Index

A

- Academic standards of learning, 174
- Active learning, 47, 84, 88, 89, 98, 261
- Alans’s butterfly plot, 267
 - student requirements, 266, 267
 - written/quantifiable results, 267
- Animas museum, 199
- Asynchronous, 278, 287
- Authentic research, 84
 - activities
 - learning integration, higher-levels, 92
 - service-learning projects facilitates, 88

B

- Basket making, 144–46, 149–152
- Baskets
 - fancy and ceremonial, 150
 - utility, 149
- Biological classification, 122
- Biological processes
 - indigenous perspectives on, 137–139
- Biology
 - college, 24
- Blackboard, 292, 295–297, 299
- Botanical curricula, 13–15
 - nonformal education, 15
- Botanical education, 105, 111
- Botanic gardens, 214, 217, 220
 - brief history of, 214–216
- Botany, 191, 192, 199
- Brain-based, 114

C

- Camtasia, 292, 300
- Capacity building, 231, 234–236, 240
- Centers of origin, 156–158
- Collaboration, 24, 28
 - basic requirements
 - draft proposal development of, 23
 - OSN projects, 29
 - potential benefit, 26
- Colombian Biological Exchange, 155, 156
- Community meeting, 162, 173
- Connectionist, 287, 288
- Connector piece to science
 - See Ethnobiology, 11
- Conservation, 231–237, 241, 242
- Constructivist, 280
- Cooperative extension office, 168, 179
- Crops, 155, 157–159

D

- Diets, 249
- Distance learning, 279
- Domestication, 155–158

E

- Ecology, 267, 268
- Edible plants, 141
- Education, 24, 29
 - biological, 34
 - disciplines in
 - higher and community-based, 40
 - ethnic minorities and STEM, 41, 42
 - informal botanical and environmental, 42
 - liberal arts, 40
 - plant science and biology, 34
 - components of, 40
 - quality of, 31
 - within the societies, 30
- Educational
 - games, 84, 95, 96
 - standards, 10, 18
- Environmental education, 102–104, 108, 110
- Ethnic, 187, 188, 196, 197, 204, 206
Ethnobiology, 11, 16, 35, 40, 158, 277, 278, 280, 282, 285, 287
and OSN, 13, 14, 15
as bridge, 11
as interdisciplinary, 11
as key to survival, 12
assessment methods, 43
assessment technique, 282, 284
as study of human interactions
with biological world, 12
at Athabasca University, 278, 279
biological courses outside of, 43
classes, 36
collaborative field of, 34
contributions to
biology education, 34
trends in ethnobiology education, 34
courses, 37, 39, 43
design, 279, 280
enrichment material, 281
reading material, 280
curricula, 13–15
defined, 33
diverse contributions of, 43
education, 44
employable and outward-facing, 43
enhance plant science education, 34
in STEM Fields, 12
interdisciplinary nature of, 34
non-formal education, 15
nonformal education, 15
place-based learning, 18
plant science
curricula in, 43
revitalization of student interest and comprehension in, 43
role in
biology education, 34
improving plant science, 34
role play
in filling gaps, 10–12
in pipeline, 10–12
STEM classes
concepts and approaches, 41
strategy developed by
OSN for, 12
student-teacher interaction, 284
used of, 40
academic skills, 240
and educational trends in economic, 10
and voluntary program accreditation standards for, 13
applied projects, 241
as bridge to science, 11
courses
and curriculum recommendations, 13
offered in United States, 10
credible discipline, 19
into rigorous discipline, 19
program for grades 9–12, 16
teaching, near sacred Mt. Khawa Karpo,
236–241
teaching resources, 13
Tibetian, in eastern Himalayas, 233–236
Evaluation
contributions of ethnobiology
and trends in ethnobiology education,
34
to biology education, 34
Evidence-based curricula, 165
Experiential education, 112
in immersive outdoor settings, 107
F
Fairchild Tropical Botanic Garden (FTG),
218, 223
Festivals, 188, 206
Field trips, 261, 266, 269
Alans’s butterfly plot, 266
design of, for pharmacy students, 247, 248
John’s backyard garden, 268
pine jog elementary school, 267, 268
Focus group, 162
Folk taxonomy, 123, 124, 126–128, 131
their peer group, 129
Food, 155, 157–159, 187, 191, 204, 206, 208
classification of, 246
Food desert, 170, 177, 180
Foodways, 157, 158
Frostburg museum, 199
G
Garden history see Botanical gardens, 215
Gardens, 204, 206, 207
Gunpowder Valley Conservancy (GVC), 179
H
Historical collections, 195–197
Historical society, 195, 199
Human-nature interface, 121
I
Indigenous people, 136–138, 140–142, 152
Internet, 284
K

K-12 education, 5, 19

L

Land use
- management, 235–237, 239, 240
- traditional, fieldwork on, 237, 239

Learning technologies, 40, 41

M

Market visit activities, 253, 254

Mashantucket Pequot Museum and Research Center, 198

Medicinal Plant Monograph (MPM), 292
- first draft, 296
- plant list, 295
- reference list, 295
- structure, 292

Medicine plants, 139

Migration, 155, 157–159

Mind/brain education (MBE), 110, 111, 113
- strongly supports these pedagogical approaches, 107

Mini-projects
- exotic species, 264
- foraging, 264
- lawns, 265
- medicinal plants, 265
- natural areas, 266
- organic/conventional/GMO, 264
- ornamentals, 265

Museums, 196, 197, 198, 199, 207

N

Navajo nation museum, 199

Needs assessment, 163, 165, 167

Net generation, 299

Neuro-education, 111, 112
- emerging field of, 111

O

Open Science Network (OSN), 13
- in ethnobiology, 23, 24

Out of school time, 176

P

Participatory rural appraisal (PRA), 235, 237

Pedagogy, 280
- plant identification, aligning of, 84, 85, 88, 89, 92–97
- Peer review, 292, 296, 297

Plant identification, 84, 85, 88, 89, 92–94, 96, 98
- application
 - concepts and skills, 85
 - teaching, 97

Plants, 245–250, 253, 254
- DNA sequencing, 54
- domestication, 55
- morphology, 54
- used in ancient diets, 55
- uses, 48

Plant science curricula, 43

Post-market trip activities, 254

Pre-field trip lecture model, 249
- centers of superfood development, 250
- utilizing local resources, 251

Pre-market trip activities, 251, 253

R

Research
- ethics, 76–79
- integrity, 61, 77, 78
- skills, 64
 - demonstrate mastery of, 75

Research-based learning, 61

Royal British Columbia Museum, 198

Rubrics, 291, 293, 296

S

Sacred sites, 233, 235, 237

Science, technology, engineering and math (STEM), 168, 173, 174

Scientific societies, 21, 24, 31
- alignment with, 30

Smithsonian institution, 198

Social media, 180, 181

Specialty food markets, 246, 252–254, 256

Student-centered approach, 47

Student-centered learning, 84
- in classrooms, 13
- paradigm of, 83
- real research opportunities, 14

Student-driven learning
- historical collections, 195–197

Student engagement, 292, 299

Student experience, 49, 55
- as teaching, 52
 - engagement with delivery of essential information, balancing, 53
 - hands on learning, 54
 - making topics interesting, 54, 55
 - baby steps
 - positive experiences, 49

Indiana Jones
- positive experiences, 50
unengaging classes
negative experiences, 51
Student learning
assessment of, 254
experiences, 251
Student-led research, 123
Surveys, 162
Sustainable development, 231–234, 237, 241, 242

T
Taxonomy, 218, 221, 223, 225
organizing nature, 121
conservation, implications for, 122
historical perspectives, 121, 122
Teaching, 56, 253, 254
applying experience as students, 52
hands on learning, 54
making topics interesting, 54, 55
small steps, 53
experiences as students
Indiana Jones, positive experiences, 50
negative experiences, 51
positive experiences, 49
in academia, 55
in urban environment, 247–249
Teaching research
skills
principles guide, 62, 63, 64
Teaching tools
genetically modified organisms, 263

Technology, 292, 295, 296, 301, 302
as powerful tool for, 96
hurdles in, 97
magazine, 97
Tibet, 233
Traditional Ecological Knowledge (TEK),
103–105, 136, 152, 231, 232, 241

U
Undergraduate
curriculum, 11
educators, 13
research, 63, 75
students, 124, 132
University education, 215
University of Hawai‘i
ethnobotany at, brief history of, 189–195

V
Vietnam Historical Museum, 198

W
Web, 281

Y
YouTube, 292
as public outreach tool, 299–301