Appendix

Derivation of $V_{BE}(T)$ by importing the constant $V_{BE}(T_r)$. This derivation is referenced in chapter 3 on page 40.

\[V_{BE} = V_{g0} + \frac{kT}{q} \ln \frac{I_C}{CT^n} \quad (2-1) \]

\[V_{BE} = V_{g0} + \frac{kT}{q} \ln \frac{I_C T^n}{CT^n T^n} \quad (2-2) \]

\[V_{BE} = V_{g0} + \frac{kT}{q} \left(\ln \frac{I_C}{CT^n} + \ln \frac{T^n}{T^n} \right) \quad (2-3) \]

\[V_{BE} = V_{g0} + \frac{kT}{q} \left(\ln \frac{I_C}{CT^n} + \eta \ln \frac{T^n}{T} \right) \quad (2-4) \]

\[V_{BE} = V_{g0} + \frac{kT}{q} \ln \frac{I_C}{CT^n} + \frac{kT}{q} \eta \ln \frac{T^n}{T} \quad (2-5) \]

\[V_{BE} = V_{g0} + \frac{T}{T_r} \left(\frac{kT}{q} \ln \frac{I_C}{CT^n} \right) + \frac{kT}{q} \eta \ln \frac{T^n}{T} \quad (2-6) \]

\[V_{BE} = V_{g0} - \frac{T}{T_r} V_{g0} + \frac{T}{T_r} \left(V_{g0} + \frac{kT}{q} \ln \frac{I_C}{CT^n} \right) + \frac{kT}{q} \eta \ln \frac{T^n}{T} \quad (2-7) \]

\[V_{BE} = V_{g0} \left(1 - \frac{T}{T_r} \right) + \frac{T}{T_r} V_{BE}(T_r) + \frac{kT}{q} \eta \ln \frac{T^n}{T} \quad (2-8) \]
Index

Numerics

1/f noise 11
1/f noise corner frequency 11

double-correlated sampling technique 76
duty-cycle 19
duty-cycle modulation 67, 68
dynamic element matching 13
dynamic offset-cancellation technique 9, 10, 44
dynamic range usage 71

electron charge 4, 38
extrapolated bandgap voltage 40

A

accuracy 64
accuracy versus chopping frequency 58
aliasing 10
Analog-to-Digital conversion 66
anti-aliasing filter 16
automotive industry 81
autozero technique 14
autozeroing 76

calibration 9
Celsius 1
charge balancing 69
charge injection 18, 32
charge-coupled devices (CCDs) 17
chopper opamp 26, 28
chopper technique 20
chopper-stabilization 10, 13, 18

correlated double-sampling 13, 17
curvature correction techniques 37, 45, 73

duty-cycle 19
duty-cycle modulation 67, 68
dynamic element matching 13
dynamic offset-cancellation technique 9, 10, 44
dynamic range usage 71

electron charge 4, 38
extrapolated bandgap voltage 40

B

bandgap voltage references 37
base-width modulation 71
battery-powered systems 65
bipolar devices in CMOS technology 37
bipolar substrate transistor 4
Boltzmann's constant 4, 38
bus interfaces 77

calibration 9
Celsius 1
charge balancing 69
charge injection 18, 32
charge-coupled devices (CCDs) 17
chopper opamp 26, 28
chopper technique 20
chopper-stabilization 10, 13, 18

correlated double-sampling 13, 17
curvature correction techniques 37, 45, 73

duty-cycle 19
duty-cycle modulation 67, 68
dynamic element matching 13
dynamic offset-cancellation technique 9, 10, 44
dynamic range usage 71

electron charge 4, 38
extrapolated bandgap voltage 40

C

bandgap voltage references 37
base-width modulation 71
battery-powered systems 65
bipolar devices in CMOS technology 37
bipolar substrate transistor 4
Boltzmann's constant 4, 38
bus interfaces 77

calibration 9
Celsius 1
charge balancing 69
charge injection 18, 32
charge-coupled devices (CCDs) 17
chopper opamp 26, 28
chopper technique 20
chopper-stabilization 10, 13, 18

correlated double-sampling 13, 17
curvature correction techniques 37, 45, 73

duty-cycle 19
duty-cycle modulation 67, 68
dynamic element matching 13
dynamic offset-cancellation technique 9, 10, 44
dynamic range usage 71

electron charge 4, 38
extrapolated bandgap voltage 40

F

bandgap voltage references 37
base-width modulation 71
battery-powered systems 65
bipolar devices in CMOS technology 37
bipolar substrate transistor 4
Boltzmann's constant 4, 38
bus interfaces 77

calibration 9
Celsius 1
charge balancing 69
charge injection 18, 32
charge-coupled devices (CCDs) 17
chopper opamp 26, 28
chopper technique 20
chopper-stabilization 10, 13, 18

correlated double-sampling 13, 17
curvature correction techniques 37, 45, 73

duty-cycle 19
duty-cycle modulation 67, 68
dynamic element matching 13
dynamic offset-cancellation technique 9, 10, 44
dynamic range usage 71

electron charge 4, 38
extrapolated bandgap voltage 40

H

Hall plate 31
high-accuracy PTAT-current generator 100
high-accuracy temperature sensor 93
higher-order sigma-delta converters 70
Index

I
I2C interface 77
I2C protocol 77
instrumentation amplifier 22, 30
integrating A-to-D converter 19
interference of microprocessor signals 108
IS2 bus interface 77

K
Kelvin 1
Kelvin-to-Celsius conversion 71

L
laptop 106
lateral bipolar transistor 39
leakage 16, 110
linearized thermal behaviour 45
long-term stability 10
low-pass filter 20, 22
low-sensitivity inputs 14
low-sensitivity inverting inputs 18

M
microcontroller 20
microprocessor temperature sensor 108
microprocessors 64
Microwire 77
Miller capacitor 27, 31
Miller split 28
mixing 10
motherboards 64

N
naming conventions 13
nested chopper technique 28-29, 52
noise 10
noise bandwidth 11
noise power spectrum 23
noise sources 11, 12
noise spectrum 15
non-idealities 44
non-ideality factor 71
nulling opamp 18, 19

O
offset 10
offset correction at start-up 16
offset drift 16
oversampling 70

P
piece-wise-linear 54
piece-wise-linear curvature correction technique 46
ping-pong opamps 13
power consumption 65
power-bandwidth product 23
pressure sensor 80
protection diodes 31
Pt-100 2, 63
PTAT voltage 4

R
relaxation oscillator 67
remote microprocessor temperature sensor 106
reproducibility 37
residual noise 15
residual offset 14, 23, 24, 27, 28
residual thermal noise 16
resistance thermometer 2, 63
resolution 65

S
sample-and-hold circuit 14-17, 110
sampled-data systems 17
sampling frequency 15
saturation current 4
scale 1
self-calibrating opamp 13-16
self-heating 65
shot noise 10, 12
sigma-delta modulation 67
sigma-delta modulator 69
signal-to-noise ratio 23
single transistor temperature sensors 74
spike energy 24
spikes 23
spinning-current Hall plate 31
stability 37
substrate bipolar transistor. 39
sub-threshold slope factor 12
successive-approximation 67
switched-capacitor (SC) circuits 17
synchronous detection 13, 22
System Management bus (SM-bus) 77

T
temperature characteristics 40
temperature coefficient of PTAT signal 38
temperature coefficient of the base-emitter voltage 37
theoretical minimal power consumption 65
thermal cross sensitivities 81
thermal management 64, 93
thermal modelling 37
thermal noise 10
thermal noise floor 10
thermal voltage 38
thermistor 2, 63
thermocouple effects 31
thermostats 2
trimming 9, 45
two or three-signal approach 13, 19
typical error of bandgap reference 44
tyre monitoring system 79

U
uncalibrated accuracy 96
unity-gain bandwidth 16, 27

V
V-f converter 19
voltage references 37

W
weak inversion 12, 39
Wheatstone bridge 31
white noise 10