CONTRIBUTORS

Aabin, B.
Department of Biochemistry and Nutrition
The Technical University of Denmark
DK-2800 Lyngby, DENMARK

Adrian, Jean
Chaire de Biochimie Industrielle et Agroalimentaire
Conservatoire National des Arts et Metiers,
292, rue Saint-Martin, 75003 Paris, FRANCE

Aeschbacher, H. U.
Nestle Research Centre, Nestec Ltd.
CH 1000 Lausanne 26, SWITZERLAND

Albright, K
Food Research Institute
University of Wisconsin
Madison, Wisconsin 53706

Barkholt, V
Dept. of Biochemistry and Nutrition
The Technical University of Denmark
DK-2800 Lyngby, DENMARK

Bates, Anne H.
Western Regional Research Center
ARS, USDA, Albany, California 94710

Becker, M. Ines
P. Universidad Catolica de Chile
Casilla 6177, Santiago, CHILE

Bellion, I.
Procter Department of Food Science
University of Leeds
Leeds, LS2 9JT, GREAT BRITAIN

Benjamin, H.
Food Research Institute
University of Wisconsin
Madison, Wisconsin 53706

Bjeldanes, Leonard F.
Dept. of Nutritional Sciences
University of California
Berkeley, California 94720

Boncrustiani, Guido
Dipartimento di Scienze dell Ambiente e Territoriale
Universita di Pisa, 56126 Pisa, ITALY

Bradfield, Christopher
Dept. of Pharmacology and Toxicology
Northwestern University Medical School, Chicago, Illinois

Brandon, David L.
Western Regional Research Center
ARS, USDA, Albany, California 94710

Brooks, James R.
Ross Laboratories
Columbus, Ohio

Buhl, Karin
Institute of Human Nutrition
Christian-Albrechts University
2300 Kiel, GERMANY

Buonarati, M. H.
Lawrence Livermore National Laboratory, Livermore, California 94550

Burks, Wesley A.
Arkansas Children's Hospital
800 Marshall St.,
Little Rock, Arkansas 72202

Chin, J.
Food Research Institute
University of Wisconsin
Madison, Wisconsin 53706
De Ioannes, Alfred E.
P. Universidad Catolica de Chile
Casilla 6177, Santiago, CHILE

Djurtoft, R.
Dept. of Biochemistry and Nutrition
The Technical University of Denmark
DK-2800 Lyngby, DENMARK

Edwards, Ana M.
P. Universidad Catolica de Chile
Casilla 6177, Santiago, CHILE

Erbersdobler, Helmut F.
Institute of Human Nutrition
Christian-Albrechts University
2300 Kiel 1, GERMANY

Faith, N.
Food Research Institute
University of Wisconsin
Madison, Wisconsin 53706

Felton, J. S.
Lawrence Livermore Natl. Laboratory
Livermore, California 94550

Finot, Paul-Andre
Nestle Research Centre, Nestec Ltd.
Vers-chez-les-Blanc
1000 Lausanne 26, SWITZERLAND

Frangne, Regine
Conservatoire National des Arts et
Metiers
292, rue Saint-Martin, 75003 Paris,
FRANCE

Friedman, Mendel
Western Regional Research Center
ARS, USDA, Albany, California 94710

Fulz, E.
Lawrence Livermore Natl. Laboratory
Livermore, California 94550

Goddard, S. J.
Procter Department of Food Science
University of Leeds
Leeds, LS2 9JT, GREAT BRITAIN

Gruter, A.
Food Research Institute
University of Wisconsin
Madison, Wisconsin 53706

Ha, Y. L.
Food Research Institute
University of Wisconsin
Madison, Wisconsin 53706

Hanna, Marta Salim
P. Universidad Catolica de Chile
Casilla 6177, Santiago, CHILE

Hathcock, John N.
Center for Food Safety and Applied
Nutrition, FDA
Washington, D. C. 20204

Helm, Rick, M.
Arkansas Children's Hospital
800 Marshall St.,
Little Rock, Arkansas 72202

Hymowitz, Theodore
Department of Agronomy
University of Illinois
Urbana, Illinois 61801

Jagerstad, Margaretha
Dept. of Food Chemistry
Chemical Center
University of Lund, P. O. Box 124
S-221 00 Lund, SWEDEN

Johnson, Phyllis E.
Grand Forks Human Nutrition Center
USDA, ARS, P. O. Box 7166
University Station,
Grand Forks, North Dakota 58202

Jonsson, Lena
SRI, Swedish Institute for Food
Research, P. O. Box 5401
S-402 29 Goteborg, SWEDEN

Jost, R.
Nestle Research Centre, Nestec Ltd.
Vers-chez-les-Blanc
CH 1000 Lausanne 26, SWITZERLAND

Kanazawa, Kazuki
Dept. of Agricultural Chemistry
Kobe University
Nada-ku, Kobe 657, JAPAN

Kinsella, J.
Institute of Food Science
Cornell University
Ithaca, New York 14853

Knize, M. G.
Lawrence Livermore Natl. Laboratory
Livermore, California 94550

Lohmann, Michael
Institute of Human Nutrition
Christian-Albrechts University
2300 Kiel 1, GERMANY
Loprieno, Gregorio  
Dipartimento di Scienze dell Ambiente  
Università di Pisa  
56126 Pisa, ITALY

Loprieno, Nicola  
Dipartimento di Scienze dell Ambiente  
Università di Pisa  
56126 Pisa, ITALY

Monti, J. C.  
Nestle Research Centre, Nestec LTD.  
Vers-chez-les-Blanc  
CH 1000 Lausanne 26, SWITZERLAND

Oste, Rickard E.  
Department of Applied Nutrition  
The Chemical Center  
University of Lund  
S-221 00 Lund, SWEDEN

Paik, In-Kee  
Department of Animal Science  
Chung-Ang University  
Assung-Kun, Kyonggi-Do  
SOUTH KOREA

Pariza, M. W.  
Food Research Institute  
University of Wisconsin  
Madison, Wisconsin 53706

Pedersen, H. S.  
Dept. of Biochemistry and Nutrition  
The Technical University of Denmark  
DK-2800 Lyngby, DENMARK

Poiffait, Annie  
Conservatoire National des Arts et Metiers  
292, rue Saint-Martin, 75003 Paris, FRANCE

Quattrucci, Enrica  
Istituto Nazionale della Nutrizione  
00179 Rome, ITALY

Rader, Jeanne I.  
Division of Nutrition, FDA  
200 C. Street, S. W.  
Washington, D. C. 20204

Sampson, Hugh, H.  
Johns Hopkins University Medical School  
Baltimore, Maryland

Sandberg, Anne-Soffie  
Department of Food Science  
Chalmers University of Technology  
Gothenburg, SWEDEN

Sarwar, G.  
Bureau of Nutritional Science  
Food Directorate, National Health and Welfare, Tunney's Pasture,  
Ottawa, Ontario, CANADA K1A 0L2

Silva, Eduardo  
P. Universidad Catolica de Chile  
Casilla 6177, Santiago, CHILE

Skog, Kerstin  
Department of Food Chemistry  
University of Lund, P. O. Box 124  
S-221 00 Lund, SWEDEN

Smith, T. K.  
Department of Nutritional Sciences  
University of Guelph  
Guelph, Ontario, CANADA N1G 2W1

Storkson, J.  
Food Research Institute  
University of Wisconsin  
Madison, Wisconsin 53706

Swallow A. John  
Patterson Institute for Cancer Research  
Christie Hospital and Holt Radium Institute  
Manchester M20 9BX, ENGLAND

Sword, J. T.  
Food Research Institute  
University of Wisconsin  
Madison, Wisconsin 53706

Thompson, L. H.  
Lawrence Livermore Nat. Laboratory  
Livermore, California 94550

Thresher, Wayne  
Central Soya  
Fort Wayne, Indiana
Tucker, J. D.
Lawrence Livermore Natl. Laboratory
Livermore, California 94550

Turteltaub, M. H.
Lawrence Livermore Natl. Laboratory
Livermore, California 94550

Vanderlaan, M.
Lawrence Livermore Natl. Laboratory
Livermore, California 94550

Walker, R.
Department of Biochemistry
University of Surrey
Guildford GU2 5XH
UNITED KINGDOM

Watkins, B. Y.
Lawrence Livermore Natl. Laboratory
Livermore, California 94550

Wedzicha, B. L.
Procter Department of Food Science
University of Leeds
Leeds, LS 2 9 JT, GREAT BRITAIN

Weisburger, J. H.
American Health Foundation
Valhalla, New York 10595

Williams, Larry
Arkansas Children's Hospital
800 Marshall St.,
Little Rock, Arkansas 72202
INDEX

Absorption, 483
Acetaminophen, 155, 166
Acetylaminofluorene, 129
Acetyl CoA, 244, 256
Acetylcysteine, 167, 196
treated soybeans, 327
Acetyllysine, 417
Acid-base catalysis of browning, 227
Acid casein, 62
Acidic meat extract, 126
Acinar cell foci, 274
Acylhydroperoxides, 256
Adenoma of the pancreas, 355
Aerobic irradiation, 35
Aflatoxins, 23, 129, 153, 173
Aging, 41
Air pollution, 173
Albumin, 270
Alcohol, 139, 484
Aldehyde dehydrogenase, 23
Aldehydes, 23, 87
Alkali treatment
foods, 447
soybean products, 331, 487
All-amino-acid diet, 439
Allele, 340
Allelopathic effects, 156
Allergens in foods, 281
Allergic infants, 310
Allergic patients, 284
Allergy
to foods, 295
to peanuts, 304
reduction, 309
Allyl isothiocyanate, 378
Amadoir products, 363
Ames test for mutagenicity, 87, 108, 181, see Salmonella
Amino acid (continued)
effect of heat on, 92
essential, 392
fortification, 416
imbalance, 372
as mutagen precursors, 90
ratings, 390
scores, 390
supplementation, 372
transport, 463
p-Aminobenzene, 129
Aminocarbonyl reactions, 182
Aminopeptidase, 378,
Aminopyrene metabolism, 155
Ammoniated canola meal, 404
Anabolic agents, 2
Anemia and tin, 510
Animal
assay of vitamin A, 64
diets, 239
feeding studies, 342
Antibodies, 310
complex, 196, 324
monoclonal, 323
Anticarcinogenic properties, 138
cabbage, 154
cauliflower, 153
fatty acids, 269
Anticarcinogens, 75, 138
Antigenic
activity, 326
homologies, 283
structure of BSA
trapsin inhibitor, 332
Antiglycinin antiserum, 283
Antinutrients, 374
Antinutritive effects
tin, 509
trapsin inhibitors, 274
Antisense RNA, 356
Antisera to glycinin, 283
Antisoy protein antisera, 283
Antitoxic effects, 196
Apparent digestibility, 373
Apple juice
Arabic gum, 13
Arachidonic acid, 259
Argon plasma atomic emission spectroscopy, 511
Ascorbic acid browning, 188, 230
Ascorbyl radical, 230
Asthmatic crisis and sulfites, 172
At-risk foods, 24
Atomic hydrogen, 16
Atopic dermatitis, 295
Atropine, 195
Autoclaving, 195, 351
Available lysine, 367
Azaserine, 274
Bacillus fibrinosolvens, 270
Baking, 88, 415
Barley, 500
Basal diets, 419
Basic meat extract, 126
Battery of toxic tests, 3
BBI complex, 354
Beef
bouillon, 111
steak, 179
stew, 173
supernatant fraction, 135
Beneficial effects
food processing, 371
non-enzymatic browning, 332
trypsin inhibitors, 277, 333
Benzyopyrene, 49, 271
Benzyldiene-lysine, 420
Beta-lactoglobulin, 62
Beta-oxidation, 256
Bile acids, 61, 142
Bioactivation, 154
Bioassay for food labeling, 471
Bioassay with mice, 418
Bioavailable lysine derivatives, 420
Bioavailable minerals, 499
Biochemical effects of peroxidation, 259
Biofeedback hypothesis, 355
Biohydrogenation, 270
Biological utilization
amino acids, 483
D-amino acids, 455
minerals, 483
Bisulfite equilibria, 221
Blanching, 371
Blood biochemical data, 391
Blue cotton, 195
Body burden of tin, 510
Boiling, 371
Bone marrow, 20, 123, 511
Bouillon cubes, 95, 111
Bovine serum albumin, 310
Bovine trypsin, 232
Bowman-Birk Inhibitor, 274, 322, 339
Bran, 500
Branched chain amino acids, 464
Brain opioids, 461
Brain phospholipids, 261
Brassica oleraceae anticarcinogens, 153
Bread 174, 484
crumb, 423
crust, 186, 423
fortification, 425
nutritional improvement, 415, 422
sour-dough, 503
whole, 423
Breakfast cereals, 366, 485
Breast-fed infants, 309
Broccoli, 153
Broiler chicks, 405
Broiling of meat, 99
Browned albumin, 490
Browning, 323
and color formation, 99
and kidney damage, 188
and mineral utilization, 486
and mutagen formation, 172
non-enzymatic, 171
oxidative, 230
precursors, 222
and toxicity, 232
Butter, 4
Butylated anisole, 168
Butylated hydroxytoluene, 168
Cabbage, 167, 228
Cadmium, 520
Caffeine, 49
Calcium absorption, 484
effect on phytate, 499
Caloric intake, 269
Carnostat, 274
Campylobacter infection, 6
Cancer, 49, 75
causes, 146
chemoprevention, 144
colon, 140
and dietary bran, 140
and dietary fat, 142
and dietary fiber, 144
esophageus, 139
mechanism, 143
oral cavity, 139
pathology, 140
prevention, 143
promotion, 139
types, 143
and vegetable diets, 153
Canned foods and tin, 509
Canning, 488
Canola meal, 403
Capture ELISA of glycinin, 284
Caramelization, 174
Carbohydrate-protein reactions, 332
Carboxymethylcellulose, 174
Carboxymethylflavonin, 34
Carboxysemialdehyde, 243
Carcinogenesis
and dietary fat, 269
in food, 137
inhibition by soybeans, 356
organ-site specific, 143
phases, 138
reduction, 260
Carcinogens, 115
and browning, 172
and cooked foods, 133
covalent binding, 153
metabolism, 153
Carcinogenic potential of food, 107
Cardiovascular pathology, 49
Carrot, 228
Carrot juice, 78
Carotene, 144
degradation, 75
heat treatment, 75
isomers, 77
Casein, 188, 447
allergenicity, 314
hydrodispersion, 67
iodinated, 403
nutritional value, 62, 432
phosphorus content, 70
vitamin A binding, 62
zinc stability constant, 490
Catabolic enzymes, 432
Cataracts, 41
Cauliflower and cancer, 154
Causes of human cancer, 146
Cell cycling, 142
Cell permeability, 257
Cellular antioxidants, 519
Cellulose, 144, 174
Cereal
bran, 144
digestion, 377
flakes, 13
proteins, 416
Ceruloplasmin, 513
Cesium-137, 14
Charcoal broiling, 141
Charged ions, 377
Cheeses, 270
Chemical changes and allergy, 313
Chemical modification of gluten, 439
Chemical modification during processing, 331
Chemistry of amino acids, 448
Chemistry of mutagen formation, 182
Chicks, 276
Children, 378
Clastogenicity, 181
Clostridium botulinum, 23
Chlorophyll, 195
Cholesterol, 438
assay, 418
in liver, 69
Cholecystokinin, 274, 355
Chromosome damage, 38, 118, 174
Chylomicron particles, 256
Chymotrypsin inhibitors, 273, 341
Cigarette smoke, 173
Cinnamon, 17
Citrate cycle, 245
CLA anticarcinogenicity, 270
CoA and CoASH, 241, 247
Cobalt-60, 14
Cocklebur, 404
Coconut oil, 263
Cod liver oil, 258
Coffee, 49
browning, 51
caffein-free, 53
demucilagenated, 53
niacin content, 53
nutritional value, 55
and pellagra, 55
torrefaction, 53
Color formation during browning, 230
Competitive binding, 325
Conjugated dienoic linoleic acid, 269
Conjugation reactions, 165
Cookies, 174
Copper
absorption, 489
affinity for lysinoalanine, 470
availability, 488
deficient diets, 517
effect of tin, 514
in rats, 513
Corn, 56, 447
Cow flakes and copper binding, 488
Cournix quail, 167
Cow's milk allergy, 309
Covalent binding index of carcinogens, 129
Creatine and meat mutagens, 85, 93
Crosslinks, 416
Crude protein, 372
Cultured human lymphocytes, 118
Cyanogen bromide, 286
Cyclodextrins, 195
Cyclophosphamide, 259
Cyclooxygenase, 259
Cyclophosphamidé, 119
Cysteine, 191
glycine, 166
products, 168
pyridylethyl, 468
Cystine, 167, 347, 378, 398
Cytochrome P450, 157, 182, 271
Cytogenetic analysis, 118
Cytotoxicity, 37

D-amino acids, 328
biological utilization, 455
formation, 447
growth depression, 457
nutritional value, 447
safety, 447
D-cysteine, 457
D-cystine, 457
D-glucose, 174
D-methionine, 455
D-phenylalanine, 458
D-tryptophan, 464
D-tyrosine, 460

Daily intake of heterocyclic amines, 111
Debye-Hückel equation, 219
Deep-freezing, 371
Dehydrated foods, 219
Dehydrated vegetables, 13
Dehydroalanine, 468
Dehydroascorbic acid, 230
Delaney clause, 3
Deoxypentofuranose, 230
Desiccation, 416
Detecting food irradiation, 26
Detergents, 61
Dialdehyde crosslinks, 380
Diarrhea, 238
Diazophenol, 141
Diet and health, 1, 4, 107
Dietary
antigens, 281
fat and cancer, 142, 269
fiber, 144, 374
modulation, 196
patterns, 9
restrictions and cancer, 142
tin, 509
Diethylene glycol, 87
Diets, 403
Differential scanning calorimetry, 310
Diformyllysine, 420
Difructoseglycine, 222
Digestibility
 cereals, 376
D-amino acids, 378
infant formulas, 393
human, 328, 372
processed foods, 371
soy proteins, 299
Digestive enzymes, 356, 416

DimeIQ, 84
Dimethylbenzanthracene, 154
Dioxin, 154
Direct ELISA of glycinin, 284
Disease prevention, 147
Diseases, 143
Disulfide bonds, 232, 286, 416
and aging, 41
disruption, 355
looping, 313
rearrangement, 313, 327
in soybean inhibitors, 327
Disulfides, 376
DMIP, 84
DNA, 26
breaks, 38
covalent binding to 116, 127
nucleophilic centers, 138
polymerases, 139
Dithiolthiones, 167
Docosahexanoic acid, 255
Double
blind studies, 295
headed inhibitors, 322
immunodiffusion test, 311
Dried fruits, 13, 187
Dry heating of amino acids, 92
Dry heating model system, 88
Drying, 371
Dye-sensitized photooxidation, 33

Economic distortions, 9
Exematous lesions, 295
Effect of heat on soybeans, 339
Egg protein allergens, 281, 286
Eggs, 6
Eicosapentanoic acid, 255
Electrical conductance, 26
Electron spin resonance, 17
Electrophiles, 138
ELISA of soybean proteins, 283, 321
Embryos, 40
Enantiomeric ratio, 448
Endocrine sensing mechanism, 355
Endopeptidase, 314
Endoplasmic reticulum, 156
Enhance protein digestion, 374
Enzymatic browning, 171, 231
Enzymatic digestion, 373
Enzyme inhibitors, 328, 378
Epidemiology, 5, 75, 153
Epinephrine, 257
Epithiobutane, 156
Epitopes, 324, 343
Ergot alkaloids, 195
Esophagus, 139
Essential amino acids, 392
Esterification, 70
Estradiol, 142
Ethane exhalation, 257
Eucalyptus leaf waxes, 271
<table>
<thead>
<tr>
<th>Term</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Europe against cancer</td>
<td>4</td>
</tr>
<tr>
<td>European Economic Community</td>
<td>1</td>
</tr>
<tr>
<td>Excited species</td>
<td>37</td>
</tr>
<tr>
<td>Excretion profiles</td>
<td>365</td>
</tr>
<tr>
<td>Extrahepatic aryl hydroxylase</td>
<td>154</td>
</tr>
<tr>
<td>Extrusion cooking</td>
<td>378, 485</td>
</tr>
<tr>
<td>Fast electrons</td>
<td>11</td>
</tr>
<tr>
<td>Fat calories</td>
<td>144</td>
</tr>
<tr>
<td>Fat and meat mutagens</td>
<td>94</td>
</tr>
<tr>
<td>Fatty acids</td>
<td></td>
</tr>
<tr>
<td>analysis</td>
<td>342</td>
</tr>
<tr>
<td>anticarcinogenicity</td>
<td>269</td>
</tr>
<tr>
<td>in fish oils</td>
<td>255</td>
</tr>
<tr>
<td>and liver disease</td>
<td>257</td>
</tr>
<tr>
<td>peroxidation</td>
<td>255</td>
</tr>
<tr>
<td>polymerized</td>
<td>256</td>
</tr>
<tr>
<td>protein complexes</td>
<td>257</td>
</tr>
<tr>
<td>FDNB-reactive lysine</td>
<td>367</td>
</tr>
<tr>
<td>Feed efficiency</td>
<td>406</td>
</tr>
<tr>
<td>Feedback control</td>
<td>166, 274</td>
</tr>
<tr>
<td>Feeding trials</td>
<td>18, 21</td>
</tr>
<tr>
<td>Fermentation</td>
<td>417</td>
</tr>
<tr>
<td>milk</td>
<td>500</td>
</tr>
<tr>
<td>mineral utilization</td>
<td>484</td>
</tr>
<tr>
<td>phytate hydrolysis</td>
<td>503</td>
</tr>
<tr>
<td>Ferric pyrophosphate</td>
<td>485</td>
</tr>
<tr>
<td>Fish oils</td>
<td>485</td>
</tr>
<tr>
<td>flavors</td>
<td>256</td>
</tr>
<tr>
<td>and disease</td>
<td>257</td>
</tr>
<tr>
<td>metabolism</td>
<td>256</td>
</tr>
<tr>
<td>and phospholipids</td>
<td>261</td>
</tr>
<tr>
<td>and tocopherol</td>
<td>262</td>
</tr>
<tr>
<td>Flaking</td>
<td>485</td>
</tr>
<tr>
<td>Flavin mononucleotide</td>
<td>33</td>
</tr>
<tr>
<td>Flour supplementation</td>
<td>433</td>
</tr>
<tr>
<td>Fluorescence</td>
<td>63</td>
</tr>
<tr>
<td>Food</td>
<td></td>
</tr>
<tr>
<td>additives</td>
<td>1, 218, 491</td>
</tr>
<tr>
<td>allergy</td>
<td>281, 295, 304, 309, 312</td>
</tr>
<tr>
<td>hygiene</td>
<td>1</td>
</tr>
<tr>
<td>hypersensitivity</td>
<td>295</td>
</tr>
<tr>
<td>labeling</td>
<td>439</td>
</tr>
<tr>
<td>laws</td>
<td>1</td>
</tr>
<tr>
<td>processing</td>
<td>483, 509</td>
</tr>
<tr>
<td>radiation</td>
<td>7</td>
</tr>
<tr>
<td>safety</td>
<td>8</td>
</tr>
<tr>
<td>standards</td>
<td>12</td>
</tr>
<tr>
<td>Formylkynurenine</td>
<td>34</td>
</tr>
<tr>
<td>Formyl-lysine</td>
<td>417</td>
</tr>
<tr>
<td>Formyl-methylflavin</td>
<td>34</td>
</tr>
<tr>
<td>Free radicals</td>
<td>16, 196, 261</td>
</tr>
<tr>
<td>Fried hamburgers</td>
<td>88</td>
</tr>
<tr>
<td>Frog legs</td>
<td>13</td>
</tr>
<tr>
<td>Fructose</td>
<td>91, 144</td>
</tr>
<tr>
<td>Fructosyl lysine metabolism</td>
<td>363</td>
</tr>
<tr>
<td>frying temperatures</td>
<td>99</td>
</tr>
<tr>
<td>Full-fat soy flour and cancer</td>
<td>274</td>
</tr>
<tr>
<td>Functional properties</td>
<td>381</td>
</tr>
<tr>
<td>Fungicides and tin</td>
<td>509</td>
</tr>
<tr>
<td>Furfural</td>
<td>230</td>
</tr>
<tr>
<td>Furosine</td>
<td>263</td>
</tr>
<tr>
<td>Gamma-globulin</td>
<td>305</td>
</tr>
<tr>
<td>Gamma-glutamyl-cycle</td>
<td>166</td>
</tr>
<tr>
<td>cysteine</td>
<td>166</td>
</tr>
<tr>
<td>transferase</td>
<td>35, 166</td>
</tr>
<tr>
<td>Gas chromatography</td>
<td>19, 122</td>
</tr>
<tr>
<td>Gene mutations</td>
<td>117</td>
</tr>
<tr>
<td>Genetically engineered organisms</td>
<td>7</td>
</tr>
<tr>
<td>Genotoxic meat carcinogens</td>
<td>115, 138</td>
</tr>
<tr>
<td>Germination</td>
<td>487</td>
</tr>
<tr>
<td>Gliadin</td>
<td>380</td>
</tr>
<tr>
<td>Globulin allergy</td>
<td>304</td>
</tr>
<tr>
<td>Glucobrassicin</td>
<td>156</td>
</tr>
<tr>
<td>Glucose</td>
<td>88, 91, 332</td>
</tr>
<tr>
<td>Glucosinolates</td>
<td>155, 163, 403</td>
</tr>
<tr>
<td>Glucosylglycine</td>
<td>222</td>
</tr>
<tr>
<td>Glutamate oxaloacetate transaminase</td>
<td>242</td>
</tr>
<tr>
<td>Glutamate pyruvate transaminase</td>
<td>242</td>
</tr>
<tr>
<td>Glutamyl-lysine</td>
<td></td>
</tr>
<tr>
<td>bread fortification</td>
<td>415</td>
</tr>
<tr>
<td>metabolism</td>
<td>367, 418</td>
</tr>
<tr>
<td>tritium-labeled</td>
<td>437</td>
</tr>
<tr>
<td>Glutathione</td>
<td>196, 256</td>
</tr>
<tr>
<td>detoxification pathway</td>
<td>165</td>
</tr>
<tr>
<td>peroxidase</td>
<td>238</td>
</tr>
<tr>
<td>reductase</td>
<td>513</td>
</tr>
<tr>
<td>synthetase</td>
<td>166</td>
</tr>
<tr>
<td>tissue levels</td>
<td>166</td>
</tr>
<tr>
<td>transferase</td>
<td>165, 261</td>
</tr>
<tr>
<td>Gluten</td>
<td>174</td>
</tr>
<tr>
<td>Glycemia</td>
<td>49</td>
</tr>
<tr>
<td>Glycerol</td>
<td>219</td>
</tr>
<tr>
<td>Glycogen</td>
<td>245</td>
</tr>
<tr>
<td>Glycinin</td>
<td></td>
</tr>
<tr>
<td>allergy</td>
<td>284, 304</td>
</tr>
<tr>
<td>ELISA</td>
<td>283</td>
</tr>
<tr>
<td>subunits</td>
<td>282</td>
</tr>
<tr>
<td>Glycoalkaloids</td>
<td>24</td>
</tr>
<tr>
<td>Glycosylated proteins</td>
<td>366</td>
</tr>
<tr>
<td>Goitrin</td>
<td>167, 403</td>
</tr>
<tr>
<td>Good agricultural practices</td>
<td>3</td>
</tr>
<tr>
<td>Gossypol</td>
<td>378</td>
</tr>
<tr>
<td>Grain standards</td>
<td>195</td>
</tr>
<tr>
<td>Grape juice</td>
<td>192</td>
</tr>
<tr>
<td>Gravy</td>
<td>85, 95</td>
</tr>
<tr>
<td>Griddle-fried ground beef</td>
<td>135</td>
</tr>
<tr>
<td>Grilled</td>
<td></td>
</tr>
<tr>
<td>beef</td>
<td>135</td>
</tr>
<tr>
<td>chicken</td>
<td>173</td>
</tr>
<tr>
<td>lamb</td>
<td>130</td>
</tr>
<tr>
<td>Growth</td>
<td></td>
</tr>
<tr>
<td>depression and tin</td>
<td>510</td>
</tr>
<tr>
<td>rats</td>
<td>373</td>
</tr>
<tr>
<td>retardation</td>
<td>367</td>
</tr>
<tr>
<td>Guinea pigs</td>
<td>310</td>
</tr>
</tbody>
</table>
Half-lives, 14
Ham, 179
Harman, 49
Hazard analysis critical control
point system, 5
Health promotion, 147, 356
Heart, 94
Heart disease, 255
Heat
damaged milk, 367
effect on mineral availability, 485
inactivation of soybean inhibitors, 329
labile molecules, 357
processing of carrot juice, 76
treated
meat, 83
phytase, 499
soybean inhibitors, 326, 340, 356
Heating and food allergy, 295
Hemagglutination assay, 342
Hematopoiesis and tin, 519
Heme iron, 487
Hemoglobin, 487
Hemimercaptals, 232
Hamorrhage, 238
Hepatic
dysfunction, 35
enzymes, 244
metabolites, 240
pigments, 239
Hepatocarcinogenesis, 154
Hepatocyte, 247
Hepatotoxicity, 37, 237
Herbs, 13
Heterocyclic amines, 84, 141, 172
antibodies, 109
determination, 110, 133
in humans, 130
metabolism, 181
mutagenicity and carcinogenicity, 108
Hexanol, 238
High-fat diets, 20
His-reversion, 174
Histamine release, 313
Histopathology, 470
Hormones, 142
Host-mediated biochemical activation, 138
HPLC of heterocyclic amines, 110
Human
blood, 270
exposure rodent potency ratio, 172
health hazards, 339
milk, 309, 392, 398
nitrogen balance studies, 373
sera immunobinding assay, 288
studies, 471
T cells, 322
trials, 366
Humectants, 219
Hydrated electrons, 16
Hydrocellulose, 174
Hydrodispersion, 67
Hydrogen peroxide, 38
Hydroperoxides, 237, 259
Hydroperoxyindolealanine, 34
Hydrophobic casein, 61
Hydroxy radicals, 16
Hydroxymethylcellulose, 174
Hydroxymethylfurural, 222
Hydroxynonenal, 238
Hydroxysulfonates, 225
Hypersensitivity, 281, 295
Hypertension, 461
Hypoallergenic formula, 310
IgG and IGE antibodies, 281
antihumain, 296
antisoy, 296
hydrolysis, 315
infant allergy, 310
Imidazo food mutagens, 88
Imidazoquinaxoline, 184
Imidazoquinoline, 184
Immune enhancement by whey proteins, 319
Immunossays, 288, 323, 343
Immunoblotting, 296
Immunocompromised, 6
Immunolectrophoresis, 282
Immuno precipitates, 313
Indole
3-acetonitrile, 156
3-carbaldehyde, 156
3-carbinol, 156
flavin photoadduct, 35
Indolylic autolysis, 153
and inhibition of neoplasia, 156
Induced radioactivity, 15
Inductive constants, 453
Infant formulas, 3, 309
amino acid content, 392
lysine availability, 393
lysinoalanine content, 400
and processing, 390
protein quality, 390
tryptophan content, 392
Inhibition
ascorbate browning, 230
enzymatic browning, 217, 231
lipid browning, 231
neoplasia, 155
Inositol phosphate, 500
Insoluble fiber, 144
Intercellular gap junction, 139
Intestinal tract of children, 365
Intolerance to food, 295, 309
Intragastric ingestion, 424
Iodiated casein, 403
Iodine in diets, 412
Ionic strength, 218
Ionization of water, 16
IQ compounds, 84, 116
binding to DNA, 125
binding to proteins, 125
in blood, 124
in tissues, 124
in urine, 125
Iron
available, 499
in heme, 487
in human diets, 505
in meat, 486
in milk, 484
in wine, 484
soluble, 505
and tin absorption, 515
utensils, 486
Irradiated foods, 11, 16
Irradiation of tryptophan, 35
Ischemia, 260
Isoelectric soy isolates, 487
Isoforms, 325
Isomer activation, 14
Isothiocyanate, 167
Isotope labeled mutagens, 135
Isotopes, 14
Kale, 150
Kazal protease inhibitor, 286
Kidney, 94, 166
Kinetic browning prevention, 225
Kinetics amino acid racemization, 449
Kohl-rabi, 156
Kunitz soybean protease inhibitor, 274, 282, 322, 339
Kynurenic acid, 34
Labeling foods for protein quality, 439
Lactic acid, 484, 504
Lactobacillus arabinosus, 54
Lactobacillus plantarum, 504
Lactoglobulin allergy to, 305, 310
Lactose, 91, 174
Lactose-derived glucose milk, 364
Lamb chops, 179
Lanthionine, 458
Leaf protein, 378
Legins in soybeans, 340, 348, 374
Legume digestibility, 375
Leguminosae, 356
Lens proteins, 41
Leucotrienes, 259
Lifestyles and cancer, 137
Lignin, 144
Lima bean inhibitor, 323
Linoleic acid, 61, 238
conjugated, 269
metabolism, 270
Lipid browning, 231
Lipid peroxidation, 231, 237
Lipidemia, 49
Lipofuscin, 242, 261
Lipogenesis, 245
Lipolytic enzymes, 256
Lipoprotein particles, 256
Liposomes, 263
Lipoxins, 259
Lipoxygenase, 259
Liquid model system, 90
Listeria infections, 7
Liver, 94
damage, 173
dysfunction, 238
homogenates, 239
retinol, 69
superoxide dismutase, 513
zinc, 491
Long chain acyl CoA, 248
Low-birth-weight, 391
Low-glucose beef, 93
Lumiflavin, 34
Luminiscence, 26
Lung cancer, 75, 137
Lysergic acid, 195
Lysine, 174
acyl derivatives, 416
availability, 343, 404, 416
covalent attachment to, 416
derivatives, 420
equivalent value, 420
fortification of bread, 415
infant formulas, 394
ninhydrin assay, 439
reactions, 258, 322, 363
rich proteins, 389
supplementation, 368
Lysoalanine, 328
in bread, 439
crosslinks, 332
digestibility, 453
formation, 467
in infant formulas, 400
isomers, 466
mineral binding to, 470
predictor of protein damage, 340
utilization, 367
Lysozyme, 286
Mackerel, 261
Macronutrients, 21
Maillard
browning, 222, 488
compounds, 389
metabolism, 363
reactions, 85, 99, 135, 416
utilization in humans, 363
Maillardisation, 111
Nutritional (continued)

quality
bread, 437
irradiated foods, 11
soybeans, 347
supplementation with lysine, 437
safety, 4
traditions and cancer, 137, 141
value
coffee, 55
D-amino acids, 447
irradiated foods, 21
rapeseed meal, 403
Nutritionally limiting amino acids, 427

Oats, 500
Oligopeptides, 316
Omega fatty acids, 255
Oral provocation test, 317
Orange juice, 187
Organic radicals, 16
Organotin, 509
Ornithine decarboxylase, 269
Orthoquinones, 231
Oxalic acid, 17
Oxidation of fish oils, 255
Oxidative browning, 230
Oxanonoic acid, 238
Oxoproline, 166
Oxospecies of sulfur, 218
Oxothiazolidine, 167
Oxygen radicals, 260

Palatability, 371
Pancreatic
adenoma, 322, 355
cancer, 274
and soybean inhibitors, 274, 347
feedback inhibition, 276
hypertrophy, 274, 355
secretions, 461
Panfrying of meat, 98
Papayas, 12, 156
Parenteral nutrition, 35, 488
Parenteral sensitization of whey
protein, 312
Parinaric acid, 66
Passive cutaneous anaphylaxis, 310
Pathogens, 23
Pear juice, 192
Pearl millet fermentation, 484
Pellagra, 50, 51
Pentose cycle, 245
Peptic hydrolysis, 314
Peroxidation
adverse effects, 256
biochemical effects, 259
fatty acids, 255
products, 237
Peroxide value, 256
Pesticides, 2, 61
pH effect on racemization, 453
Phagocytosis, 263
Pharmaceutics, 3
Phaseolus vulgaris, 376
Phenacetin metabolism, 155
Phenobarbitone, 154
Phenylethylaminoalanine, 469
Phenylethylketamine, 461
Phorbol acetate, 269
Phospholipids, 256
Phosphorus, 255
Phosphorylation, 34
Photobinding, 33
Photochemistry, 34
Photodynamic action, 33
Photodynamic therapy of tumors, 41
Photoinduced binding in lens proteins, 41
Photoneutron production, 14
Phthalocyanines, 195
Physical processing, 491
Phytoextraction, 499
Phytate, 494
digestion, 506
and germination, 502
and malting, 502
and soaking, 501
Phytofluorene, 78
Phytopathogen, 356
Phytotoluene, 78
Pickling, 138
Pig diets, 403
pKa of sulfites, 222
Pips of fruit, 16
Plasma cholesterol, 438
Plasticizers, 509
Plummer-Vinson syndrome, 145
Polyacrylic aromatic hydrocarbons, 141
Polyethylene glycol, 219
Polylysine, 470
Polymorphonuclear leukocytes, 37
Polyphenol oxidase, 231
Polyphenols, 374, 499
Polyploid cells, 20
Polyunsaturated fatty acids, 17, 255
Porphyrins, 195
Potato amylose, 174
Potato inhibitors, 273
Potatoes, 15, 228
greening, 24
glycoalkaloids, 24
irradiation, 24
Potassium, 12, 14
Poultry, 13
Precarcinogen substrates, 184
Preimplantation mouse embryos, 40
Prevention of browning, 171
Processed foods, 447
and allergy, 295, 389
consumption by humans, 363
digestion, 371
Progoitrin, 167, 403
Proline, 88
Pro-oxidant, 260
Prostaglandin, 260
Prostanoids, 260
Protease inhibitors, 273, 376
Protein
allergy, 295
assay, 63
binding to vitamin A, 63
determination, 369
digestion, 373, 426
diets, 419
glycosylated, 366
heating, 374
leaf, 378
kinase C, 272
pyrolysis products, 108
quality
bread, 422
guidelines, 371
infant formulas, 390, 397
rich foods, 173
Proteolysis and allergy, 314
Protons, 14
Pro-vitamin A activity, 77
Proximal mutagens, 133
Psoriatic patients, 262
Public health in Europe, 1
Puffing, 485
Pulses, 13
Pyridines, 183
Pyridylethylcysteine, 465
Pyroles, 183
Quantitative cancer prediction, 109
Quinone reductase, 155
Quinones, 171, 416
Rabbit antisera, 282
Racemization, 332
amino acids, 448
chemistry, 448
effect of pH, 450
effect of temperature, 450
effect of time, 450
Radiation
doses, 12
effect on microorganisms, 23
effect on mycotoxins, 23
effect on potatoes and vitamins, 22
Radioactive lysine, 424
Radioactivity in foods, 11
Radioactivity in lens, 42
Radioallergosobant test, RAST, 282
Radioimmunoassay, 314
Radiolytic products, 16
Radishes, 156
Raman spectra, 24, 156
Rapeseed meal, 156, 377
ammoniated, 403
composition, 407
glucosinolate content, 407
nutritional value, 403
and thyroid function, 404
Rat
assays, 373
diets and tin, 511
feeding studies, 365, 404
Rats, 128, 276
Ready-to-feed infant formula, 390
Recommended daily allowances, RDA, 416
Reduced
antigenic response, 310
carbohydrates, 99
digestibility, 378
Refrigeration, 141
Relative amino acid rating, RAAR, 1
Relative protein efficiency ratio, RPER, 397
Relative net protein ratio, RNPR, 397
Renal excretion, 365
Rennet casein, 62
Reproductive toxicity, 3
Research in food safety, 8
Retinol degradation, 68
Retinol equivalent, 81
Reverse gene mutation, 120
Riboflavin, 33
Ribose, 88
Rice phytate content, 504
Risk assessment definition, 172, 275
RNA, 138
Roasting of coffee, 50
Rye, 500
Saccharomyces cerevisiae, 485
Safety
D-amino acids, 447
irradiated foods, 11, 18
soybeans, 339
Salmonella infections, 6, 12
Salmonella mutagen test, 47, 95, 133, 173, 187
Saponins, 374
Sausage, 179
Scopolamine, 195
SDS-PAGE electrophoresis, 282
Seafoods, 255
Secondary lipid oxidation products, 238
Selenium, 257
Semiessential amino acid, 461
Semi-quantitative detection limit, 109
Sensitization to milk proteins, 309
Sephadex G-15, 38
Serine, 88
as l-lysinoalanine precursor, 469
protease inhibitor, 286
Serum niacin, 56
Serum retinol, 69
SH bonding, 221
SH containing amino acids, 197, 248
Shelf-life, 371
Shrimp, 13
Sicklepod seeds, 195
Simulated bacon, 459
Singlet oxygen, 41
Sirloin, 130
Site-directed mutagenesis, 357
Skin-prick test, 317
Smoked fish, 139
Smoked meat, 139
Smoking and cancer, 137
Soaking and phytate hydrolysis, 501
Sodium
ascorbate, 174, 189
bisulfite, 198
caseinate, 459
sulfhydrate, 199
sulfite, 199, 219, 327
Solanine, 25
Soluble fiber, 144
Sorghum fermentation, 484
Sorghum porridges, 564
Sourdough bread, 503
Soy
based infant formulas, 329, 390
concentrates, 327
drinks, 329
flours, 328
hamburgers, 486
protein, 447
assay, 328
ELISA, 328
processing, 487
quality, 300
subunits, 300
Soybeans
allergens, 281
antibodies, 322
composition, 339
gmplasm collection, 352
and health, 356
nutrition, 354
processing, 357
quality, 339
safety, 339
trypsin inhibitors, 273, 341, 356
Spray dried eggs, 282
Sprouts, 487
Sterilization, 12, 371
carrot juice, 81
Storage of foods, 488
Strawberries, 13
Subcellular fractions, 240
Succinate dehydrogenase, 249
Succinylation, 380
Sucrose, 91, 174
Sulphydryl compounds, 248
Sulhydryl group alkylation, 287
Sulphydryl-disulfide interchange, 355
Sulfite
alternatives, 199, 218
browning prevention, 172, 217
disulfide cleavage, 232
equilibria, 222
species, 217
substitutes, 172
Sulfolactate, 231
Sulfur
amino acids, 246, 343, 347
in soybeans, 343
oxidized, 389
dioxide, 218
oxidation states, 218
oxo species, 218
poor diets, 167
rich compounds, 196
Salting, 138
Superoxide dismutase, 272
Symbols for irradiated foods, 26
T cells, 288, 322
Tannins, 374, 416
Temperature effects in amino acid racemization, 452
Teratocarcinoma cells, 39
Teratogenicity, 3
Texture, 447
Tecturized soy proteins, 459
Thermal degradation of carotenes, 75
Thiamine, 22
Thiobarbituric acid, 242
Thiocyanate, 156, 403
Thioglycoside, 403
Thioglycosidase, 156
Thiol adducts, 197, 232
Thiourea, 403
Threonine, 88
dehydratase, 426
in gluten, 426
Thrombosis, 255
Thyroid gland, 403
Timecourse of amino acid racemization, 457
TMIP, 84
Ti-null and double-null soybean isolines, 347, 352
Tin
analysis, 512
and bone metabolism, 519
and ceruloplasmin, 518
intake, 510
toxicity, 510
utilization, 510
and zinc absorption, 511
Toasted bread, 488
Tobacco, 137
Tocopherol, 239, 255
Tocopherol status, 263
Tolerance studies, 3
Tolerated contamination levels, 111
Tomatoes, 12
Torrefaction of coffee, 51
Toxicants, 374
Toxicity
D-cysteine, 457
D-cystine, 457
D-tyrosine, 460
lipid peroxides, 238
lysinoalanine, 466
irradiated foods, 17
oxidized fatty acids, 256
tin, 510
tryptophan photo-adducts, 42
Toxicological implications of
browning, 232
Toxicokinetics, 116
Transamination pathways, 426, 456
Transglutaminase, 380
Transport of amino acids, 463
Trans-retinal and retinol, 6
Transcriptional rates, 157
Transsulfuration pathways, 456
Treaty of Rome, 1
Trichonella spiralis, 12
Tricyclic hydroperoxide, 34
Triglycerides, 270
Trigonelline, 49
Trigonelline in coffee, 52
Triplet acetone, 34
Triticale, 500
Tritium, 12
Tritons, 14
TRP compounds, 182
True digestibility, 372, 395
Trypsin inhibitors, 447
analysis, 321, 341
anticarcinogenicity, 274
browning, 323
effects in different species, 276
ELISA, 274
in human nutrition, 322
isoforms, 325
risk assessment, 273
toxicity, 273
Tryptophan, 4, 184, 392
ribflavin binding, 33
retinol binding, 66
Tryptophan (continued)
toxicity, 38
Tubers, 13
Tumor
promotion, 27
suppressor genes, 138
Tumorigenesis, 154
Turkey test meal, 510
Tyramine, 141, 461
Tyrosine
ortho, 17
toxicity, 460
Tyrosyl tRNA, 463
Ultra-high-temperature-heating,
UHT, 485
Unlacquered cans and tin, 520
Unsaturated carbonyl compounds, 223
Urea, 198
Urethan, 129
induced tumors, 196
Urinary
excretion in humans, 363
lysine metabolites, 424
mutagens, 121
zinc, 188
USDA Soybean Germplasm Collection,
352
Utilization
lysine derivatives, 420
Maillard products, 363
minerals, 483, 499
Vegetables, 76
cancer prevention, 145, 153
seasoning, 13
Vinyl chloride, 129
Vinylpyridyldihydroxylation, 87, 468
Vinylpyrazines, 87
Virtually safe dose, 4
Viscosity, 26
Visible light, 33
Vitamin A, 144
animal assay, 64
binding assay, 63
casein binding, 65
protection, 68
Vitamin C, 22, 144, 186, 257
Vitamin B2, 42, 144
Vitamin E, 144, 257
Vitamin E, 17, 144, 242
Vitamin supplements, 20
Volatile, 26
Weight gain and lysine intake, 396
Wheat, 20, 500
digestion, 374
gluten, 415, 425
diets, 393
lysine fortification, 415
reactions, 439

540
Wheat starch, 174
Whey, 398
  allergy, 309
  hydrolysate, 317
  hypoallergenic formula, 310
  proteins, 270
Whole bread, 438
Wine iron complexes, 484

X-rays, 11
Xenobiotic
  metabolism, 154
  metabolizing enzymes, 167
  transformation, 155

Yellow food disease, 257
Yeast, 484
Yogurt, 484

Zinc, 188, 499
  absorption by men, 489
  absorption by women, 491
  binding by ligands, 484
  binding by wheat gluten, 490
  effect of tin on absorption, 511