Appendix 1

M.W. ROBERTS’ PUBLICATIONS

1. A method of surface analysis and its application to reduced nickel powder.
 M.W. Roberts and K.W. Sykes,
2. Nickel powder with adsorptive properties approaching those of evaporated nickel films.
 M.W. Roberts and K.W. Sykes,
 M.W. Roberts and F.C. Tompkins,
4. Diskussionsbeiträge.
 M.W. Roberts, R. Suhrmann, G. Wedler, F.C. Tompkins and W.J. Moore,
 M.W. Roberts,
6. La Nitruration du calcium et autres reactions ternissant les metaux.
 M.W. Roberts and F.C. Tompkins,
7. High vacuum techniques.
 M.W. Roberts,
8. Heats of chemisorption of simple diatomic molecules on metals.
 M.W. Roberts,
9. The interaction of krypton, oxygen and hydrogen with iron films.
 M.W. Roberts,
10. Direct observation in the electron microscope of oxide layers on aluminium.
 K. Thomas, and M.W. Roberts,
11. Mechanism of the oxidation of iron films at temperatures from -195°C to 120°C.
 M.W. Roberts,
 J.M. Saleh, C. Kemball, and M.W. Roberts
13. Factors which may influence the initial reaction of gases with metals.
 M.W. Roberts,
 M.W. Roberts,
 Quarterly Reviews, 16, No. 1, 71 (1962).
15. The interaction of methyl mercaptan with nickel and tungsten films.
 J.M. Saleh, M.W. Roberts, and C. Kemball,
 C.M. Quinn and M.W. Roberts,
17. Surface potential measurements during the oxidation and subsequent reduction of nickel and iron films.
 C.M. Quinn and M.W. Roberts,
 E. Crawford, M.W. Roberts and C. Kemball,
 M.W. Roberts,
 C.M. Quinn and M.W. Roberts,
 C.M. Quinn and M.W. Roberts,
22. Adsorption of gases by molybdenum films at low pressures.
 M.W. Roberts,
 Conference organised by the Institute of Physics on 'Sorption properties of vacuum-deposited metal films', The University of Liverpool, April 1963.
23. Field-emission studies of the interaction of hydrogen sulfide and sulfur with tungsten.
 J.M. Saleh, M.W. Roberts and C. Kemball,
Appendix 1

24. Nature of thin oxide films on metals as revealed by work function measurements.
 C.M. Quinn and M.W. Roberts,

25. Chemisorption and displacement processes on molybdenum films.
 J.G. Little, C.M. Quinn and M.W. Roberts,

 C.M. Quinn and M.W. Roberts,

 C.M. Quinn and M.W. Roberts,

28. Mechanism of the sulphidation of lead and oxidized lead films.
 J.M. Saleh, B.R. Wells and M.W. Roberts,

29. A lead hydride of high stability.
 B.R. Wells and M.W. Roberts,

 C.S. McKee and M.W. Roberts
 Chemical Communications, 4, 59, (1965).

31. Photoelectric investigation of the nickel + oxygen system.
 C.M. Quinn and M.W. Roberts,

 J.R.H. Ross and M.W. Roberts,

 M.W. Roberts and B.R. Wells,

34. Kinetics of the dissociation of hydrogen sulphide by iron films.
 M.W. Roberts and J.R.H. Ross,

35. Chemisorption and incorporation of oxygen by nickel films.
 M.W. Roberts and B.R. Wells,

36. Synthesis of ammonia and related processes on reduced molybdenum dioxide.
 M.R. Hillis, C. Kemball and M.W. Roberts,

37. Modern views on Adsorption.

Appendix 1

51. The interaction of hydrogen sulphide with Cu(001).
R.W. Joyner, C.S. McKee and M.W. Roberts,

52. Mechanism of the catalytic decomposition of methanol on gold filaments.
J.G. Hardy and M.W. Roberts,
Chemical Communications, 494, (1971).

53. Chemisorption and decomposition of tetramethylsilane over tungsten and iron surfaces.
M.W. Roberts and J.R.H. Ross,

54. The surface chemistry of manganese.
R.I. Bickley, M.W. Roberts and W.C. Storey,

55. Adsorption of neopentane on tungsten and palladium films.
J.R.H. Ross, M.W. Roberts and C. Kemball,

56. Contact angle studies of some low energy polymer surfaces.
W.J. Murphy, M.W. Roberts and J.R.H. Ross,

57. Mechanism of formation and some surface characteristics of thin polymer films formed on metal surfaces by electron bombardment.
S. Frost, W.J. Murphy, M.W. Roberts, J.R.H. Ross and J.H. Wood,

58. Surface studies by photoemission.
M.W. Roberts,
"Surface and defect properties of solids". Specialist Periodical Report,
The Chemical Society, 1, 144, (1972).

59. Chemisorption, decomposition, and oxidation of methanol over gold and nickel filaments.
M.W. Roberts and T.I. Stewart,
Proceedings of the Conference "Chemisorption and Catalysis",
Ed. Peter Hepple organised by the Institute of Petroleum p.16 (1972).

60. Evidence for surface activation in the photolysis of adsorbed lead tetraethyl.
D.L. Perry and M.W. Roberts,

61. Some observations on the surface sensitivity of photoelectron spectroscopy.
C.R. Brundle and M.W. Roberts,

62. Surface sensitivity of ESCA for sub-monolayer quantities of mercury adsorbed on a gold substrate.
C.R. Brundle and M.W. Roberts,

63. Auger electron spectroscopy studies of clean polycrystalline gold and of the adsorption of mercury on gold.
R.W. Joyner and M.W. Roberts,
64. Surface sensitivity of HeI Photoelectron Spectroscopy (UPS) for H\textsubscript{2}O Adsorbed on gold.
 C.R. Brundle and M.W. Roberts,

65. ESCA studies of chemisorption on metals: carbon monoxide on molybdenum and tungsten films.
 S.J. Atkinson, C.R. Brundle and M.W. Roberts,

66. Models for an adsorbed layer and their evaluation by comparison of LEED and optical diffraction patterns: the system W(112)-O\textsubscript{2}.
 C.S. McKee, D.L. Perry and M.W. Roberts,

 R.W. Joyner, J. Rickman and M.W. Roberts,

68. Low temperature adsorption of CO on polycrystalline molybdenum studied by x-ray and vacuum uv photoelectron spectroscopy.
 S.J. Atkinson, C.R. Brundle and M.W. Roberts,

69. An ultra high vacuum electron spectrometer for surface studies.
 C.R. Brundle, D. Latham, M.W. Roberts and K. Yates,

70. Evidence for the nature of CO adsorbed on nickel from electron spectroscopy.
 R.W. Joyner and M.W. Roberts,

71. Chemisorption of nitrogen on tungsten studied by Auger electron spectroscopy.
 R.W. Joyner, J. Rickman and M.W. Roberts,

72. Reference levels in photoelectron spectroscopy
 A.F. Carley, R.W. Joyner and M.W. Roberts,

73. Oxygen 1s binding energies in oxygen chemisorption on metals.
 R.W. Joyner and M.W. Roberts,

74. Oxygen (1s) binding energies in carbon monoxide adsorption on metals.
 R.W. Joyner and M.W. Roberts,

75. Ultra-violet and x-ray photoelectron spectroscopy (UPS and XPS) of CO, CO\textsubscript{2} and H\textsubscript{2}O on molybdenum and gold films.
 S.J. Atkinson, C.R. Brundle and M.W. Roberts,
Appendix I

76. Carbon monoxide adsorption on iron in the temperature range 85 to 350K as revealed by x-ray and vacuum ultraviolet (He(11)) photoelectron spectroscopy.

K. Kishi and M.W. Roberts,

77. Mechanism of the interaction of hydrogen sulphide with adsorbed oxygen on lead studied by x-ray induced photoelectron spectroscopy.

K. Kishi and M.W. Roberts,

78. Auger electron spectroscopy and its applications in surface chemistry.

R.W. Joyner and M.W. Roberts,

79. Interaction of oxygen with Cu(100) studied by low energy electron diffraction (LEED) and x-ray photoelectron spectroscopy (XPS).

M.J. Braithwaite, R.W. Joyner and M.W. Roberts,

80. Development of stepped surface regions on polycrystalline gold. Low energy electron diffraction and Auger studies.

S.A. Isa, R.W. Joyner and M.W. Roberts,

81. The application of electron spectroscopy in the study of molecular processes at solid surfaces.

M.W. Roberts,

82. Low temperature oxygen and activated nitrogen faceting of Ni(210) Surfaces.

R.E. Kirby, C.S. McKee, and M.W. Roberts,

83. Photoelectron spectroscopic investigation of the adsorption and catalytic decomposition of formic acid by copper, nickel, and gold.

R.W. Joyner and M.W. Roberts,

84. The adsorption of nitric oxide by iron surfaces studied by photoelectron spectroscopy.

K. Kishi and M.W. Roberts,

85. Photoelectron spectroscopy and surface chemistry.

M.W. Roberts,

86. Adsorption of nitrogen and ammonia by polycrystalline iron surfaces in the temperature range 80-290K studied by electron spectroscopy.

K. Kishi and M.W. Roberts,
Appendix 1

87. Defect surface structures studied by LEED.
 C.S. McKee, M.W. Roberts and M.L. Williams,

88. Adsorption of carbon monoxide on copper (100) at 295K, characterized by
 photoelectron spectroscopy.
 S.A. Isa, R.W. Joyner and M.W. Roberts,

89. Electron spectroscopic study of nitrogen species adsorbed on copper.
 M.H. Matloob and M.W. Roberts,

90. The mechanism of the oxidation and passivation of iron by water vapour -
 an electron spectroscopic study.
 M.W. Roberts and P.R. Wood,

91. Interaction of cobalt with oxygen, water vapour, and carbon monoxide.
 X-ray and ultraviolet photoemission studies.
 R.B. Moyes and M.W. Roberts,

92. Low energy electron diffraction and electron spectroscopic studies of the
 oxidation and sulphidation of Pb(100) and Pb(110) surfaces.
 R.W. Joyner, K. Kishi and M.W. Roberts

93. Adsorption of hydrazine on iron studied by x-ray photoelectron
 spectroscopy.
 M.H. Matloob and M.W. Roberts,

94. Adsorption of carbon monoxide on copper (100) studied by photoelectron
 spectroscopy and low energy electron diffraction.
 S.A. Isa, R.W. Joyner and M.W. Roberts,

95. New Perspectives in Surface Chemistry and Catalysis - Tilden Lecture
 M.W. Roberts,
 Chemical Society Reviews, 6, 373, (1977).

96. The nature of catalytic sites on solid surfaces.
 M.W. Roberts,
 British Association Meeting, University of Aston (1977).

97. Electron spectroscopic study of nitric oxide adsorbed on copper
 M.H. Matloob and M.W. Roberts

98. Adsorption of nitric oxide on cu(100) surfaces: an electron spectroscopic
 study.
 D.W. Johnson, M.H. Matloob and M.W. Roberts,

99. The adsorption of oxygen on Cu(210).
 C.S. McKee, L.V. Renny and M.W. Roberts,
Appendix 1

100. Chemistry of the Metal-Gas Interface.
 M.W. Roberts and C.S. McKee, pp. 594
 Russian Translation, Moscow, (1982).

101. An x-ray photoelectron spectroscopic study of the interaction of oxygen
 and nitric oxide with aluminium.
 A.F. Carley and M.W. Roberts,

102. Contact angle studies of polymer surfaces.
 K.M. Byrne, M.W. Roberts and J.R.H. Ross,

103. The effect of reduction and temperature on the electronic core levels of
 tungsten and molybdenum in WO3 and WxMo1-xO3. A photoelectron
 spectroscopic study.
 E. Salje, A.F. Carley and M.W. Roberts,

104. A study of the interaction of nitric oxide with Cu(100) and Cu(111)
 surfaces using low energy electron diffraction and electron spectroscopy.
 D.W. Johnson, M.H. Matloob and M.W. Roberts,

105. A study of the adsorption of oxygen on silver at high pressure by electron
 spectroscopy.
 R.W. Joyner and M.W. Roberts,

106. Chemisorption of nitric oxide by nickel.
 A.F. Carley, S. Rassias, M.W. Roberts and W. Tang-han,

107. Surface segregation of potassium in nickel induced by oxidation.
 A.F. Carley, S. Rassias and M.W. Roberts,

108. Nitrogen chemisorption by iron.
 D.W. Johnson and M.W. Roberts,

 R.W. Joyner and M.W. Roberts,

110. Hydroxylation and dehydroxylation at Cu(111) Surfaces.
 C.T. Au, J. Breza and M.W. Roberts,

111. A study of the interaction of nitric oxide with nickel and oxidized nickel
 surfaces by x-ray photoelectron spectroscopy.
 A.F. Carley, S. Rassias, M.W. Roberts and W.T. Han,

112. The oxidation of cadmium (0001) studied by low energy electron
 diffraction (LEED) and Auger Electron Spectroscopy (AES).
 R.W. Joyner, M.W. Roberts and G.N. Salaita,
113. The critical surface tension of wool
K.M. Byrne, M.W. Roberts and J.R.H. Ross,

114. Adsorption of hydrazine and ammonia on aluminium.
D.W. Johnson and M.W. Roberts,

115. XPS studies of surface charge on nickel oxide.
M.W. Roberts and R. St. C. Smart,

116. XPS studies of donor and acceptor chemisorption of NO and CO on nickel oxide surfaces.
M.W. Roberts and R. St. C. Smart,
Surface Science, 100, 590-604, (1980).

117. Photoelectron spectroscopic study of the surface of some high-performance liquid chromatography substrates.
M.W. Roberts, A.F. Carley and L. Moroney,

118. Photoelectron spectroscopic evidence for the activation of adsorbate bonds by chemisorbed oxygen.
M.W. Roberts and C.T. Au,

119. A study of the interaction of formic acid and propionic acid with oxidised lead and copper surfaces by photoelectron spectroscopy and LEED.
M.W. Roberts, S.A. Isa, R.W. Joyner and M.H. Matloob,

120. Photoelectron spectroscopy and surface chemistry.
M.W. Roberts,
Advances in Catalysis, Volume 29, 55, (1980).

121. Chemisorption of HCl and H2S by Cu(111)-O surfaces.
M.W. Roberts, L. Moroney and S. Rassias,

122. X-ray induced effects during the oxidation of Bi(0001).
M.W. Roberts, R.W. Joyner and S.P. Singh-Boparai,

123. Evidence from photoelectron spectroscopy for dissociative adsorption of oxygen on nickel oxide.
M.W. Roberts and R. St. C. Smart,

124. Molecular events at solid surfaces.
M.W. Roberts,

125. Surface Chemistry. Photoelectron spectroscopy and surface chemistry.
M.W. Roberts,
Chemistry in Britain, Volume 17, Number 11, (1981).
126. An XPS study of the influence of chemisorbed oxygen on the adsorption of ethylene and water vapour by Cu(110) and Cu(111) surfaces.
M.W. Roberts and C.T. Au,

127. Surface hydroxylation at a Zn(0001)-O surface.
M.W. Roberts, C.T. Au and A.R. Zhu,

128. Coordination and activation of simple molecules at metal surfaces.
M.W. Roberts and R. Mason,

129. A novel reaction at a Pb(110) surface.
M.W. Roberts, A.F. Carley and M.S. Hegde,

130. New approaches to surface chemistry.
M.W. Roberts,

131. The dual role of oxygen in the interaction of hydrogen chloride with a Pb(110)-O Surface.
M.W. Roberts, P.G. Blake and A.F. Carley,

132. Chemistry of the Metal-Gas Interface.
M.W. Roberts and C.S. McKee,
Russian Translation (O.U.P., Moscow, p.p. 539, (1982)).

133. Chemisorption of oxygen at Ag(110) surfaces and its role in adsorbate activation.
M.W. Roberts, Chak-tong Au, and Sunder Singh-Boparai,

134. Studies of the thermal decomposition of βNiO(OH) and nickel peroxide by x-ray photoelectron spectroscopy.
M.W. Roberts, Lee M. Moroney and Roger St. C. Smart,

135. The specificity of surface oxygen in the activation of adsorbed water at metal surfaces.
M.W. Roberts, A.F. Carley and S. Rassias,

136. XPS studies on WO_{2.90} and WO_{2.72} and the influence of metallic impurities
R. Gehlig, E. Salje, A.F. Carley and M.W Roberts,

137. Photoelectron spectroscopic evidence for Ni^{3+} species in chemisorption at a Ni(100) surface.
M.W. Roberts, Albert F. Carley and Stephen R. Grubb,

138. A photoelectron spectroscopic study of the adsorption and catalytic decomposition of formic acid at Zn(0001) and Zn(0001)-O surfaces.
C.T. Au and M.W. Roberts,
139. Chemisorption of nitric oxide at a Zn(0001) surface and the role of water vapour in its hydrogenation.
 C.T. Au and M.W. Roberts,

140. The defect structure of nickel-oxide surfaces as revealed by photoelectron spectroscopy.
 M.W. Roberts and R. St. C. Smart,

141. The role of water vapour in the hydrogenation of nitric oxide at a Zn(0001) surface.
 C.T. Au, M.W. Roberts and A.R. Zhu,

142. Photoelectron spectroscopy and the surface chemistry of wool
 C.N. Carr, S.F. Ho, D.M. Lewis, E.D. Owen and M.W. Roberts,

143. Structure of the chloride overlayer at a magnesium surface
 C.T. Au and M.W. Roberts,

144. XPS determination of band bending in defective semiconducting oxide surfaces
 M.W. Roberts and R. St. C. Smart,

145. Defects in oxide overlayers at nickel single-crystal surfaces
 A.F. Carley, P.R. Chalker and M.W. Roberts,

146. The impact of photoelectron spectroscopy on surface chemistry and catalysis
 M.W. Roberts

147. An XPS study of the interaction of NO with a magnesium surface
 R.G. Copperthwaite, A.F. Carley and M.W. Roberts,

148. Specific role of transient O'(s) at Mg(0001) surfaces in activation of ammonia by dioxygen and nitrous oxide.
 C.T. Au and M.W. Roberts,

149. Photoelectron spectroscopy: a strategy for the study of reactions at solid surfaces.
 C.T. Au, A.F. Carley and M.W. Roberts,

150. Surface reactivity as revealed by photoelectron spectroscopy
 C.T. Au, A.F. Carley and M.W. Roberts,

151. Reaction of carbon dioxide with the magnesium surface
 S. Campbell, P. Hollins, E. McCash and M.W. Roberts,
152. Chemisorptive replacement of surface oxygen by hydrogen halides (HCl and HBr) at Pb(110) surfaces.
 P.G. Blake, A.F. Carley, V. Di Castro and M.W. Roberts,

 Chak-tong Au and M. Wyn Roberts,

154. The role of surface oxygen in reactions of propylene at Mg(0001) Surfaces
 C.T. Au, Li Xing-chang, Tang Ji-an and M.W. Roberts,

155. Activation of carbon dioxide at low temperatures at aluminium surfaces
 A.F. Carley, D. Gallagher and M.W. Roberts,

156. The identification and characterization of mixed oxidation states at oxidised titanium surfaces.
 A.F. Carley, P.R. Chalker, J.C. Riviere and M.W. Roberts,

157. Oxygen induced dissociation of carbon monoxide at an sp-metal (aluminium) surface
 A.F. Carley and M.W. Roberts,

158. An x-ray photoelectron and electron spin resonance study of wool treated with aqueous solutions of chromium and copper ions.
 C.M. Carr, J.C. Evans and M.W. Roberts,

159. Activation of carbon dioxide and carbon monoxide at aluminium surfaces
 A.F. Carley, D.E. Gallagher and M.W. Roberts,

160. Electron spectroscopic studies of the chemical interaction of benzene with transient O*(s) on Mg(0001) surfaces.
 C.T. Au, Tang Ji-an and M.W. Roberts,

161. Chemistry in two dimensions
 M.W. Roberts

162. The chemical reactivity of oxidised lead surfaces studied by XPS: the mechanism of "halogen induced" surface etching.
 A.F. Carley and M.W. Roberts,

163. Evidence from coadsorption studies for a molecular precursor state in the oxidation of Zn(0001)
 A.F. Carley, M.W. Roberts and Song Yan,
164. Metal oxide overlayers and oxygen induced chemical reactivity studied by photoelectron spectroscopy.
M.W. Roberts.
165. The reactive chemisorption of carbon dioxide at magnesium and copper surfaces at low temperature
166. Intermolecular charge-transfer and the cleavage of the dioxygen bond at metal surfaces: oxygen at Zn(0001)
167. The nature and reactivity of chemisorbed oxygen and oxide overlayers at metal surfaces as revealed by photoelectron spectroscopy
Eds. C. Morterra, A. Zecchina and G. Costa.
168. Activation of carbon dioxide leading to a chemisorbed carbamate species at a Cu(100) surface
169. Chemisorption and reaction pathways at metal surfaces: the role of surface oxygen.
170. Computer modelling of the kinetics of the coadsorption of ammonia and dioxygen at a Mg(0001) surface
171. The influence of pre-oxidation on the adsorption of CO at a Zn(0001) surface: characterisation of a weakly chemisorbed species by XPS and UPS.
172. Dissociative chemisorption and localized oxidation states at titanium surfaces
173. Role of oxygen transients in the chemistry of dioxygen at atomically clean metal surfaces: the Zn(0001)-dioxygen-ammonia system.
174. X-ray photoelectron spectroscopic study of the high-\(T_c\) superconductor \(\text{YBa}_2\text{Cu}_3\text{O}_{\text{x}}\): evidence for \(\text{Cu}^{3+}\) and surface oxygen excess.

187. Surface structure and the instability of the formate overlayer at a Pb(110) surface.
 B. Aftin and M.W. Roberts

188. Catalytic cleavage of dioxygen bond at a Zn(0001)-Ba surface: the role of a dioxygen surface transient
 A.F. Carley, M.W. Roberts and Wang Fancheng

189. Molecular events in the coadsorption of molecules at metal surfaces
 M.W. Roberts

190. A new approach to the mechanism of heterogeneously catalysed reactions: the oxydehydrogenation of ammonia at a Cu(111) surface.
 A Boronin, A. Pashusky, and M.W. Roberts

191. Co-adsorption studies of ethene with isotopically labelled water and hydrogen on copper/silica
 S.D. Jackson, A. Owens and M.W. Roberts

192. Reaction pathways in the oxydehydrogenation of ammonia at Cu(110) surfaces.
 B. Aftin, P.R. Davies, A. Pashusky, M.W. Roberts and D. Vincent

193. Chemisorption and reactions at metal surfaces
 M.W. Roberts
 Special commemorative issue of Surface Science - The First Thirty Years 299/300 769-784 (1994).

194. Electronic structure of copper particles supported on TiO₂, graphite, and Al₂O₃ substrates: a comparative study.
 A.F. Carley, M.K. Rajumon and M.W. Roberts

195. Surface oxygen and chemical reactivity

196. Formation of an oxy-chloride overlayer at a Bi(0001) surface
 B. Aftin and M.W. Roberts
 Spectroscopy Letters, 27 139-146 (1994).

197. Oxygen sites active in H-abstraction at a Cu(110)-O surface: comparison of a Monte Carlo simulation with imide formation studied by XPS and VEELS.
 A.F. Carley, P.R. Davies, M.W. Roberts and D. Vincent
 Topics in Catalysis 1 35-42 (1994).
Appendix 1

199. Characterization of oxygen adsorbed at Ba-modified Zn(0001) surfaces: evidence for peroxo species.
A.F. Carley, M.K. Rajuman, M.W. Roberts and Wang Fancheng

200. Low energy pathway for the formation of a Pt(111)-N(2x2) overlayer.

201. Applications of EPR to study the hydrogenation of ethene and benzene over a supported Pd catalyst: detection of free radicals on a catalyst surface

202. Oxygen dimerization at a Zn(0001)-O surface
A.F. Carley, M.K. Rajuman, M.W. Roberts and Wang Fancheng

203. Activation of carbon monoxide and carbon dioxide at cesium-promoted Cu(110) and Cu(110-O) surfaces
A.F. Carley, M.W. Roberts and A.J. Strutt

204. The hydroxylation of Cu(111) and Zn(0001) surfaces
A.F. Carley, P.R. Davies, M.W. Roberts, N. Shukla, Y. Song, K.K. Thomas

205. A model for the enantioselective hydrogenation of pyruvate catalysed by alkaloid-modified platinum

206. Chemical reactivity of CO and CO$_2$ at a Cu(110)-Cs surface
A.F. Carley, M.W. Roberts and A.J. Strutt

207. The reactive chemisorption of carbon dioxide at Mg(100) surface
Zeini-Isfahani, Asghar, Roberts, M.W., Carley, A.F. and Read, S.

208. Oxygen states at a Cu(111) surface: the influence of coadsorbed ammonia
P.R. Davies, M.W. Roberts, N. Shukla and D.J. Vincent
209. Nature of the oxygen species at Ni(110) and Ni(100) surfaces revealed by exposure to oxygen and oxygen-ammonia mixtures: evidence for the surface reactivity of O· type species
G. U. Kulkarni, C. N. R. Rao and M. W. Roberts

210. Coadsorption of dioxygen and water on the Ni(110) surface: role of O· type species in the dissociation of water
G. U. Kulkarni, C. N. R. Rao and M. W. Roberts

211. Surface oxygen transients and their role in providing low energy reaction pathways
A. F. Carley, P. R. Davies and M. W. Roberts

212. XPS AND LEED studies of 10,11-Dihydrocinchonidine adsorption at Pt(111)
A. F. Carley, M. K. Rajumon, M. W. Roberts and P. B. Wells

213. The oxygen state active in the catalytic oxidation of carbon monoxide at a caesium surface: isolation of the reactive anionic CO25- species
G. U. Kulkarni, S. Laruelle and M. W. Roberts,

214. Oxidation of methanol at copper surfaces
A. F. Carley, A. W. Owens, M. K. Rajumon and M. W. Roberts

215. Evidence for the instability of surface oxygen at the Zn(0001)-O-Cu interface from core-level and X-ray induced Auger spectroscopies
A. F. Carley and M. W. Roberts

216. Facile hydrogenation of carbon dioxide at Al(111) surfaces: the role of coadsorbed water
A. F. Carley, P. R. Davies, Eva M. Moser and M. Wyn Roberts

217. Surface chemistry of carbon dioxide
H.-J. Freund and M. W. Roberts

218. The role of short-lived oxygen transients and precursor states in the mechanisms of surface reactions; a different view of surface catalysis
M. W. Roberts

219. Surface oxygen and chemical specificity at copper and caesium surfaces
A. F. Carley, A. Chambers, P. R. Davies, G. G. Mariotti, R. Kurian and M. W. Roberts

220. Reactivity of oxygen states at caesium surfaces towards carbon monoxide and carbon dioxide
G. U. Kulkarni, S. Laruelle and M. W. Roberts
Appendix 1

221. Coadsorption of dioxygen and carbon monoxide on a Mg(100) surface
Zeini-Isfahani, Asghar, Roberts, M.W., Carley, A.F. and Read, S.

222. XPS study of oxygen adsorption on supported silver: effect of particle size
V.I. Buktyarov, A.F. Carley, L.A. Dollard and M.W. Roberts
Surface Science, 381, L605 (1997).

223. The active site in oxygenation catalysis at single crystal metal surfaces
A.F. Carley, P.R. Davies and M.W. Roberts
Current Opinion in Solid State Materials Science, 2, 525 (1997);

224. Oxygen states present at a Ag(111) surface in the presence of ammonia;
 evidence for a NH$_3$-O$^-$ complex
A.F. Carley, P.R. Davies, M.W. Roberts and S. Yan

225. Interaction of oxygen and carbon monoxide with CsAu surfaces
A.F. Carley, M.W. Roberts and A.K. Santra

226. Coadsorption of carbon monoxide and nitric oxide at Ag(III): evidence for
 a CO-NO complex.
A.F. Carley, P.R. Davies, M.W. Roberts, A.K Santra and K.K. Thomas

227. An STM-XPS study of ammonia oxidation: the molecular architecture of
 chemisorbed imide strings at Cu(110) surfaces.
A.F. Carley, P.R. Davies and M.W. Roberts

228. Chemisorption of ethanol at Pt(111) and Pt(111)-O surfaces
M. K. Rajumon, R. S. Roberts, F. Wang and P. B. Wells

229. Oxygen states present at a Ag(111) surface in the presence of ammonia:
 evidence for a NH$_3$-O$^-$ complex
A. F. Carley, P. R. Davies, M. W. Roberts, K. K. Thomas and S. Yan

230. Selective oxidation of propene at cesium and cesium-modified Ag(100)
 surfaces
A. F. Carley, A. Chambers, M. W. Roberts and A. K. Santra

231. Oxygen chemisorption at Cu(110) at 120 K: dimers, clusters and mono-atomic
 oxygen states
A. F. Carley, P. R. Davies, G. U. Kulkarni and M. W. Roberts

232. Spectroscopic investigation of potassium-doped Ni(110)
A. F. Carley, S. D. Jackson, J. N. OShea and M. W. Roberts

233. The reactivity of copper clusters supported on carbon studied by XPS
A. F. Carley, L. A. Dollard, P. R. Norman, C. Pottage and M. W. Roberts
234. The formation and characterisation of Ni$^{3+}$ - an X-ray photoelectron spectroscopic investigation of potassium-doped Ni(110)-O
A. F. Carley, S. D. Jackson, J. N. O’Shea and M. W. Roberts

235. Reactions of co-adsorbed carbon dioxide and dioxygen at the Mg(0001) surface at low temperatures
A. F. Carley, G. Hawkins, S. Read and M. W. Roberts

236. Flexibility of the Cu(110)-O structure in the presence of pyridine
A. F. Carley, P. R. Davies, R. V. Jones, G. U. Kulkarni and M. W. Roberts

237. Controlling oxygen states at a Cu(110) surface: the role of coadsorbed sulfur and temperature
A. F. Carley, P. R. Davies, R. V. Jones, K. R. Harikumar and M. W. Roberts

238. The structure of sulfur adlayers at Cu(110) surfaces: an STM and XPS study
A. F. Carley, P. R. Davies, R. V. Jones, K. R. Harikumar, G. U. Kulkarni and M. W. Roberts

239. Structural aspects of chemisorption at Cu(110) revealed at the atomic level
A. F. Carley, P. R. Davies, R. V. Jones, K. R. Harikumar, G. U. Kulkarni and M. W. Roberts

240. Heterogenous catalysis since Berezelius: some personal reflections
M. W. Roberts

241. Alkali metal reactions with Ni(110)-O and NiO(100) surfaces
A. F. Carley, S. D. Jackson, M. W. Roberts and J. O’Shea

242. Charles Kemball, CBE
M. W. Roberts

243. The chemisorption of nitric oxide and the oxidation of ammonia at Cu(110) surfaces: a X-ray photoelectron spectroscopy (XPS) and scanning tunnelling microscopy (STM) study
A. F. Carley, P. R. Davies, K. R. Harikumar, R. V. Jones, M. W. Roberts and G. U. Kulkarni

244. Oxidation states at alkali-metal-doped Ni(110)-O surfaces
A. F. Carley, S. D. Jackson, J. N. O’Shea and M. W. Roberts

245. A combined XPS and STM study of the adsorption of methyl mercaptan at a Cu(110) surface
A. F. Carley, P. R. Davies, K. R. Harikumar, R. V. Jones and M. W. Roberts
Appendix 1

246. Surface science - Editorial overview
 J. M. Thomas and M. W. Roberts
 Current Opinion in Solid State & Materials Science 5 65 (2001)

247. A combined XPS, STM and TPD study of the adsorption of methyl mercaptan at a Cu(110) surface
 A. F. Carley, P. R. Davies, K. R. Harikumar, R. V. Jones, M. W. Roberts and C. J. Welsby
 Top. Catal. (Submitted).

PUBLICATIONS FOR WHICH M.W. ROBERTS HAS BEEN AN EDITOR.

 Editors: M.W. Roberts and J.M. Thomas
 Volume 1 (1972)
 Volume 2 (1973)
 Volume 3 (1974)
 Volume 4 (1975)
 Volume 5 (1976)
 Volume 6 (1977)
†The Chemical Society recommended that the title of this series be changed to:
 ‘The Chemical Physics of Solids and their Surfaces’
 Volume 7 (1978)
 Volume 8 (1979)

 Editors: J.S. Anderson, M.W. Roberts and F.S. Stone

Interfacial Science: A Chemistry for the 21st Century Monograph
Appendix 2

M. W. Roberts’ Students

<table>
<thead>
<tr>
<th>Name</th>
<th>Degree</th>
<th>Year</th>
<th>Name</th>
<th>Degree</th>
<th>Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>E. Crawford</td>
<td>Ph.D.</td>
<td>1962</td>
<td>J. Rickman</td>
<td>Ph.D.</td>
<td>1976</td>
</tr>
<tr>
<td>C.M. Quinn</td>
<td>Ph.D.</td>
<td>1963</td>
<td>F. Gobal</td>
<td>Ph.D.</td>
<td>1977</td>
</tr>
<tr>
<td>W.J. Murphy</td>
<td>Ph.D.</td>
<td>1971</td>
<td>C.M. Carr</td>
<td>Ph.D.</td>
<td>1983</td>
</tr>
<tr>
<td>J.H. Wood</td>
<td>Ph.D.</td>
<td>1971</td>
<td>D.A. Geeson</td>
<td>Ph.D.</td>
<td>1983</td>
</tr>
<tr>
<td>R.S. Brewerton</td>
<td>M.Sc.</td>
<td>1973</td>
<td>S.J. Grubb</td>
<td>Ph.D.</td>
<td>1984</td>
</tr>
<tr>
<td>P.R. Evans</td>
<td>M.Sc.</td>
<td>1973</td>
<td>D.M. Sweeney</td>
<td>Ph.D.</td>
<td>1985</td>
</tr>
<tr>
<td>J.R. King</td>
<td>M.Sc.</td>
<td>1974</td>
<td>S. Campbell</td>
<td>Ph.D.</td>
<td>1986</td>
</tr>
</tbody>
</table>
Appendix 2

D.C. Challinor Ph.D. 1989
P.R. Davies Ph.D. 1989
S. Yan Ph.D. 1989
G. Hawkins Ph.D. 1991
R.J. Holmes Ph.D. 1991
B. Afsin Ph.D. 1992
D Jones Ph.D. 1992
G.D. Savage Ph.D. 1992
N. Shukla Ph.D. 1992
B.P. Williams Ph.D. 1992
T.S. Amorelli Ph.D. 1993
W. Fancheng Ph.D. 1993
A.J. Strutt Ph.D. 1993
A.W. Owens Ph.D. 1994
D. Vincent Ph.D. 1994
S. Read Ph.D. 1995
J.C. Roberts Ph.D. 1995
K.K. Thomas Ph.D. 1995
L.A. Dollard Ph.D. 1996
H.A. Edwards Ph.D. 1996
M. Jahangir Ph.D. 1996
A.M. Shah Ph.D. 1996
M. Deakes Ph.D. 1997
J.N. O’Shea Ph.D. 1998
H. Griffiths Ph.D. 1999
C.R. Parkinson Ph.D. 1999
R.V. Jones Ph.D. 2002
Index

α,β-unsaturated aldehydes
hydrogenation
 copper catalysts 311
 effect of cations 309
 effect of CO 309
 effect of sulphur 311
 effect of titania 309
 FTIR spectroscopy 311
 in solution 310
 methyl substitution 308
 Ni-Cu alloy 306, 313
 over unpromoted metals 306
 Pd-Cu alloys 313
 Pt/titania 309
 role of step sites 314
 single crystal studies 314
 substituted derivatives 306
 support effects in the Cu-catalysed reaction 312
 theoretical studies 314
 turnover frequency 310, 314, 315
 with selectivity promoters 307
 osmium catalysts 315

1,2-dideuteropent-1-ene 320
1,3-dithiane 1-oxide 255
1,3-dithiane 1-oxides 1,245
1,3-dithiane-1-oxide 260, 261
10,11-dihydrocinchonidine 332

3-methyl crotonaldehyde 308, 314

Acetylene 32, 33
Acid catalysis 211, 212, 214
 metal assisted 216
Acrolein 314. See α,β-unsaturated aldehydes
Activation energy
 dehydration of butan-2-ol 264
 diffusion of Pt atoms on alumina 112
Active site 345
 congestion at 318, 322
Adsorption energy 89
Adventitious oxygen 339
Al2O3(0001)
 structure 107
Aldol condensation 311
Alk-1-ene isomerisation 318
 π-allylic intermediates 318
Alkane
 isomerization 217
Alkenes
 Aziridination 244
 Alkylation 210
Alkyne hydrogenation 322
 platinum group catalysts 324
 radicals in 324
Alloys 6, 210, 219, 224, 225, 306, 313, 314
Ammonia 214
 adsorption 29
 oxidation 3, 223
 synthesis 208, 222, 227, 242
Anthracene 340

375
Anti-phase domain boundaries 112
APFIM See Field ion microscopy
Asymmetric catalysis 243
Asymmetric synthesis 243
Atom probe tomography 8
Atomic force microscopy 150
Auger electron spectroscopy 11, 56, 58, 152

Band gap 171, 200, 282
in metal clusters 147, 169
of Au clusters 173
Bifunctional catalysts 216
Binary carbonyls See Platinum binary carbonyls
Boltzmann constant 83
Bronsted–Polanyi 91
But-1-ene
hydrogenation 318
trans-cis ratio 318
isomerisation
ruthenium catalysts 319
Buta-1,2-diene 326
hydrogenation 327
Buta-1,3-diene
hydrogenation 298
\(\pi\)-allylic intermediates 301
\(^{13}\)C-tracer studies 328
correlation with Pauling electronegativity 301
D-tracer studies 299
effect of electronegative elements 302
effect of hydridation 304
effect of sulphur 303, 305
evaporated films 301
selectivity promoters 302
trans-cis ratio 300, 301, 303
Butadiene hydrogenation 315
Butan-2-ol 252
(R) and (S) enantiomers 258
adsorption on zeolite, IR spectra 255
conversion over zeolites 245
dehydrogenation 244, 262
Butane 326
Butene 34
Butene isomerisation 322
Butyraldehyde 306, 309, 311

Cahn-Ingold-Prelog system 342
Capture zone 124
Carbenium ions 212, 214
Carbon dioxide 2, 104
activation 11
adsorption 110
adsorption on \(\text{Cr}_2\text{O}_3(0001)\) 110
formation 74, 130, 193, 203, 242
Carbon disulphide 313
Carbon fibres 11
Carbon monoxide
adsorption on \(\text{Cr}_2\text{O}_3(0001)\) 110
adsorption on magnetic particles 122
adsorption on Pd particles 124
chemisorption on \(\text{TiO}_2\) 174
combustion 57
decomposition 60
on Pt(100) 65
on Pt(111) 61
on Pt(557) 63
dissociation 227
crystal face specificity 72
over Pt(100) 74
over Pt(111) 73
over Pt(557) 73
hydrogenation 229
ignition temperature 57, 68, 74
Pt(100) 71
Pt(111) 70
Pt(111) 71
Pt(557) 69
Pt(557) 71
oxidation 57, 68, 126, 154, 193, 202
activation barrier 130
on supported Pd particles 129
over Au/\(\text{TiO}_2\) 175, 183
over Pt 223
Carbonium ion 214
Carbonyl clusters in zeolites 229
Catalyst
steady state 296
support 150
Catalytic oscillation 223, 232
Chalcogenides 12
Chemisorption 8, 9, 10, 31, 122, 174,
214, 220, 291
Chiral catalysis 243
Chiral compounds See enantioselectivity
Index

Fermi level 80, 139, 170, 192
Ferromagnetic resonance 103, 121
Field emission microscopy 220, 226
Field ion microscopy 6, 112, 221
atom probe 8
FIM See Field ion microscopy
Fischer-Tropsch 2, 11, 85, 207, 219, 222, 227
FMR See Ferromagnetic resonance
Fourier Transform Infrared Spectroscopy 122
Fuchs-Kliewer phonons 108

Gas chromatography 57
Glucose
D- and L- 343
Gold 191
cluster diameters 153
clusters on TiO₂ 151
density 157
electronic structure of small particles 196
growth on TiO₂ 154
structure sensitivity of catalysts 194
Greenhouse gases 96

Hartree-Fock 80
High resolution electron microscopy 17, 40, 46
High-angle annular dark field 17
High-resolution electron energy loss spectroscopy 56
High-Resolution Scanning Transmission Electron Microscopy 16
High-resolution transmission electron microscopy 15
Histidine 340
HREELS See High resolution electron microscopy
HRSTEM See High-Resolution Scanning Transmission Electron Microscopy
HRTEM See High resolution transmission electron microscopy
Huttig temperature 316
Hydride
buta-1,3-diene hydrogenation 304
Hydrocarbon
oxidation 154
Hydrocarbonaceous species 296

Hydrogen 33
Hydrogen bonds 85
Hydrogen occlusion 316
Hydrogen peroxide 192
Hydrogenation 32, 36, 79, 175, 216, 219
bimetallic catalysts 18
buta-1,3-diene 298
energy barriers 87
metal-catalysed 295
of alkynes 322
of C on Ru(0001) 93
of CO 229
over Au/TiO₂ 196
reaction schemes 297
Hydrogen-bonding 27, 29, 30
Hydroxyl 29, 106, 214, 223, 333

Image dipole 119
Infrared spectroscopy 27, 28, 230
Infrared-visible sum frequency generation 103, 134
Iodostearic acid 9
Iridium 317
Iron
deposited on Al₂O₃ 121
Isomerization 210
Kink sites 72, 342
Kohn-Sham 80

Langmuir-Hinshelwood mechanism 74
rate constant 130
Lateral interactions 84, 88, 92, 98
Lattice gas 83
Ligand effect 227
Light emission 117
Local density of states 167
Low energy electron diffraction 37, 47, 56, 58, 152

Magnetic properties 121
Master equation 82, 83
Materials gap 150
ME See Master equation
Mean Field Approximation 91
Mean free path 56
Mesoporous silica 18
Metal surface selection rule 39, 44
Index

Methacrolein See α,β-unsaturated aldehydes
Methane 30
 activation 93
 conversion to methanol 136
 decomposition 96
 formation 85
 H/D exchange 215
 interaction with V$_2$O$_5$ 285
 NO$_x$ reduction 231
 on Ru(0001) 81
 oxidation 233
 photodissociation 136
 physisorbed on Pt(111) and Pd(111) 136
Methyl crotonaldehyde See α,β-unsaturated aldehydes
Methyl iodide 30
Methyl pyruvate 336
Methyl vinyl ketone 309
Methylacetylene 33
Mie resonance 117, 119
Model catalysts 104, 111, 125, 132, 134, 149, 174
Molecular beam 75, 124
Monte-Carlo
 dynamic 81
 kinetic 81
MoO$_3$ 287
Mössbauer spectroscopy 196, 275, 279
n-butane
 isomerization 213
NEB See Nudged elastic band method
Nickel carbonyl 1
Ni-Cu alloy 224, 225, 306, 313
Nitric oxide 74, 96
 dissociation on Rh(111) 99
 hydrogenation 154
 reduction 79, 154, 194
Nitrogen 2, 3, 11, 97, 194, 221, 223
 chemisorption on iron 223
 recombination on Rh(111) 99
NMR spectroscopy 245
NO$_x$ reduction 79, 96, 154, 194, 231
Nuclear magnetic resonance 32, 291
Nudged elastic band method 81
Nylon-66 310
Optically active products See enantioselectivity
Orito reaction 330, 340
Osmium 315
Ostwald ripening 147, 151, 183
Oxidation 104
 over Au/TiO$_2$ 196
Oxide
 bulk stoichiometries 108
 clean surfaces 105
 dynamic phenomena at surface of 277
 formation 104
 growth of metal on 154
 metal deposition on 111
 stoichiometry 105
 transition metal 277
Oxo-ions 232
Oxydehydrogenation 223
Oxygen
 activation 203
 atomic 75, 285
 molecular 75, 195, 285
 radical 285
 recombination on Rh(111) 99
 sticking coefficient on Pd particles 126
 subsurface 126, 130
Palladium 56
 deposition on Al$_2$O$_3$ 111
 on γ-alumina 128
 studied by STM on Al$_2$O$_3$ 116
 supported particle morphological changes 127
Partition function 83
PED See Photoelectron diffraction
Pent-1-ene
 hydrogenation
 nickel catalysts 319
Peroxide 224, 233
Photochemistry 136
Photodissociation 140
Photoelectron diffraction 12, 50
Photoelectron spectroscopy See X-ray photoelectron spectroscopy
Photon emission
 from individual Ag clusters 117
Phthalocyanine 320
Planck constant 83
Plasmon resonances 117
Platinum 2, 56, 76, 112, 216, 221
alkene adsorption 50
alloy catalysts 227
alumina supported 115
binary carbonyls 73, 74, 75
black 208, 219
catalysts 243
CO dissociation 71
CO oxidation over 57
deposition on Al₂O₃ 112
diffusion on Al₂O₃ 112
ethylene adsorption 28, 222
on acid catalysts 216
oxide 184
Polymerization 210, 214
Pressure gap 148
Propane 33, 194
Propene 33, 34, 194
adsorption on Pt(111) 50
Propylene oxide 195
Pyridine 223
Pyrrole 313
Pyruvate ester 334
Quinidine 331
RAIRS See Reflection absorption infrared spectroscopy
Raman 30, 291
Raney nickel 209, 243, 330
Reflection absorption infrared spectroscopy 39, 46, 51
Reforming 208
Rhodium
lattice parameter 97
on TiO₂(110)-(1×2) 175
Ruthenium 218
Rutherford’s law 17
Scanning electron microscopy 13
Scanning tunnelling spectroscopy 147, 167, 173, 199
Selective oxidation of hydrocarbons 276
Selectivity 242, 295
SEM See Scanning electron microscopy
SFG See Sum frequency generation
Sharpless epoxidation 243
Shear planes 277
Sintering 178
SMSI See Strong metal support interaction
Solid acids 214
Spillover
reverse 124
Spin polarisation 97
Spot profile analysis LEED 136
Sticking coefficient 10, 124
STM See Scanning tunnelling microscopy
Strong Metal-Support Interaction 150, 181
Structure sensitivity 76
Sulphur 1, 302, 303
Sulphur dioxide 313
Sum frequency generation 57, 72, 134
Superacids 214
Superoxide 224, 233
Surface energy 116
Surface potential measurements 1
Surfactant 38
Temperature programmed desorption 39, 97, 99
Temperature programmed reaction 79, 202
TGA See Thermogravimetric analysis
Thermogravimetric analysis 249
Thin oxide films 103, 104, 279
Thiophane 313
Thiophene 311, 312
TiO₂ 283, 289
emissivity 153
TiO₂(110) 151, 283
Au clusters on
cluster size 161
electronic properties of 170
electronic properties of 167
growth of 154
orientation of 167
STM imaging 156
thermal stability of 155, 162
lattice constant 157
transition metal adsorption on 162
Index

TPD See Temperature programmed desorption
Transients 11, 223
Transition state
determination 81
selectivity 228
Transition–State Theory 83
Transmission electron microscopy 111
TST See Transition-state theory
Tunnel bias 119

\(\text{V}_2\text{O}_5 \) 287
\(\text{V}_2\text{O}_9 \) 285
van der Waals 85
Vanadium 103, 106
Vanadium oxides 105, 285, 288
Vanadyl pyrophosphate 105
VASP 80
VEELS See High resolution electron microscopy
Vibrational spectroscopy 27
Vinyl chloride 195
Vitamin A 306
Volmer-Weber growth 158

Wetting 288
Work function 10, 219

X-ray crystallography 16
X-ray diffraction 245
X-ray photoelectron spectroscopy 2, 3, 8, 42, 56, 71, 104, 152, 155, 177, 198, 230, 279

Z-contrast tomography 20
Zeolite H-Y 260
Zeolite Y 260, 262
Zeolites 16, 224, 228, 245
chiral modification of 244
ship-in-a-bottle technique 229