INDEX

Controlling wheeled vehicles (cont.)
 navigation API, 43–45
 pilot classes
 advantages, 45
 basic movement, 45
 DifferentialPilot class, 46, 47
 distance, 46
 leJOS NXJ, 46
 measure, 47
 packaging, 45
 physical robot, 45
 regular hexagon tracing, 58, 60
 robot moving, 46
 steers, 45
 steps, 45
 tracing, equilateral triangle, 53, 55
 tracing out a square, 48, 50

D

Depth-first search (DFS) algorithm
 artificial intelligence, 83
 closed list, 84
 control vehicles, 83
 depth-search approach, 84
 implementation, 83
 leJOS EV3-based, 83, 91–92, 94
 methods, 91
 node, 84
 open list, 84
 recursive approach, 91
 route tree, 85
 search tree, 83
 strategy, 84
 travel plan, 86
Dijkstra’s algorithm
 advantages, 144
 calculation, distances, 142
 distances to nodes, 141, 143
 graphic representation, connected nodes, 140
leJOS EV3-based
 Cartesian coordinate system, 156
 destination’s coordinate node, 156
 implementation, 156–164
 shortest-path search, 155
 travel path, 156
 node accessibility, 146
 optimal solution, 139
 outcomes, 155
 programs, 148–150, 152–154
 values, 141
 visited nodes, 144–145, 147, 148

E, F, G

EV3 large servo motors
 algorithms, 28
 classes, 28
Java programming, 27–28
Lego EV3 robotics, 28
movement control
 accurate rotation, 33–34
 basic motor methods, 29
 interrupting rotation, 34–35
 program, 29
 program implementation, 30
 speed, 36, 39
 straight line tracing, 39–40
 tachometer, inertia testing, 31, 33
 ports, 29

H

Heuristic search. See Hill-climbing search
Hill-climbing search
 Cartesian coordinate system, 123
 description, 123
 heuristics
 AI-based search techniques, 121
 AI-related applications, 119
 AI search algorithms, 120
 breadth-first searches, 122
 calculation of absolute value, 119
 depth-first searches, 122
 functions, 120
 goal, 120
 graphic representation, 120
 node, 120–121
 nonlinear fashion, 121
 paths, 122
 rules, 122
 school building topology, 120
 search space, node, 122
 solution, 120–121
 straightforward deterministic
 solution, 119
 terminal node, 120
 implementation, green lines and
 obstacles, 226
 leJOS-based hill-climbing algorithm, 131–132,
 134–135, 137–138
 pathfinding problem, GPS
 system, 123–130
 problem-solving agents, 138
 routes, 124
 schedule, travel plan, 124
Integrated Development Environment (IDE), 16

Java Development Kit (JDK), 5
Java Runtime Environment (JRE), 5

Lego Mindstorms EV3 components, 2
description, 1–2
Eclipse IDE and plug-in
32-bit version, 16
automatic updates, 17
creating and uploading, 20–24
IDEs, 16
installing, 18–20
workspace, 17
educational product, 1
Java robotics programming, 1
JDK installation
dk-7u45-windows-i586.exe, 5–7
JRE, 5
release, 5
testing, 8–10
leading operating systems, robots, 25
leJOS installation
components, 13
EV3 brick packages, 3, 4
EV3 development documents, 5
EV3 SD Card creator, 15
finishing, 15
firmware into SD card, 16
folder choosing, 12
general settings, 14
JDK choosing, 11
.NXT, 4, 183
official packages, 4
RCX, 4
robotics/AI packages, 4
wizard, 11
operations, 1
SD card, 25
technical specifications, 2–3
leJOS-based BFS algorithm
destination, 111
destination’s coordinate, 110
implementation, 111–117
pseudocode, 108–109
travel path, 109–110
WPNode, 108
leJOS EV3-based DFS algorithm, 91–92, 94
leJOS EV3-based hill-climbing algorithm, 131–135, 137–138
Light sensor
constructor, 194
functions, 194
intensity, 194
Lego NXT 2.0, 193
program, 194
single tiny lens, 193

Motorsensors. See EV3 large servo motors
Multithreading programming
control, 229
creation, 219
developing programs, robots, 219
execution, robot’s tasks, 219
Java leJOS
alive method, 222
code, 221
execution, 220
message, 220
sleep method, 222
start method, 222
languages, 220
line-following robot, 224–225
music and sequence number printing, LCD screen, 223
processes, 226
robot’s design process, 220
sensors, 229
structure, 219

Navigator API
control, robot movements, 76
coordination, 80
functions, 66, 68
measures, 77
testing, two-dimensional plane, 76

Sensors
classes, 183
color and light
ch11p3.java, first course, 198
ch11p4.java, 200
design and program, 197
Sensors (cont.)
 functionalities, 198
 obstacles, 197
 control and operate, 202
 LEGO Mindstorms EV3/NXT kit, 193
 light (see Light sensor)
 touch, 184–185
 ultrasonic (see Ultrasonic sensor)

T
 Touch sensor
 activation, 184
 constructor, 184
 EV3 robotics kit, 184
 fetchSample() method, 184
 Lego EV3, 184
 programming practice, 188
 source code, 184
 testing program, 184

U, V, W, X, Y, Z
 Ultrasonic sensor
 distance measures, 186
 empirical experiments, 186
 EV3 robot measures, 188
 functions, 187
 larger-sized objects, 188
 Lego EV3, 186
 leJOS NXJ, 186
 measures, 186
 obstacle, 187
 port, 188
 program, 187
 programming practice, 190
 RangeFinder interface, 186
 sonar cone, 186
 sound signal, 186
 usage, 191