Barley (cont.)
harvesting before maturity, 144–145
milling, 237
starch, 69–70, 74, 75, 237
straw production, 154
Barrier properties of plastic films, 111, 113, 119–122
Beer: see Brewing, Malting
Biodegradable materials: see Plastics, Polymers
Biodegradation, rate of, 38–40, 107, 109
Bioethanol: see Ethanol
Biofragmentable plastics: see Plastics
Biopesticides: see Pesticides
Biopol, 35
Biorefinery, 161–162, 164–165; see also Integrated
Bioprocesses
biology, 162, 191–203
optimisation, 192–203
Biotechnology, 11, 18
Biscuits, 277
Bran, 3, 241–242; see also Aleurone, Debranning proce-
esses, Fibre
ash contribution, 125
β-glucan, 3, 235–238
BranScan 1000, 125–131
as carrier for biopesticides, 5
destruction during fermentation, 209, 217
effect on fermentation of flour, 208, 209–210
enzyme hydrolysis of, 249
oat bran, 3, 234–238
on-line measurement of, 125–131
production within a wheat biorefinery, 192, 193
separation, 207, 269, 270
starch content, 237
yield from milling, 237
Brazil
bioethanol use, 17, 185, 186, 187
growth of pseudo-cereals, 79, 80
Bread, 244, 247–250, 276; see also Dough
Chorleywood Breadmaking Process, 250, 277
New Zealand baking industry, 273–279
Breakfast cereals, 245, 271
Breeding: see Plant Breeding
Brewing, 251; see also Malting
of opaque beer from sorghum, 265, 267–269
BSE, 3, 8
Butanol, 4
Butyric acid, 4, 138
Cake flours, 128–129
Calcium, 85
Calcium magnesium acetate, 73
Canada
cereal production and trade, 2
health claims for foods, 234
Cancer, 233, 234, 238
Carbon dioxide emissions, 7, 73, 154, 188
Cellulose, 10–11, 164
pre-treatment for subsequent fermentation, 133–141
Cellulose acetate, 109, 121
Cement, 139
Cereals, see also Barley, Maize, Oats, Sorghum, Rice,
Rye, Wheat
for bioethanol in Europe, 184–189
coloured grains, 276, 277
as fermentation media, 205–218, 219–227, 229–232
fractionation, 241–245
New Zealand cereal industry, 273–279
pseudo-cereals: see Amaranthus, Chenopodium
straw production, 154
use of immature cereal crops, 143–151, 159–167
world production, 2
yield, 92, 93
Chemicals
acetic acid, 4, 170, 172, 173, 224, 226
acetone, 4, 148
alpha-angelicalactone, 51
antifreeze, 49, 52
aromatics, 4
butanol, 4
butyric acid, 4, 138
calcium magnesium acetate, 73
cellulose acetate, 109, 121
diphenolic acid, 50
esters, 50
ethanol: see Ethanol
ferulic acid, 4
furfural, 4, 135, 137–138, 140, 170, 172, 173
gluconic acid, 16
glucono delta lactone, 16
glycerol, 112, 214
itaconic acid, 4
lactic acid: see Lactic acid
leucine: see Leucine
levulinic acid, 49–55
lysine: see Lysine
piperylene, 50
polycaprolactone, 4, 44–46, 109
polyethylene oxide, 37–41
polyhydroxylactone, 4
polyhydroxybutyrate, 4, 18, 174
poly(hydroxybutyrate-valerate), 35–41, 44–46, 109,
115
polylactic acid: see Polylactic acid
polysols, 3, 4, 16, 17, 74
solvents, 4, 50
squalene, 84
valeric-γ-lactone, 50
vanillin, 4
xanthan gum, 3, 4, 16
Chemurgic movement, 108
Chenopodium, 79–89
amino acid composition, 83
C. quinoa, 81, 82, 83, 86, 88
amino acid composition, 88
effect of cultivation year on protein content, 82
effect of nitrogen fertilizer levels on protein con-
tent, 82
saponin content, 86
Index

Chenopodium (cont.)
composition, 80–85
lips, 84
protein fractions, 84
China
Amaranthus production and use, 92–94
cereal production and trade, 2
Cholesterol, 235, 242
Chorleywood Breadmaking Process, 250, 277
Cleaning
of baked wheat starch deposits, 103–106
Cleaning In Place (CIP), 103
effect of detergent concentration, 105–106
Cleaning agents: see Detergents
Coatings
for paper, 72
for plastics, 4, 43–47, 117–123
Colour
of flour, 125, 128, 129–130
Common Agricultural Policy (CAP), 6, 187
Consumer choice, 233
Corn: see Maize
Cosmetics, 4, 22
Crop rotation, 193
Debranning processes, 128, 236–238, 257–264, 269–270
Decortication: see Debranning processes
Detergents, 3, 22, 73, 108
for cleaning baked wheat starch deposits, 104–106
effect of concentration, 105–106
potential for starch usage in detergent industry, 18, 22
Diabetes, 233, 243
Diet, 233, 234
Differential scanning calorimetry, 75, 97
Diphenolic acid, 50
Disease, 233
Diversity
genetic diversity of Amaranthus, 91
microbial, 205
Dough
bromate, 275, 277
for cracker production, 247–248, 249
dough probe, 277
frozen dough, 250
Mechanical Dough Development, 274–275, 277, 278
oxidation, 277
preparation for starch/gluten separation, 180
rheology, 277
Drinks, 3
health drinks, 86, 165
Drying
of hay, 149
of malt, 266–267
of seeds, 149
of starch and gluten, 180–183
of whole crops, 164, 229–230
within a biorefinery, 193, 194
Durum wheat
harvesting before maturity, 144–149
Dust, 182, 183
Economics, 11, 17, 205
of biorefineries, 162, 191–203
of clean in place systems, 103
of enzymes for cell lysis, 214
of ethanol as a fuel, 185–189
of ethanol production, 169–174
of fermentation, 216
of flour milling, 257
of malting, 252
market economy for science, 276–277
of New Zealand cereal industry, 276
price: see Price
rural economies, 187, 188
of storage, 191–192, 199, 200–203
of transport, 199–200, 203
of whole crop harvesting, 165
Energy, 5–6; see also Fuel
cost of starch, 103
from ethanol production, 170, 175
Non-Fossil Fuel Obligation (NFFO), 7, 155, 156, 157–158
security of supplies, 187
from straw, 5, 153–158, 164, 170
vapour recompression, 182–183
Enzymes, 11, 138
added to flour, 275
α-amylase inactivation, 219–227
in breadmaking, 277
for cell lysis, 214
for cracker production, 247–248
hydrolysis of wheat grains, 200, 203, 249
in malting, 251, 253, 266
production by fermentation, 207, 229
Esters, 50
Ethanol, 4, 8, 17, 112, 137
economics of as a fuel, 185–189
economics of production, 169–174
as a raw material for chemical production, 4
yield, 173–174, 215
European Union
bioethanol usage, 185–189
cereal production and trade, 2
Common Agricultural Policy (CAP), 6, 187
industrial starch usage, 14–15, 22, 24
legislation effects on cereal usage, 6
Exports, 2
of cereal-based foods from New Zealand, 274, 276
US export prices, 9
Extraction rate
of flour, 130, 195, 198, 237, 258
in sorghum milling, 269
Extruded products, 271, 277
Extrusion cooking, 268
Farinograph, 278
Farm
management, 278–279
modelling, 193
Fat
content in *Amaranthus* and *Chenopodium*, 80–81
Fat replacers, 3, 81, 233
Fatty acids, 84
Feed: see Animal feed
Fermentation, 3, 16, 35, 149; see also Brewing
of agricultural residues, 133–141, 229–232
for amino acid production, 229
autolysis, 209, 213–214, 215, 217
batch, 208–210
cereals as fermentation media, 205–218, 219–227, 229–232
continuous, 208–209, 210–212, 215
economics, 216
effect of α-amylase inactivation, 219–227
effect of bran, 208, 209–210
effect of gluten, 208, 210
effect of nutrients, 219–227
for enzyme production, 207, 229
for ethanol production, 169–174, 214–215
fermented flour ingredients, 247–250
generic feedstock from whole wheat flour, 205–218
kinetics, 59–60, 210–211, 216, 220
of lignocellulose fractions, 133–141, 187
for lysine production, 169, 170–171, 230–232
nutrient requirements, 207, 212, 219–220
on-line monitoring, 63–67
of pressed crop, 161
of starch, 16, 57–61, 207
of wet oxidised wheat straw substrate, 135–136, 138, 140
of whole wheat flour, 205–218, 219–227
for xanthan gum production, 3
for yeast production, 214–215
Fertilizer, 161, 163, 187, 229
effect of fertilizer on subsequent dough development, 278
effect of nitrogen fertilizer levels on amino acid composition in *Amaranthus* and *Chenopodium*, 82
Ferulic acid, 4
Fibre, see also Bran
added to bread, 275
β-glucan, 3, 235–238
content in *Amaranthus* and *Chenopodium*, 80–81
health claims for fibre-containing foods, 234
in Nature’s Gold, 242–244
oat bran, 234–238
separation from starch, 181
soluble fibre, 234, 235
Films: see Gluten, Packaging, Plastics, Protein, Starch
Flavour, 247, 248, 250
Flax
chemical composition, 135
pre-treatment for subsequent fermentation, 133–141
Flour, see also Milling, Wheat
colour, 125, 128, 129–130
economics of flour milling, 257
extraction rate, 130, 195, 198, 237, 258
as fermentation feedstock, 205–218, 219–227
fermented flour ingredients, 247–250
gluten-free, 207, 210, 216
milking, 192, 236–238, 257–264
moisture, 258
New Zealand flour milling industry, 273–279
on-line measurement of bran, 125–131
production within a wheat biorefinery, 192
quality, 125, 278
starch content, 237
stone ground, 207
wheat conditioning, 257
for wheat starch and gluten production, 177
yield, 237, 257
Foam plastic: see Plastics
Food, see also Functional foods, Nutrition
usage of *Amaranthus*, 92, 93, 94
Fouling: see Cleaning
Fractionation
of *Amaranthus*, 162
within a biorefinery, 191, 193–199
of cereals, 241–245
of green crops, 79, 86–88, 159–165
of proteins, 86–88, 161
of straw, 134, 136, 191
of wheat, 191
Fructose
production, 143–151
Fuels, see also Energy
ethanol: see Ethanol
extenders, 51
oxygenates, 4, 187
pressed crop as a fuel, 161
straw as a fuel, 153–158, 164, 170
Functional foods, 3, 147, 150, 233–239, 244–245, 275
Furfural, 4, 135, 137–138, 140, 170, 172, 173
Gelatinisation
of flour, 208, 212–213
of starch, 71; see also Pasting properties of starch
temperature, 99, 100, 103
Generic fermentation feedstock, 205–218
Genetic diversity, 91
Genetic engineering, 11, 88, 187; see also Plant breeding
Germ
enzyme hydrolysis of, 249
wheat germ, 241–242
Global warming, 186, 188
Gluconic acid, 16
Glucono delta lactone, 16
Glucose
 analysis, 208
 blood levels, 235–236
 enhancement after fermentation, 212–213, 216–217
 glycaemic index, 243, 244
 price, 216
Glucose syrup, 7
Gluten, see also Dough, Protein
 added to flour, 275
 in adhesives, 5, 110–111
 chemical modification, 112–115
 effect on fermentation of flour, 208, 210
 film formation, 112, 118–119
 -free flour, 207, 210, 216
 high molecular weight glutenins, 275
 modification, 113
 in plastics, 4, 110, 111–115, 117–123
 price, 110, 115, 122, 216
 production, 177–183
 production volumes, 108, 110
 production within a wheat biorefinery, 192
 properties, 110, 117–123
 rheology, 110, 111
 structure, 248
 thermoplastic processing, 110
 vital wheat gluten, 3
 water vapour permeability of gluten-based plastics, 119–122
Glycerol, 112
 production by fermentation, 214
Harvesting, 193, 231
 before maturity, 143–151
 economics of whole crop harvesting, 165
Hay, 149, 161
Health claims, 233–234; see also Functional foods
Health foods, 165; see also Functional foods
Heart disease, 233, 234
Heat and power:
 see Energy
Hemicellulose, 10–11
 pre-treatment for subsequent fermentation, 133–141
High fructose corn syrup, 7, 8
Image analysis, of bran in flour, 125–131
Immature cereals, 143–151, 159–167
Imports, 2
Incas, 79
India, cereal production and trade, 2
Industrial applications for levulinic acid, 49–55
Industrial markets for starch, 21–25, 72–74
Industrial proteins
 definition, 108
 examples, 108
Industrial raw materials from cereals, 1–11
Information dissemination systems, 11
Instrumentation: see Analytical methods
Insulin levels in serum, 235–236
 economics, 191–203
Iron, 85
Itaconic acid, 4
Japan, health claims for foods, 234
Lactic acid, 4, 162; see also Polylactic acid
 optimisation of production, 57–61
 in sour beer, 268
 yield, 220, 223, 226
Lactococcus lactis, 60, 219–227
Leaf nutrient concentrate, 161–164
Legislation, 6–7, 17
 Clean Air Act Amendments, 7
 Federal Agricultural Improvement and Reform (FAIR) Act, 6
 for functional foods and health claims, 233–234
 Nutrition Labelling and Education Act, 234
 Sweetener Directive, 7
Leucine, 82–84, 87–88, 243
 limiting amino acid in Amaranthus, 85
Levulinic acid, 49–55
Lignin, 133–135, 238
Lignocellulose, 133, 136, 139, 173, 187
Linoleic acid, 84
Lipids, see also Fat replacers
 content of Amaranthus and Chenopodium, 84
Lysine, 82–84, 86–88, 162
 content
 in Amaranthus, 82, 92
 in immature wheat grains, 147
 in Nature’s Gold, 243
 effect on chemical modification of proteins, 113
 effect of nitrogen fertilizer levels on lysine content
 in Amaranthus and Chenopodium, 82
 production by fermentation, 169, 170–171, 230–232
 transgenic high-lysine rice, 88
Maillard reactions, 70, 225
Maize
 β-glucan in, 236
 corn steep liquor, 207, 219
 for ethanol production, 172
 export, 1, 2
 milling, 269
 production volumes, 1, 2
 promotional programmes in Southern Africa, 265
 starch, 22, 23, 24, 25, 27–33, 73, 75, 96, 98, 99, 100
 trade, 2
 usage, 8
Malt
 quality improvement, 251–255
 from sorghum, 265–267, 271
Management
on farms, 278–279
of science, 276
Markets
for bioethanol, 185
growth of industrial markets, 1–6
for UK starch, 21–25
Martin process for starch/gluten separation, 177, 207
Meat consumption, 10
Mechanical properties of plastics: see Plastics
Medical applications, 4, 219
Millet, 265
Milling
abrasion/friction pre-processes, 128, 236–238, 257–264, 269–270
of barley, 237
of maize, 269
of oats, 237
of sorghum, 269–271
of wheat, 237, 269
Minerals, 238
in aleurone layer and products, 241, 243–244
in Amaranthus grains, 85
calcium, 85
in Chenopodium grains, 85
in fermentations, 214
iron, 85, 241, 243–244
sodium, 243–244
Miscanthus, 133
Modelling
of biorefinery profitability, 191–203
of lactic acid production, 57–61, 220
of malting, 252–255
Modified starch: see Starch
Moisture content, 193, 199
of flour, 258
of wheat, 257
Multivariate analysis, of malting, 254–255
Myctoxins, 238
Nature’s Gold, 242–245
New Zealand biorefinery, 162
cereal industry, 273–279
Nitrogen
corn steep liquor as nitrogen source in fermentations, 206
fertilizer, 82, 278
free amino nitrogen (FAN), 208, 212–217, 267, 268
Non-Fossil Fuel Obligation (NFFO), 7, 155, 156, 157–158
Nutraceutical: see Functional foods
Nutrition, see also Amino acids, Minerals, Vitamins
antinutritive substances, 85, 86, 164
β-glucan, 3, 235–238
clinical studies with oat β-glucan, 235
Nutrition (cont.)
energy content of starch, 103
nutrient requirements for fermentations, 207, 212, 219–220
Nutrition Labelling and Education Act, 234
nutritive value
of Amaranthaceae, 85, 92
of Chenopodiaceae, 86
of germinated grains, 165
of leaf nutrient concentrate, 163–164
of Nature’s Gold, 242–244
of wheat bran and germ, 241
role in consumer choice, 233
Oats
bran, 234–238, 245
milling, 237
oat β-glucan, 3, 235–238
starch, 25, 74, 75, 237
straw production, 154
Oil, see also Lipids
oil well drilling mud, 16, 71
Oil seed rape, and biorefinery economics, 192, 195, 202, 203
Oleic acid, 84
OPEC, 185
Optimisation
of a biorefinery, 192–203
of cereal processing, 277
of lactic acid production, 57–61
of malting, 251–255
Oxygenates, 4, 187
Packaging, 117; see also Plastics
barrier properties, 111, 113, 119–122
loose fill, 5
recycling, 7
Palmitic acid, 84
Paper
recycling, 5
use of cellulose in, 133
use of pressed crop in, 161, 162
use of starch in, 5, 13–15, 22, 23, 70, 72
use of straw in, 5
Pasting properties of starch, 97–99
Pearling: see Debranning processes
Pentosans, 177, 180, 181
PeriTec process, 257–264
Personal care products, 4
Pesticides
biopesticides, 5, 86
delivery, 72
residues, 238, 244, 263
Pharmaceuticals, 4, 22, 52, 86, 164, 229, 233; see also Functional foods
PHB, 4, 18, 174
Piperylene, 50
Plant breeding, 88, 92, 251, 265, 275, 277, 278
Plastics, see also Polymers, Packaging

- barrier properties, 111, 113, 119–122
- biodegradable, 4, 18, 35–41, 43–47, 73, 107, 219
 - rate of biodegradation, 38–40, 107, 109
- biofragmentable, 4, 18, 73
- chemical modification, 112–115
- coatings, 4, 43–47, 117–123
- film formation, 112, 118–119
- foam plastic, 25–33
- gluten-based, 4, 110, 111–115, 117–123
- mechanical properties, 27–33, 35–41, 43–47, 109, 112–114, 117–123
- oxygen permeability, 111
- peel strength, 44–46
- starch-based, 4, 18, 25–33
- tensile strength, 36–38, 109, 119, 120, 174
- water sensitivity, 43–47, 107, 113–115
- water vapour permeability, 119–122
- wet strength, 114

Pneumatic conveying, 257
Polyacrolactone, 4, 44–46, 109
- price, 109
- production volumes, 109
Polyethylene oxide, 37–41
Polyhydroxylcalcanoate, 4
Polyhydroxybutyrate (PHB), 4, 18, 174
Poly(hydroxybutyrate-valerate), 35–41, 43–46, 109, 115
- price, 109
- production volumes, 109
Polyactic acid, 4, 44–46, 109, 115, 219
- as a coating, 117–123
- price, 109, 122
- production volumes, 109
Polymers, 10; see also Plastics
- biodegradable polymers, 107, 108–110, 162, 174
- processing, 107
Polyols, 3, 4, 16, 17, 74
Polyurethane foam, 27–33
Popcorn, 5
Potato
- ethanol yield from, 169, 171
- starch, 22, 23, 24, 25, 70, 96, 98, 99, 100, 103

Power generation: see Energy

Price, see also Economics

- of biodegradable polymers, 109
- of bioethanol, 186
- of glucose, 216
- of glucose syrup, 216
- of gluten, 110, 115, 122, 216
- of oil, 17, 186
- of polycaprolactone, 109
- of poly(hydroxybutyrate-valerate), 109
- of poly(lactic acid, 109, 122
- of starch, 24, 109, 216
- of straw compared with coal, 157
- of wheat, 216

Production of cereals, world production, 2
Profitability: see Economics

Properties
- of cereal-based plastics: see Plastics
- of starch: see Starch

Protein, see also Amino acids, Gluten
- in adhesives, 108, 110–111
- animal protein in animal feeds, 3
- cereal proteins as a source of novel food ingredients, 3
- chemical modification, 3, 112–115
- content in Amaranthus and Chenopodium, 80–82
- content in Otane wheat, 275
- conversion to free amino nitrogen, 208
- film formation, 112, 118–119
- fractionation, 86–88, 161
- industrial applications, 107–116
- industrial proteins, 108
- leaf protein concentrate, 160, 161, 229
- in Nature’s Gold, 242
- in plastics, 4, 110, 111–115, 117–123
- SDS-PAGE, analysis of starch integral proteins, 75
- yields, 162–163

Pseudo-cereals: see Amaranthus, Chenopodium

Quality
- of flour, 125, 278
- malt quality improvement, 251–255
Quinoa, 81, 82, 83, 86, 88

Rapid Visco-Analyzer, 96–99
Recycling, 107
- of packaging, 7
- of paper, 5

Reef process for opaque beer production, 267–269

Rheology
- of dough, 277
- of gluten, 110, 111
- modification, 113

Rice
- β-glucan in, 236
- export, 2
- milling, 257
- production volumes, 2
- starch, 96, 98, 99, 100, 103
- transgenic high-lysine rice, 88
Rubber, 50
Rye, β-glucan in, 236

Saccharomyces cerevisiae, 11, 172, 217, 249, 268
Saponins, 86
Science, market economy for, 276–277
SDS-PAGE: see Protein
Sensors: see Analytical methods
Separation
- of bran, 207, 269, 270
- of crop fractions, 192, 195
- of starch and gluten, 180
Shelf life of crackers, 247
of opaque beer, 268–269
Silage, 93, 172
Simulation: see Modelling
Solvents, 4, 50
Sorghum
milling, 269–271
processing in Southern Africa, 265–272
South Africa, sorghum usage, 266
Squalene, 84
Starch
in adhesives, 5, 14, 22, 72
Amaranthus starch, 81, 91–102
barley starch, 69–70, 74, 75, 237
biodegradable plastics from, 10, 16, 18, 25–33, 35–41, 43–47, 109, 117–118
as a carrier, 4
cleaning baked wheat starch deposits, 103–106
comparison of properties, 69–77, 95–101
composition, 70, 74–76
content
in Amaranthus, 81–82, 97
in Chenopodium, 81–82
in milling fractions, 237, 238
conversion ratio to glucose, 211, 217
energy content of, 103
as extender in polyurethane foam, 27–33
as fermentation feedstock, 16, 57–61, 207
fillers in plastics, 4, 18, 27–33
gelatinization, 71, 268; see also pasting
temperature, 99, 100, 103
graft copolymers, 18, 38
granules, 25, 69–70
of Amaranthus, 81, 94
of Chenopodium, 81
granule size distribution, 69–70, 74, 75
hydrolysates, 4, 16
hydrolysis, 14, 73–74, 207, 208, 268
industrial markets, 21–25, 72–74
maize starch, 22, 23, 24, 25, 27–33, 73, 75, 96, 98, 99, 100
Martin process, 177, 207
modified starches, 3, 10, 14–15, 71
novel uses in foods, 3
oat starch, 25, 74, 75, 237
in paper, 5, 13–15, 22, 23, 70, 72
pasting, 71–72, 97–100
in plastics, 4, 18, 22, 25–33, 35–41, 73, 117–118
potato starch, 22, 23, 24, 25, 70, 96, 98, 99, 100, 103
potential usage in detergents industry, 18, 73
present and future uses, 13–19
price, 24, 109, 216
production of lactic acid from, 57–61
production volumes, 1, 109
properties
comparison, 69–77, 95–101
effect of genetic variation, 94–95

Starch (cont.)
Rapid Visco-Analyzer, 96–99
as a raw material, 4
retrogradation, 91, 225
rice starch, 96, 98, 99, 100
specialty starches, 91–102
in textiles, 5, 72
texture, 99–100
thermoplastic, 43–47
usage in the European Union, 14–15, 22, 24
usage in the UK, 13–15, 22, 23
viscosity, 72–73, 91, 97–99
waxy, 70, 74
wheat starch, 22, 23, 24, 25, 69–70, 73, 74, 75, 96, 98, 99, 100, 177–183, 238
Storage
within a biorefinery, 191–192, 193, 199, 200–203
economics, 191–192, 199, 200–203
effect on amino acid content of green juice, 231–232
Straw
in composite boards, 5, 164
composition, 135
for energy production, 5, 153–158, 164, 170
for ethanol production, 173
fractionation, 134, 136, 191
in integrated processes, 164, 169, 172
in paper, 5
pre-treatment for subsequent fermentation, 133–141
price, 157
processing within a wheat biorefinery, 191–204
production volumes, 153, 154, 155
usage, 155–156
Subsidies, 6, 11, 17, 186, 188
Superabsorbents, 18
Surfactants: see Detergents
Sweeteners, 3

Tensile strength
of flax fibres, 134, 135, 140
of plastics, 36–38, 109, 119, 120, 174
Textiles, 5, 49, 72
Texture
of bakery products, 247, 248, 250, 277, 278
of starch pastes, 99–100
Thermoplastic processing of gluten, 110
Thermoplastic starch, 43–47
Total processing concept: see Biorefinery, Integrated bioprocesses
Trading
world production and trade, 2
Transport
economics, 199–200, 203

United Kingdom
starch usage, 13, 14, 21–25
straw
production 153–155
usage, 155–156
United States of America
 bioethanol usage, 185
 cereal production and trade, 2, 117
 export prices, 9
 growth of pseudo-cereals, 79
 legislation effects on cereal usage, 6
 Nutrition Labelling and Education Act, 234

Valeric-γ-lactone, 50
Vanillin, 4
Viscosity
 of oat gums, 235
 of starch pastes, 72–73, 91, 97–99
Vitamins, 17, 170, 211, 217, 219, 238
 in aleurone layer and products, 211, 241, 243–244
 in *Amaranthus* grains, 85
 in *Chenopodium* grains, 85
 folic acid, 85, 170, 211, 241, 243–244
 niacin, 85, 170, 211, 241, 243–244
 riboflavin, 85, 170, 211, 243
 thiamine, 85, 170, 211, 241, 243–244

Waste treatment, 169, 174, 175
Water absorption of debranned wheat, 259–260
Water sensitivity of plastics, 43–47, 107
 modification, 113–115
Water soluble carbohydrates, 143–150
Water usage in starch and gluten production, 177, 180
Water vapour permeability of gluten-based plastics, 119–122
Waxy starches: see Starch
Wet oxidation of agricultural crop residues, 133–141
Wet strength, of gluten films, 114
Wheat, see also Durum wheat, Flour, Milling
 abrasion/friction pre-processes, 236–238, 257–264
 β-glucan in, 236–238
 biorefinery, 192–203
 bran, 236–238, 241–242, 249
 conditioning, 257
 cultured wheat fractions, 249
 ethanol yield from, 169, 171
 export, 1, 2
 as fermentation feedstock, 205–218, 219–227
 fractionation, 191
 germ, 241–242, 249
 gluten: see Gluten

Yield
 of alcohol, 172
 of *Amaranthus*, 92, 93
 of bran from milling, 237
 of crops, 193
 for bioethanol production, 187
 effect on ash content of debranned wheat, 261, 263
 of ethanol from fermentation, 173–174, 215
 of flour, 237, 257
 of fructose, 146
 of green plants in temperate and tropical climates, 159
 of lactic acid, 220, 223, 226
 per land unit, 169–171
 of levulinic acid, 51
 during malting, 252
 processing yields of extracted leaf protein, 163
 production yield during baking, 250
 of protein per hectare, 162–163
 during sorghum milling, 271