scanner, 220

K
Kaolinite, 147, 180, 188
Kernite, 163

L
Laminar and turbulent flow, 51–54
Leaks, 2, 5, 7, 61–62, 115, 143, 235, 237–240,
246, 251, 257
Limestone, 178, 188
Limone, 163
Liquid production, 113
Lithium, 162
Logging cable, 10, 254
Logging speed, 76
Log-inject-log technique, 175
Lost-circulation zone, 105, 111–112

M
Magnelog, 232
Magnesium, 147, 162, 177
Magnetic flux leakage, 234–235, 238
Magnetic permeability, 234, 238
Magnetite, 163
Manganese, 162
Manganite, 163
Manometer, 90, 101–102
Marine black shales, 190
Marine deposits, 190
Mass flow rate, 112
Mercury, 162, 264
Mica, 189
Mica/biotite, 163
Microannulus, 216–218
Microannulus/channeling, 216–218
Microcline, 189
Microseismic, 256–257
Mineral analysis, 144
Mineral identification, 155
Mist flow, 55
Monazite, 187, 188
Monitoring reservoir performance, 1, 89, 156
Montmorillonite, 147, 180, 188
Multicomponent hydrocarbon system, 19–21
Multi-fingered caliper, 227
Multi-mode fiber, 247–248
Muscovite, 189

N
Natural fracture systems, 190
Natural gamma radiation, 143
Natural gamma ray emitters, 186
Natural gamma rays, origin of, 145, 146
Natural gamma spectra, 4, 145
interpretation of, 153–155
Natural gamma spectra logs (NGT), 4
Natural gamma spectroscopy, 145
Natural-gas deviation factor, 34
Natural gases, composition of, 23
Naturally occurring radionuclides, 187
Natural oils, composition of, 23
Natural radioactive deposits, 86
Near and far count-rate display, 160–161
Near counts, 160–161
Near/far count-rate display, 160–161
Neutron absorbers, 157
Neutron generator, 75–76, 156
Neutron logging, 74, 143, 144, 156–177
Nitrogen, 23, 25, 75, 162, 248
NLL. See Nuclear Lifetime Log (NLL)
Noise amplitude, 123, 124, 129
Noise logging, 5, 7, 103, 123–130
Noise spectrum, 125–126, 129
Nuclear flog, 80
Nuclear Lifetime Log (NLL), 4, 156

O
Oil, 3, 5, 18–19, 21, 23–24, 38–50, 55–59,
73–74, 85–87, 95–100, 133–134,
136–137, 140, 158, 160, 165, 168, 170,
175, 178, 180, 195–198, 231, 243, 246
compressibility, 30, 40
density, 42–43
formation volume factor, 24, 25, 39–47
gravity, 266
reservoirs, 23
shales, 189
viscosity, 44–45
Oil-well cementing, 195–198
Optical fluid density, 90, 99, 100
Organic material, 180
Organic shales, 153–154
Orthoclase, 163, 180, 189
Oxidizing environment, 190
Oxygen, 4, 61, 74–76, 156, 162, 178–180, 248
activation, 61, 62, 74–76, 156
activation logging, 74–76, 156

P
Packer/diverter flowmeter, 5, 13, 61–63, 65, 68
Packer flowmeter, 5, 13, 61–63, 65, 68
Packer leaks, 2
PAL. See Pipe analysis log (PAL)
Partial cementation, 199, 211–212
PAT, 239, 240
Peak noise, 126
Periodite, 189
Permafrost, 108
Permanent gauges, 130, 245
Permeability, 3, 5, 29, 114, 181, 234, 238
Petroleum reservoirs, 2–3
Phosphates, 189, 190
Phosphorus, 162
Pilbarite, 187
Pipe analysis log (PAL), 7, 234
Plagioclase, 189
Planning, 9, 11, 38, 45, 89
Planning a production logging job, 9
Plateau basalt, 188
Plugged perforations, 2, 130
Potassium, 76, 145–148, 152, 154, 155, 162,
188, 190
distribution of, in rocks, 188
Pressure control equipment, 9–11, 103, 217
Pressure maintenance, 1, 3
Primary cementing procedures, 196
Production cementing procedures, 196
Production combination tool, 67–68
Production logging charts, 263–275
choice of, 12
tools, 4–6, 13, 56, 89, 252
Production profiles, 61
Pseudo-critical natural-gas parameters, 32
Pseudo-critical pressure (P_{pc}), 30
Pseudo-critical temperature (T_{pc}), 30
Pseudo-reduced pressure (P_{pr}), 30
Pseudo-reduced temperature (T_{pr}), 32
Pulsed neutron, 4, 61, 74–75, 143–144, 156–177, 182–185
Pulsed neutron logging, 4, 74, 143–144, 156–177, 182–185
Pulsed neutron tool, 61, 75, 156–158, 176
PVT, 9, 17–23
Pyrite, 163
Pyrolusite, 163

Q
Quartz, 163, 180, 189
Quartzite, 189

R
Radial differential temperature, 218
Radial differential-temperature logs, 218
Radial differential-temperature tool (RDT), 119–121
Radial differential thermometer, 13
Radioactive elements, minerals and rocks, 147, 186–190
Radioactive isotope, 87
Radioactive salts, 86
Radioactive salts, deposit of, 79, 86, 144
Radioactive scale, 86
Radioactive tracers, 5, 61, 76, 79, 85
logs, 76, 79–87
materials, 85
Radium, 148
Raman scattering, 248–252, 254
Rankin, 33
Ratio curve, 159–160
Rayleigh scattering, 248–250
RDT. See Radial differential-temperature tool (RDT)
Reservoir fluid properties, 17–50
Reservoir monitoring, 174–175
Reservoir oils, 25
Reservoir performance, 1
monitoring of, 1, 89, 156
Residual oil saturations, 175
Resistance temperature detector (RTD), 105–107
Resistivity through casing, 143–144
Resonators (vibrators), 89, 95–96
Retarder, 197
Retrograde condensation, 21, 22
Reynolds number, 52, 53, 71
Rhyolite, 189
Riser, 10, 15, 103
Riser requirements, 9, 14
RTD. See Resistance temperature detector (RTD)

S
Samarskite, 187
Sand, 23, 79, 84, 88, 95, 120, 147, 165, 189
Sandstones, 178, 189
Saturated oils, 40
Schist, 189
Scintillation counter, 147
Scintillation detectors, 147
Sequestration, 87, 259
Shale, 146–148, 150, 153, 154, 159, 160, 163, 166–168, 172, 179, 182–185, 189, 190
Shale content, 144, 161
Shale content, estimating, 150–151
Shut-in temperature surveys, 116–117
Sibilation, 103
Siderite, 163, 180
Sigma, 74, 158, 159, 165, 168–173, 176
curve, 149
gas, 171–172
oil, 170–171
shale, 172
water, 168–170
Sigma-ratio crossplot, 173
Silica, 189, 247
Silicon, 162
Single-component hydrocarbon system, 18–19
Single mode fibers, 247, 248
SI system of units, 54
Slip velocity, 55, 57, 59, 134–136, 138
Slug flow, 55, 258
Sodium, 147, 162
Sodium chloride, 26, 27, 47, 61, 156, 163, 168, 173, 198
Solubility of gas in water, 28–29
Solution gas, 24
Solution–gas drive, 2
Sonan log, 123
Source rock potential, 190
Spectral gamma ray log, 13, 153
Index

T
Tank volumes, 266
Tau curve, 159
TC. See Thermocouple (TC)
TDT. See Thermal decay time (TDT)
TDT-K, 177
gating system, 176, 207–208
log presentation, 158
TDT-M, 189
Temperature, 5–7, 10, 13, 17, 18–21, 23,
25–30, 32, 37, 50, 67, 76, 89, 90, 103,
105–121, 245–257, 260
Temperature logging, 6, 13, 67, 103, 105–121,
129, 130, 218
Temperature profiles, 112–117, 260
gas-injection, 115–116
gas-production, 113–114
liquid-production, 113
water-injection, 114–115, 117
Temperature sensors, 106, 119, 218, 245
Thermal conductivity, 112, 129
Thermal decay time (TDT), 4, 158
Thermal equilibrium, 112
Thermal neutron, 87, 143, 156, 157,
159, 162
Thermal-neutron decay curves, 157
Thermistors, 105, 106
Thermocouple (TC), 260
Thermometers, 61, 62, 76, 90, 106, 109
Thief zones, 1, 111
Tholeiites, 188
Thorianite, 187
Thorite, 187
Thorium, 76, 145, 146, 148, 152, 154, 155,
186–188, 190
distribution in rocks, 188–189
group, 145
series, 186
Thorium-bearing minerals, 187
Thorium/potassium crossplot, 154
Thorium/potassium ratios, 154, 190
Thorogummite, 187
Through-tubing caliper, 72
Thucholite, 187
time constants, 149–150, 158, 159
timed-run analysis, 83–84
time-lapse logging, 174
time-lapse technique, 174–175, 238
tool trap, 10
tool velocity, 70
total porosity, 182, 183
Tracers
ejector tool, 79, 80, 82
gas, 85
logs, 13, 76, 79–87
materials, 85
oil-soluble, 85
water-soluble, 85
Tractor, 14
Travel-time measurement, 203
Treatment effectiveness, 1, 2, 79
Tubing profiles, 227–230
Tubing wall thickness, 234
Tuff, 189
Tyuyamunite, 188
Ultrasonic
cement bond logging, 218–223
transmitter, 241
travel paths, 219
Undersaturated liquid, 21
Undersaturated oils, 40
Unit conversions, 54
University of Houston, 148
Uraninite, 187
Uranium, 76, 145, 146, 148, 152–155, 186,
188, 190
distribution in rocks, 188–189
Uranium group, 149
Uranium minerals, 188
Vapor–pressure curve, 18
Vapor–pressure line, 19
Variable-density display (VDL), 195, 199, 203, 204, 212–215
Velocity, 12, 51, 52, 54–57, 59, 65, 68, 70, 134–136, 258, 266, 268
profiles, 52, 259
shot, 80–84
shot log, 83
Vertilog, 234
Viscosity, 17, 25, 29, 37, 44–45, 52, 69, 71, 198
Volume capacity of pipes, 266
Volumetric flow rate, 12, 51, 70, 76, 128, 135
Volumetric scanning log, 243
Vugs, 190

injection, 79, 84, 114–117
viscosity, 29
Watercutmeter, 90, 97
Wave-train, 195, 201, 202, 218
display, 203–205, 212
recording, 199, 200
signatures, 212–213
Weathered soils, 190
Weeksite, 188
Well-cemented pipe, 211, 215, 219, 220
Wired coiled tubing, 14
Wireless conveyance, 14
Wireline blowout preventer, 10
Wireline formation testers, 99, 181

W
Warm-back, 129, 255

breakthrough, 1, 5
coning, 1, 4
drive, 2, 3
formation volume factor, 25
holdup, 57, 58, 97–98, 134, 136

X
Xenotime, 188

Y
Yttrocrasite, 187

Z
Z factor, 30
Zircon, 187, 188