INDEX

Acid corrosion
 effect of prior oxidation, 943, 949, 952 (graphs), 1010
elemental effects
 Al, 955, 959, 1006
 Cr, 959, 967
 Fe, 959, 1030
 Ni, 1033
 O, 1030
 Pd, 1033
 Si, 959
hydrogen absorption, 995, 1005
industrial media, 935, 1007, 1039
inhibitors, 1039
microstructural effects
 BT-14, 996
 BT-15, 996
 Ti-Cr, 971 (Table)
 Ti-Fe, Ti-0, 1030
 VT-15, 970 (Table)
multi-component alloy systems
 AT-3, 941, 949
 AT-6, 949
 BT-6C, 1009
 BT-14, 995, 1009
 BT-15, 995, 1009
 BT-20, 1009
 BT-22, 1009
 BT1-0, 952, 995
 BT3-1, 1009
 OT-4, 1009
 TC-5, 1009
 Ti-Al-Mn, 1006
 Ti-Al-Mo, 1006
 Ti-Al-V, 1006
 Ti-Mo-Nb-Zr alloys, 927
 VT-14, 967
 VT-15, 967
 VT1-0, 1039
 welds, 937
Acoustic Emission
 fracture of oxides, 1097
Age hardening response
 for Ti-39V-0.6Si and beta C, 556
Aging
 of β Ti alloys, 1675
 of Ti-8823, 1717
Aging behavior
 of Ti-6Al-6V-2Sn, 1913
Alloy composition
 effect on texture, 1881
 α-phase precipitation, 1477
 α-Ti alloys
 influence of peculiarities of boron, 189
 α-Ti, diffusion of H in. 1377
Anderson structure, 65
Anodic polarization curves of
 Ti & Ti42, 898 (figure)
Anosvite, 65
Applications of titanium alloys, 35
Artificial titanium minerals, 65
Bardinite, 65
Base corrosion - elemental effects
 Al, 959
 Cr, 959
 Fe, 959
 Si, 959
Bauschinger strain, 560
Beta flecking
 in large forgings, 417
Beta forgings, 231
Billet production of titanium, 10, 14
Boron
 peculiarities in α-Ti alloys, 189
 modified VT-5 alloy, 209
Boronizing, 1741
BT-5 alloy
 with 0.01 Boron additive, 191
BT6-C
 vacuum rolling, 264
Bulk deformation, 359
Cathode modified Ti-Alloys, 915
Charpy impact value
 effect of β grain size in Ti-15Mo, 577
 relationship with KIC value, 584
Chemical dissolution
 mechanisms, 978, 995
rate, 995
Chemisorption of oxygen, 1063
Chloride corrosion—elemental effects,
 Al, 959, 981
 Cr, 959
 Fe, 959
 Si, 959
Chlorination process, 33, 68, 70
 of titanium dioxide, 68
Cleavage facets in vacuum
 fatigue, 804 (figure)
Coefficient of diffusion, 1512
Cold rolling, 235, 283
Compositions,
 of ferromagnetite concentrates of placer deposits, 82
 of ilmenite concentrates of bedrock deposits, 80
 of ilmenite concentrates of placer deposits, 83
Compressor wheels, 337
Cooling rate effects, 1119
Corrosion, 847
 corrosion rates of various Ti alloys, 859 (figure)
 effect of Mo additions, 903
 effect of Ni addition, 921 (Fig.)
 in dilute HCl at elevated temperature, 881
Corrosion (cont'd)
 of cathode-modified Ti-alloys, 915
 of Ti & Ti-Pd alloys, 881, 917
Crack initiation
 hot salt stress corrosion, 1081
Crack propagation, 1601
 hot salt stress corrosion, 1081
 in air and sea water, 825
 relationship with mechanical properties, 791
Creep rate
 influence on texture, 1872
Critical crack length
 use in estimating KIC, 769
Crystallographic structure
 stress-induced martensite, 1567
Crystals orientation relationship, 1531
Cyclic fracture toughness, 829
Cyclic stress-strain response
 cyclic instability, 553
 cyclic softening, 557, 589
 cyclic stress-strain curve for beta C, 560
Decomposition
 α', α'+β+ω, β+ω, β, 1509
 β, 1559, α", 1613
Defects, resulting from
 heterogeneous and coarse grained macrostructure striations, 1772
 local manifestations of the coarse α-phase, 1777
Deformation flow studies, 337
Deformation and fracture, 1357
Deformation hardening, 837
Delayed failure, due to hydrogen, 783
Dendrites
 dendritic freezing in ingots, 130
 secondary arm spacing for four Ti-Mo alloys, 134
 dendritic segregation, 148
Die-forgings, 230, 347
Diffusion bonding, 1112
Diffusion in Ti
 oxygen, 1055
 vacancies, 1060
Diffusion
 of ions through oxides, 872
 of oxygen in metal substrates, 874
Disc forging, 351
Dislocations
 effect of oxygen, 531
 interstitial alloys, 497
Drawing, 296
Ductility
 influence of grain size, 1919
Effect of oxygen
 skull produced ingots, 184
 sponge drums, 156
 sponge size, 158
Elastic modulus, 1511
Electrochemical properties
 elemental effects
 Al, 983
 Cr, 960, 974
 multicomponent alloy systems
 BT-14, 996
 BT-15, 996
 VT-1-0, 1018 (Table), 1041
 VT-14, 973
 VT-15, 973
Electrolytic production of titanium, 55-57
Electrolytic titanium powders
 characteristics, 121
Electron beam melting, 197
Electron beam welding, 1245
Electrorefining of titanium, 117
 cell arrangements, 118
Electroslag remelting process
 impurity content, 164
 mechanical properties of ingots, 164
 power required, 166
 slag temperature, 165
Electroslag welding, 1259, 1269, 1279
Electronic bonding in Ti alloys, 1391
Electronic specific heat of Ti alloys, 1407
Electronic structure, 1281
Embrittlement
 high strain rate, 781
 of hardened α+β alloys, 1641
 slow strain rate, 781
Environmental effects sustained load cracking, 1221
Eutectoid reaction, 1294
Explosive plating, 760
Extrusion
 hydrostatic, 369
 of PM billets, 355
Fatigue
 S-N curves for Ti-8823 alloy (Figure), 1722
 strength of Ti-6Al-4V, 1821
Fatigue behavior
 effect of β-grain size in Ti-15Mo, 577
 effect of heat treatment in Ti-6Al-4V, 637
 effect of mean stress in Ti-6Al-4V, 589
 S/N curves of Ti-6Al-4V, 593
torsional fatigue of Ti-6Al-4V, 640
Fatigue crack initiation
 fatigue crack initiation sites of Ti-6Al-4V and Ti-11, 674
 mechanism for the fatigue crack initiation in Ti-6Al-4V, 645
 of aircraft structural components, 570
 subsurface initiation, 599
Fatigue crack propagation
 effect of hold-time, 671
 effect of microstructure in Ti-6Al-4V, 691
 effect of microstructure in Ti-11 and Ti-6246, 664
 effect of texture, 794, 799
 in air and sea water, 825
 measurement of crack extension by the electrical potential method, 653
 of aircraft structural components, 569
 relationship with mechanical properties, 791
Fatigue limit
 vs. critical crack length, (Figure), 772
Flow stress and strain in TiAl, 739
Flow turning, 725
Forging, 1221, 1277
 large forgings, 413
 of PM billets, 355
 shock loading effects, 765
 Ti-6Al-4V, 397
 Ti-6Al-4V, 413
Fractography
 of vacuum fatigue, 799
Fracture
 fatigue, 483
 monotonic loading, 480
 oxide scale, 1097
 review, 467
 sustained load cracking, 1221
 Ti-6Al-4V, 383
Fracture mode
 appearance and development of the cracks in Ti-Al, Ti-V and Ti-Cr alloys, 615
 ductile fracture mechanism in titanium, 686
 pore formation of α Ti alloys at the temperatures above 0.5 Tm, 707
 transgranular ductile dimples, 608
 void nucleating Ti5Si3 particles, 608
Fracture toughness
 effect of alloying, 631
 effect of microstructure in Ti-11 and Ti-6246, 664
 effect of microstructure in Ti-6Al-4V, 649, 693
 effect of pressure shaping and thermal treatment, 629
 effect of specimen dimension on KIC of Ti-6Al-4V, 650
 index diagram, 611
 Ti-6Al-4V, 383
Fracture toughness, plane strain dependence on chemistry, 814
 effect of hydrogen, 785, 811
 effect of sea water, 825
 estimation of, 769
 influence of texture, 818
 values for Ti alloys, 769, 826
Friction coefficient (rolling), 251

Galling
 of IMI 318, 1750
γ-phase in Ti alloys, 1357
Goodman diagram, 589
Grain size
 influence on ductility, 1919
 influence on work hardening, 1933
Habit plane, 1532
Hall coefficient in Ti alloys, 1391
Heat treatments
 of αβ alloys, 1583, 1605
 of β alloys, 1675
Helical rolling mills, 313
High temperature deformation, 1357
Hollow hinge shapes, 302
Homogeneity
 of the plastic strain, 616
Hot corrosion
 effect of preoxidation, 989
 effect of water, 987
 multicomponent alloy system, IMI 685, 987
 scale morphology, 991
Hot hoisting tests, 324
Hot plasticity of Ti alloys, 324
Hugoniot graph
 effect of Al & V additions (Figure), 759
Hunter process, 33
Hydride formation, 892
Hydrogen
 diffusion of in Ti, 1377
 effect of pressure of arc furnace, 157
 effect on fracture toughness, 811
 embrittlement, 781
 evolution in Ti-Mo alloys, 903
 in solid solution, 781
 influence on Ti alloys, 1833, 1840
 sponge pickup, 159
Hydrogen-titanium system, 1365
Hysterisis of Ti-Mo-Zr alloy, 1691
Impact ductility effect of hydrogen, 782
Inclusions
 high density types, 129
 in ingots, 127
Ingot casting of titanium, 10, 34, 127, 141
 grain morphology, 144
Ingot casting of titanium (cont'd)
 microstructure, 144
 skull furnace, 179
In-Situ electron microscope observations of crack propagation, 715
Interaction between alloying elements, 1521
Interdiffusion, 1731
Interface phase, 1437
Intergranular fracture of titanium α alloys, 705
Intermetallic compounds, 1281
 (Ti0.42Zr0.6)5Si3, 1527
 ZrFe2, 1576
Internal friction, 1521, 1543, 1555, 1661
 effect of oxygen, 531
Internal twinning, 1531
Iron alloys
 40X, 837
 Y8, 837
Isothermal forgings, 232, 327, 337, 347
KISSC
 influence on texture, 1873
Kroll-type titanium products, 26
Large Ti-billet rolling, 273
Lattice parameter, 1614
Low cycle fatigue, 1177
 Coffin-Manson plots for Ti-6Al-4V, 595
 effect of hold-time in IMI 685, 671
 of VT5, 211
Machining
 theoretical aspects, 762
Macrosegregation
 ingots, 137
 alpha stabilized streak, 137
Macrostructure
 of rolled billets, 278
Magneli phase, 65, 866
Magnesium chloride electrolysis process, 33
Magnesium-thermic process, 44, 45
 kinetics, 47
 thermodynamics, 46-53
Titanium sponge production, 101
Magnetic anisotropy
 in Ti alloys, 1461
Magnetic susceptibility measurements in Ti-alloys, 1407
 of Ti-Al alloys, 1391
Martensite
 α' substructure, 1623
 formation in Ti alloys, 1477, 1703
 strain induced, 1567
Mechanical properties
 after aging, of β alloys, 1675
 after slack quenching, 1595
 cooling rate dependence, 1583
 effect of ingot section, 210
 effect of microstructure, 1916
 effect of texture, 1863
 grain size dependence, 1501
 of rolled Ti-rings, 309
 of VT5 alloy, 210
 oxidation effect, 955
 spontaneous cracking of α+β alloys, 1641
Metal flow in rolling, 290
Metallothermic production of titanium, 42, 45, 72
Method of evaluating the validity of α+β titanium alloys, 601
 of KfC values, 626
 relationship with strength or ductility, 601, 611, 634
 SEN specimen, 602
 sustained loading of Ti-6Al-4V, 656
Microsegregation, 130, 133
 alloy temperatures, 132
 dendritic structures, 133
 segregation ratios, 134
Microstructure
 after aging of α+β alloys, 1605
 after slack quenching of Ti-6Al-6V-2Sn, 1595
 effect on fracture toughness, 816
 in large section forgings, 413
 influence on forgeability, 397
 of α/β alloys, 1437
 of Ti-6Al-4V, 383
Microstructure and properties
 in Ti-11.5Mo-6Zr-4.5Sn, 1421
Mineral formation of artificial titanates, 66, 67
Modulus elastic, 1691
Multi-layered sandwich structure, 828
fatigue crack growth, 828
Multi-roll passes, 281
Nitrogen in ingots, 158
skull ingots, 184
Non-destructive testing ultrasonic testing, 1231, 1277, 1279
Non-uniform plastic deformation during flow twinning, 1726
Notch toughness, 1521
Omega phase, 1161
effect on acid corrosion, 969
formation in Ti alloys, 1477
in Ti-alloys, 1403
precipitation, in Ti-11.5Mo-6Zr-4.5Sn, 1421
Ordering in Ti-alloys, 1403, 1477
Oxidation, 864
AT3, 950
AT6, 950
effect of chloride, 987, 1015
effect of mechanical properties, 955
IMI685, 987
kinetics, 866, 1046, 1057, 1089
mechanisms, 1051, 1097
pure Ti, 1045, 1057
scale morphology, 950, 991, 1046, 1089, 1097
Ti3Al, 1089
Ti3Sn, 1089
Oxides of titanium composition, 870
microstructure, 870
structure, 866
Oxygen
effect on deformation, 514
effect on dislocations, 531
effects during extrusion, 370
in large forgings, 417
Panels, 302
Passive film composition, 850, 883
formation processes, 887
thickness determination, 854, 883
Passivity, 850, 881, 891
experimental methods for investigation, 850
influence of alternating current, 851
influence of Mo addition, 903
of cathode-modified Ti-alloys, 915
Peritectoid reaction, 1298
Perovskite (celanite), 65
Phase composition of artificial titaniferrous products, 97
Phase diagrams, 1281
Ti-Al-Zr-W system, 1319
Ti-Hf-O system, 1327
Ti-Mo system, 1335
Ti-Si-Cu, 1351
Phase transformations, 1281
after stop aging, 1651
α→β, 1614
α→ω, 1633
during heating, 1509
effect on texture, 1875
in Ti alloys, 1477
on rapid heating, 1499
upon quenching, 1559
Physical properties, 1281
Physico-chemico analysis, 1281
Plastic deformation, 841
during rolling, 253
interstitial alloys, 431, 497
kinetics in Ti-Al and Ti-Sn, 513
review, 429
slip and twinning modes, 429
substitutional alloys, 442
Plasticity of Ti alloys, 324
Polarization anodic, 982, 996, 1017
cathodic, 982
surface condition effect, 1016
Pourbaix diagram, 847, 848 (Figure), 893 (Figure)
Precipitation α, of Ti-8823 alloy, 1725
α, of Ti-Mo-Zr alloy, 1693
Precipitation (cont'd)
 β, of Ti-Mo, Ti-V, TiNb, 1714
 ω, of Ti-Mo-Zr alloy, 1693
Pressure shaping, 229
Production of titanium in the
 USSR, 7, 41, 63
Pseudo-elastic range, 598
Pulse load bonding, 1112
R-curve, 650
R-value
 Ti-sheet, 1947
Radial reduction, 303
Recrystallization
during forging, 405
 effect on texture in Ti-Al
 alloys, 1883
 of Ti-Mo base beta alloys, 1893
Recycling
 of Ti scrap, 213
Refining titanium sponge wastes
 alloyed, 122
 applications, 125
 unalloyed, 119
Remelting of ingots, 161
 impurity contents, 164
 mechanical properties of, 164
 rectangular ingots, 161, 162
 round ingots, 162
Residual stresses
 effect on texture, 1870
Rib structures, 329
Rolled Ti-products, 229
Rolled wire, 295
Rolling, 304
Rolling force, 294
Rolling pass design, 286
Rolling of Ti-rings, 305
Sandwich rolling, 253
Section rolling, 289
Segregation in Ti-6Al-4V, 604
Segregation temperatures for
 several titanium alloys, 132
Seizing, 1755
Selection evaporation, 197
Semi-finished shapes, 299
Serrated flow
 Ti-Hf alloys, 539
 Ti-Zr alloys, 539
Shape memory
 of Ti-Ni alloys, 1843
Sheet rolling parameters, 243
Shock loading effects, 757
Skull-melting, 10, 169
 applications, 176
 chemical homogeneity, 182
 effect of revertible scrap
 content, 185
 experimental procedure, 171
 ingot macrostructure, 180
 ingot manufacturing, 179
 melting rate, 173
 schematic of vacuum arc skull
 furnace, 170
Sodium-thermic reduction method,
 43, 45, 53-55
Solubility of H in titanium, 1365
Sponge production in Japan, 32
Stacking fault energy texture
 effects, 747
Strain aging, 1933
Strain induced martensite, 717
Strain induced precipitation of
titanium hydride, 717
Strain rate sensitivity
 in forging, 405
 in superplasticity, 446
 negative value for α+β Ti-15Mo,
 584
Strength to toughness rates, 773
Strengthening
 by grain refinement, 1919, 1933
 of Ti-Al alloys, 1919
 of Ti-Mo alloys, 1919
 of Ti-6Al-6V-2Sn, 1905
Strengthening mechanisms
 omega phase, 476
 review, 467
 second phase, 474
 solid solution, 468
Stress corrosion
 of RMI38-6-44, 1853
Stress corrosion, chloride solution
 IMI685, 1081
 kinetics, 1083
 polarization, 983
 stress intensity factor, 1081
 Ti-Al, 981
Stress corrosion cracking in 3%NaCl, 825
Stress intensity factor threshold for stress corrosion KISC, 1083
Stress relaxation in Ti-Al alloys, 741
Structure polygonized, β-Ti, 1799
Substructure in superplastic forming, 837
Superplasticity, 232, 837, 841
in Ti-5Al-2.5Sn, 446
in Ti-6Al-4V, 446
review, 429
Superconductivity in Ti alloys, 1407
Surface segregation under high vacuum, 1069
Tagiorvite, 65
Tensile behavior correction factor (σF/σf) of titanium, 681
effect of β grain size in Ti-15Mo, 577
effect of strain rate on reduction of area and pore nucleation, 710
effect of temperature, interstitial content and grain size in titanium, 683
Hall-Petch plots for the four purities of titanium, 683
Tensile properties effect of Al additions, 739
effect of hydrogen, 783
effect of superplastic forming, 838
of Ti-6Al-6V-2Sn, 1905
of Ti-20Mo, 1922
of Ti-8.5Al, 1926
of textured Ti-sheet, 1954
relationship to crack propagation, 791
yield strength, 826
Texture back-reflected pole figure method, 731
cold rolling of α-Ti, 747
Texture (cont’d)
development in α+β Ti alloys, 1863
direct pole figure method, 729
effect of Al additions, 739, 747 (Figure)
effect of applied and residual stresses, 1870
effect of phase transformation, 1875
effect of Sn addition, 747, 750 (Figure)
effect on alloy composition, 1881
effect on deep drawability, 1947
effect on fatigue crack propagation, 794, 799
effect on fracture toughness, 818
effect on mechanical properties, 1867
effect on r-values, 1956
hot rolling α-titanium, 740
influence on creep rate, 1872
influence on KISC, 1873
recrystallization texture, 1883
texture formation during flow turning, 729
Ti-6Al-4V; oxygen influence, 1863
Texturing in Ti alloys, 1461
Thermomechanical processing, 1477
Thermodynamic parameters, 1307
Thermodynamics, 1281
Thermodynamics of Ti-H system, 1365
Time temperature transformation diagrams of Ti-Mo-Zr alloy, 1696 (Figure)
Ti-alloys, 513, 1357, 1461
Beta III, 784 (Figure), 1903
Beta III, (Ti-11.5Mo-6Zr-4.5Sn), 1421
Beta III, (11.5Mo-6Zr-4.5Sn), 1161
BTI-1M, 791
BT-5-I, 829
BT6C, 791, 837
BT-14, 829, 837
BT-15, 791, 826
BT-20, (Ti-6Al-2Zr-1Mo-1V), 1145
CT-6, 826
influence of grain size on ductility, 1919
Ti-alloys (cont'd)

NBT-I, 826
NBT-2, 826
ordering in, 1451
recrystallization textures, 1883
Ti-Al, 739, 747, 916
Ti-Al, Zr-W, 1319
Ti-Cr, 497
Ti-Cr-Pd, 859
Ti-Hf, 539
Ti-Hf-0, 1327
Ti-Mo, 859, 903, 1307
Ti-Mo-Pd, 859
Ti-N, 497
Ti-Nb, 1307
Ti-Ni, 866, 921 (Figure)
Ti-O, 497
Ti-Pd, 859, 881, 916
Ti-Si-Cu, 1351
Ti-Sn, 513, 747
Ti-Ta, 1307
Ti-V, 1307
Ti-W, 1307
Ti-Zr, 539
Ti-1%Ru, 923
Ti-1.5Al-4.5Mn, 783
Ti-2.5%Cu, 866, 1189
Ti-3Al-1.5Mn, 916
Ti-4Al, 469 (Figure)
Ti-4Al-3Mo-1V, 1119, 1131
Ti-5Al-2.5Sn, 446, 469 (Figure)
Ti-6Al-2V-4Zr-6Mo, 450
Ti-6Al-4V, 383, 397, 413, 446, 469 (Figure)
Ti-6Al-4V, 1119, 1189, 1221, 1231, 1245
Ti-6Al-6V-2.5Sn, 858
Ti-6V4, 375
Ti-6wt%Al-4wt%V, 1437
Ti-8Al-1Mo-1V, 450
Ti-8Mn, 450
Ti-8ZNi-1.2Ru, 923
Ti-8wt%Mn, 1437
Ti-11Cr-7.5Mo-3.5Al, 916
Ti-13Cr-3Al-11V, 450
Ti-16Mo, 450
Ti-25Al, 1451
Ti-26Mo, 469 (Figure)

Ti-alloys (cont'd)

Ti-43Mo, 531
Ti-56V, 531
VT1-0 (commercially pure), 1197
VT3-1, 784 (Figure)
VT3-1 (2.5Mo-2Cr), 1209
VT4-1, 784 (Figure)
VT5-1, 784 (Figure)
VT5-1 (Ti-5Al-2.5Sn), 1145
VT6, 784 (Figure)
VT6 (Ti-6Al-4V), 1119, 1131, 1145, 1177, 1209
VT14 (Ti-4.5Al-3Mo-1V), 1119, 1131, 1145, 1177
VT15, 784 (Figure)
VT16, 784 (Figure)
VT20, 784 (Figure)
VT22, 785
VT22 (Ti-5Al-5Mo-5V-1Fe-1Cr), 1119, 1145, 1177, 1269
VT22M (Ti-6Al-5Mo-5V-1Cr-1Sn-1/2Cu), 1177
6-4, 784, 799, 811, 866
Ti-Al phase diagram, 1391
Ti-2Al-2Mn, 35
mechanical properties, 36
weldability, 36

Ti3Al formation in Ti-alloys, 1477
Ti3Al precipitation in Ti-6Al-6V-2Sn, 1905
Ti-5Al-2Co-2V-0.2Si, 35
mechanical properties, 36
weldability, 36

Ti-5Al-3Mn, 35
mechanical properties, 36
weldability, 36

Ti-6Al-2C6, 35
mechanical properties, 36
weldability, 36

Ti-6Al-6V-2Sn
annealing behavior, 1905
strengthening, 1905
Ti-6.5%Al-2.5%Mo-1.5%Cr-0.5%Fe-0.3%Si
macrostructural studies of ingots, 144, 148
macrograph size in ingot 430mm, 147
Ti-15Mo-5Zr, 35
mechanical properties, 36
recrystallization behavior, 1893
weldability, 36
Ti-19Mo-5Zr-3Al, 35
mechanical properties, 36
weldability, 36
Ti-52.5Ni-1.56Fe-1.79Mo, 35
mechanical properties, 36
weldability, 36
Ti-castings
effect of grain modifiers, 209
Ti-commercially pure, 1189
Ti-extrusions, 230
Ti-Mo alloys
influence of grain size on ductility, 1919
Ti-Mo-base beta alloys
effect of recrystallization, 1893
Ti-pipe production in USSR, 321
Ti-scrap, 213
Ti-sheet
texture effect on deep drawability, 1947
Ti tube manufacture, 321, 313
Titanium developments in USA, 14
Titanium hydrides, 781
Titanium ingot solidification
inclusions, 127
macrosegregation, 137
segregation, 128
solute partitioning, 130
tree rings, 136
Titanium in Europe, 19
Titanium in Japan, 31
Titanium in ship building, 37
Titanium-oxygen phase diagram, 864
Titanium slags, 42-79
initial slags, 81-92
mineral structures, 86
slag-making, 81
thermodynamics, 86-92
where produced, 81
intermediate slags, 92-96
final slags, 95-98
structure characteristics, 93
Titanium sponge
alloyed, 107
gas pickup during melting, 153
Nb alloyed sponge, 114
photo, 48
production process, 57, 101, 104
welding of sponge compacts, 154
Zr alloyed sponge, 112
Titanium tetrachloride, 73
activation energy, 73
production, 102
thermodynamics, 103
Titanium in thermal power stations, 37
Titanium (unalloyed), 829, 866, 881, 916
Titanium wrought products, 8, 14
Transformations
diffusional, 1691, 1712, 1731
displacive, 1691
martensitic, 1712, 1737
Tree rings, 136
Two-phase titanium alloy ingots
dendritic segregation, 148
ingot microstructure, 144
ingot properties, 150
phase growth patterns, 142
pool depth, 141
solidification rate equation, 141
solidification skin thickness, 142
Ultra-fine grained Ti, 1933
Universal strength diagram, 769, 774 (Figure)
Use of Titanium in the USSR, 7, 63
Vacuum rolling, 263
VT5 alloy, 210
Warm drawing, 303
Web structures, 329
Weld cavitation, 1171
Weld defects, 1171, 1177, 1189, 1209, 1278
Weld fluxes, 1201, 1259
Weld heat effected zone, 1161
Weld impurities, 1278
Weld porosity, 1189, 1277, 1278
Weld process effects, 1119, 1177, 1201
Weld processes
diffusion bonding, 1209, 1277
Weld processes (cont'd)
electroslag, 1259, 1269, 1279
electron beam, 1245
Weldability, 1119
Welding
applications, 1253
arc forge effects, 1171
filler metals, 1201, 1279
general, 1107
effect of hydrogen, 1113
effect of microstructure, 1108
techniques, 1108
Welding
computer simulation, 1145
crack growth, 1221, 1245, 1269
ductility, 1197, 1209
fatigue, 1277
low-cycle fatigue, 1177
mechanical properties, 1131
of sponge compacts, 154
O₂ and N₂ contents in welds, 155
hardness in welds, 155
post-weld heat treatment, 1131, 1139, 1145, 1269, 1279
Weldments
hydrogen-induced failures, 783
Work hardening
in ultra-fine grained Ti, 1933
Zirconium alloys, α₂-phase, 1761