PARTICIPANTS

P. D. Agarwal
Research Laboratories, GMC

W. G. Agnew
Research Laboratories, GMC

W. R. Aiman
Research Laboratories, GMC

C. A. Amann
Research Laboratories, GMC

W. S. Anderson
U. S. Army Tank-Automotive Center
Warren, Michigan

C. E. Angell
Rochester Products Division, GMC

D. W. Bahr
General Electric Company
Cincinnati, Ohio

W. Bartok
Esso Research and Engineering
Linden, New Jersey

E. K. Bastress
Northern Research and Engineering Corp.
Cambridge, Massachusetts

S. E. Beacom
Research Laboratories, GMC

J. M. Beér
University of Sheffield
Sheffield, England

A. H. Bell
Engineering Staff, GMC

J. E. Bennethum
Research Laboratories, GMC

J. W. Bjerklie
Mechanical Technology Incorporated
Latham, New York

C. T. Bowman
United Aircraft Research Laboratories
East Hartford, Connecticut

F. V. Bracco
Princeton University
Princeton, New Jersey

B. P. Breen
KVB Engineering, Inc.
Tustin, California

R. S. Brokaw
NASA-Lewis Research Center
Cleveland, Ohio

W. G. Burwell
United Aircraft Research Laboratories
East Hartford, Connecticut

A. V. Butterworth
Research Laboratories, GMC

J. D. Caplan
Research Laboratories, GMC

L. S. Caretto
Imperial College of Science and Technology
London, England

P. F. Chenea
Research Laboratories, GMC

D. E. Cole
University of Michigan
Ann Arbor, Michigan

E. N. Cole
General Motors Corporation
ATTENDANCE LIST

J. S. Collman
Research Laboratories, GMC

J. M. Colucci
Research Laboratories, GMC

W. Cornelius
Research Laboratories, GMC

C. T. Crowe
Washington State University
Pullman, Washington

R. Davies
Research Laboratories, GMC

D. W. Dawson
Environmental Protection Agency
Ann Arbor, Michigan

D. L. Dimick
Engineering Staff, GMC

G. L. Dugger
Johns Hopkins University
Silver Springs, Maryland

T. Durrant
Rolls Royce, Ltd.
Derby, England

H. C. Eatock
United Aircraft of Canada Limited
Lonqueuil, Quebec, Canada

M. K. Eberle
Research Laboratories, GMC

R. B. Edelman
General Applied Science Laboratories, Inc.
Westbury, New York

R. H. Essenhigh
Pennsylvania State University
University Park, Pennsylvania

C. P. Fenimore
G.E. Research & Development Center
Schenectady, New York

G. Flynn, Jr.
Research Laboratories, GMC

O. I. Ford
Aerojet Nuclear Systems Company
Sacramento, California

J. P. Franceschina
Chrysler Corporation
Detroit, Michigan

H. P. Fredrikson
Research Laboratories, GMC

R. M. Fristrom
Johns Hopkins University
Silver Springs, Maryland

N. J. Friswell
Shell Research Limited
Chester, England

D. Goalwin
Rocketdyne
Canoga Park, California

J. S. Grohman
NASA-Lewis Research Center
Cleveland, Ohio

D. C. Hammond, Jr.
Purdue University
Lafayette, Indiana

J. L. Hartman
Research Laboratories, GMC

H. R. Hazard
Battelle Memorial Institute
Columbus, Ohio

N. A. Henein
Wayne State University
Detroit, Michigan

R. Herman
Research Laboratories, GMC

D. J. Henry
Research Laboratories, GMC
J. B. Heywood
Massachusetts Institute of Technology
Cambridge, Massachusetts

R. F. Hill
Research Laboratories, GMC

J. B. Howard
Massachusetts Institute of Technology
Cambridge, Massachusetts

J. K. Hubert
Williams Research Corporation
Walled Lake, Michigan

S. C. Hunter
Air Research Manufacturing Co.
Phoenix, Arizona

R. W. Hurn
Bureau of Mines
Bartlesville, Oklahoma

F. P. Hutchins
Environmental Protection Agency
Ann Arbor, Michigan

F. E. Jamerson
Research Laboratories, GMC

H. L. Julien
Research Laboratories, GMC

S. Katz
Research Laboratories, GMC

F. Kaufman
University of Pittsburgh
Pittsburgh, Pennsylvania

J. C. Kent
Research Laboratories, GMC

J. R. Kriegel
KVB Engineering, Inc.
Tustin, California

R. B. Krieger
Research Laboratories, GMC

C. LaPointe
Ford Motor Company
Dearborn, Michigan

A. H. Lefebvre
The Cranfield Institute of Technology
Cranfield, England

L. L. Lewis
Research Laboratories, GMC

S. G. Liddle
Research Laboratories, GMC

J. H. Lienesch
Research Laboratories, GMC

W. H. Lipkea
Research Laboratories, GMC

J. P. Longwell
Esso Research and Engineering Company
Linden, New Jersey

C. Marks
Engineering Staff, GMC

R. A. Matula
Drexel University
Philadelphia, Pennsylvania

W. L. McGaw
United Aircraft Corp.
Farmington, Connecticut

J. G. McGowan
University of Massachusetts
Amherst, Massachusetts

A. F. McLean
Ford Motor Company
Dearborn, Michigan

A. M. Mellor
Purdue University
Lafayette, Indiana

H. J. Mertz, Jr.
Research Laboratories, GMC
ATTENDANCE LIST

G. A. Miles
Detroit Diesel Allison Division, GMC

W. Mirsky
University of Michigan
Ann Arbor, Michigan

J. Moore
General Electric Company
Schenectady, New York

N. L. Muench
Research Laboratories, GMC

L. J. Muzio
Columbia University
New York, New York

P. S. Myers
University of Wisconsin
Madison, Wisconsin

B. E. Nagel
Research Laboratories, GMC

H. K. Newhall
University of Wisconsin
Madison, Wisconsin

E. R. Norster
The Cranfield Institute of Technology
Cranfield, England

P. E. Oberdorfer
Sun Oil Company
Marcus Hook, Pennsylvania

J. Odgers
Laval University
Quebec, Canada

G. Opdyke, Jr.
AVCO Corporation
Stratford, Connecticut

H. B. Palmer
Pennsylvania State University
University Park, Pennsylvania

D. J. Patterson
University of Michigan
Ann Arbor, Michigan

W. H. Percival
Research Laboratories, GMC

C. E. Polymeropoulos
Rutgers University
New Brunswick, New Jersey

D. T. Pratt
Washington State University
Pullman, Washington

A. A. Quader
Research Laboratories, GMC

W. R. Roudebush
NASA Headquarters
Washington, D. C.

C. J. Sagi
Research Laboratories, GMC

A. F. Sarofim
Massachusetts Institute of Technology
Cambridge, Massachusetts

R. F. Sawyer
University of California
Berkeley, California

R. M. Schirmer
Phillips Research Center
Bartlesville, Oklahoma

W. L. Schultz
Ford Motor Company
Dearborn, Michigan

R. Schulz
Environmental Protection Agency
Ann Arbor, Michigan

R. L. Scott
Research Laboratories, GMC
T. Sebestyen
Environmental Protection Agency
Ann Arbor, Michigan

D. J. Seery
United Aircraft Research Laboratories
East Hartford, Connecticut

J. R. Shekleton
International Harvester Company
San Diego, California

R. Shinnar
New York City College
New York, New York

C. W. Shipman
Worcester Polytechnic Institute
Worcester, Massachusetts

R. M. Siewert
Research Laboratories, GMC

T. Singh
Wayne State University
Detroit, Michigan

W. A. Sirignano
Princeton University
Princeton, New Jersey

H. R. Smith
Diesel Equipment Division, GMC

A. F. Soby
Shell Oil Company
Wood River, Illinois

G. Sovran
Research Laboratories, GMC

D. B. Spalding
Imperial College of Science and Technology
London, England

R. C. Stahman
Environmental Protection Agency
Ann Arbor, Michigan

E. S. Starkman
Environmental Activities Staff, GMC

R. F. Stebar
Research Laboratories, GMC

D. L. Stivender
Research Laboratories, GMC

R. E. Sullivan
Detroit Diesel Allison Division, GMC

D. P. Teixeira
Southern California Edison Company
Rosemead, California

R. F. Thomson
Research Laboratories, GMC

J. G. Tomlinson
Detroit Diesel Allison Division, GMC

C. S. Tuesday
Research Laboratories, GMC

A. D. Tuteja
University of Wisconsin
Madison, Wisconsin

F. J. Verkamp
Detroit Diesel Allison Division, GMC

P. T. Vickers
Research Laboratories, GMC

C. W. Vigor
Research Laboratories, GMC

W. R. Wade
Research Laboratories, GMC

T. O. Wagner
American Oil Company
Whitney, Indiana

E. F. Weller
Research Laboratories, GMC
G. C. Williams
Massachusetts Institute of Technology
Cambridge, Massachusetts

M. K. Yu
Research Laboratories, GMC

E. B. Zwick
The Zwick Company
Huntington Beach, California
AUTHORS AND DISCUSSORS INDEX

Bold Face Type refers to papers and Symposium and Session Summaries

Agarwal, P. D., 104
Agnew, W. G., 461
Aimann, W. R., 121
Amann, C. A., 305

Bahr, D. W., 345
Bartok, W., 51, 88
Beé, J. M., 94, 154, 253
Bowman, C. T. 87, 98, 102, 103, 123, 137, 138
Bracco, F. V., 19, 96, 120, 240, 242
Breen, B. P., 103, 325, 343
Burwell, W. G., 95

Cornelius, W., 375, 453
Crowe, C. T., 88

Dugger, G. L., 304
Durrant, T., 310, 311

Edelman, R. B., 55, 87, 88, 89, 90, 96
Essenhigh, R. H., 181, 340

Fenimore, C. P., 89, 119
Fortune, O., 55
Fredriksen, H. P., 449
Fristrom, R. M., 156, 158
Friswell, N. J., 161, 180, 181, 182, 209

Grobman, J. S., 279
Hazard, H. R., 313
Heywood, J. B., 49, 103, 175
Henein, N. A., 454

Kaufman, F., 135

Lambert, N., 141
LaPointe, C. W., 211, 241, 242
Lefebvre, A. H., 84, 240, 255, 304, 310, 319, 321

Liddle, S. G., 454
Lipkea, W. H., 159
Longwell, J. P., 52, 91, 96, 97, 102, 103
106, 319

McLean, A. F., 445
Mellor, A. M., 23, 50, 51, 179
Moore, J., 319
Myers, P. S., 451, 458

Newhall, H. K., 109, 139
Norster, E. R., 184, 255, 311
Opdyke, G. Jr., 309
Pratt, D. T., 52, 87
Quader, A. A., 138

Roudebush, W. R., 372
Sarofim, A. F., 19, 141, 158, 160, 184
Sawyer, R. F., 160, 181, 243, 253
Schirmer, R. M., 189, 209
Schultz, W. L., 211
Seery, D. J., 123
Shinnar, R., 20, 52
Shipman, C. W., 16, 96
Sirignano, W. A., 18, 19, 50
Spalding, D. B., 3, 18, 19, 20
Starkman, E. S., 96, 159

Thompson D., 154
Tuteja, A. D., 109, 120, 121
Vickers, P. T., 449
Wade, W. R., 306, 375, 448
Weilerstein, G., 55
Williams, G. C., 141, 159, 185
Zwick, E. B., 97, 120, 183, 313
SUBJECT INDEX

Aircraft (see nitric oxide, smoke)
 engine operating conditions, 280, 347
 exhaust emissions, 281
 airport locality, 350
 carbon monoxide, 356, 357
 hydrocarbons, 356, 357
 oxides of nitrogen, 348, 350
 smoke, 351
 sulfur dioxide, 349
 Los Angeles APCD Rule 67, 337
Air-fuel ratio (see carbon monoxide, combustor, hydrocarbon, nitric oxide)
Atomizer (see fuel injector)
Brayton cycle (see gas turbine)
Burner (see combustor)
Carbon monoxide (see aircraft, combustor, diffusion flame, vehicular powerplants, vehicles)
 factors affecting formation
 air-fuel ratio, 263, 285
 atomization technique, 285, 300
 pressure, 231, 287
 reference velocity, 290
 temperature, 289
 wall bleed, 300
 kinetics of, 88
 effect of quenching, 248
 reduction techniques, 264, 299
 sources in burner, 232
Combustion
 droplet, 28
 efficiency, 361, 386
 H₂/air, 139
 radiative, 11
 turbulence controlled, 13
Combustion efficiency (see combustion)
 relationship with CO emission, 262, 309-311
 relationship with HC emission, 215, 309-311
 atomizer design, 362
Combustor (see nitric oxide, premixing, steam)
 designs
 annular, 256, 361
 atmospheric pressure, 176
 axial swirler, 353
 carbureting, 354
 J-57, 282
 laboratory models, 110, 216, 244
 simplified can, 384
 swirl can (NASA), 306
 vortex, 377
design parameters
 combustion intensity, 383, 387
 exit temperature pattern, 387
 film cooling, 265, 278
 heat release rate, 384, 387
 pressure loss, 383, 387
effect of
 engine pressure ratio, 359, 360, 370
 fuel atomization, 361
 primary zone air flow, 361
 primary zone air-fuel ratio, 361
 primary zone residence time, 361
gas turbine internal profiles
 composition, 220-222, 249, 250
 particulates, 251
 temperature, 223, 228, 248
stationary
 emission control, 341
 applications, 337
 mixing
 ignition eddies, 327, 330
 turbulent eddies, 327
 gas/gas, 329
 pollutant control (see nitric oxide, carbon monoxide, hydrocarbon)
 staged combustion, 89
steady-state performance
 exhaust concentrations
 GPU-3, 397
 GT-309, 395
 SE-101, 396
 comparisons
 combustion efficiency, 397
 emission index, 398, 399
 specific emissions, 400-402
steam
 composition profiles, 143, 144
 heat exchanger effect on emissions, 145, 155, 160, 183
 heat extraction effects, 317
 temperature profiles 145
 test rigs, 142, 163, 194, 445
 thermodynamic cycles
 gas turbine, 379
Rankine, 380
Stirling, 381
Correlating parameters
Eisenklam, 29
Frossling, 29
PT/Vr, 292, 295

Diffusion flame (see flame, smoke)
Droplet, 59
combustion, 28, 98, 120, 176, 215, 240
evaporation, 28, 96, 215, 241
lifetime, 30, 327
mixing, 97
Reynolds number, 29, 31
size
effect of nozzle design, 272
trajectory, 216, 241

Emission index (see combustor, vehicular powerplants)
Equations
Goodsaves Evaporation law, 215, 241
Navier-Stokes, 8
Reynolds Number law, 241
Equivalence ratio (see air-fuel ratio)
Exhaust emissions (see aircraft, vehicular powerplants)
analytical systems, 112, 143, 165, 245, 258
analytical techniques for
carbon monoxide, 112, 124, 143, 165, 246, 259, 285, 443
formaldehyde, 246, 445
hydrocarbons, 112, 124, 143, 246, 259
285, 443
nitric oxide, 124, 143, 165, 219, 246, 259, 443
nitrogen dioxide, 113, 165, 246, 285, 443
oxides of nitrogen, 219, 444
particulates, 246
smoke, 165, 256, 445
averaging composition techniques
cross-sectional, 238
local, 235
sampling techniques, 111, 120, 165, 218, 245, 258, 284, 313, 445

Flame
diffusion, 17
composition profile, 115
temperature profile, 115
H₂/air, 88
premixed, 16, 192
Free radicals, 82, 87, 135, 139, 155, 156, 174
Fuel (see particulates, smoke)
additives (see particulates, smoke)
factors, 5
nitrogen content, 52
Fuel-air ratio (see air-fuel ratio)
Fuel injection (see combustion, combustor, hydrocarbon)
effect on drop size, 272
improvements resulting from, 275
smoke ratings, 206
Fuel injector
air atomizing, 385
air blast, 270
air spray, 255
double swirler air blast, 275
dual orifice, 255
 piloted air blast, 271
pressure, 217
sonic air, 314
Gas turbine (see aircraft, combustor, nitric oxide, odor, smoke, vehicular gas turbine)
Heat exchanger (see combustor, vehicles, vehicular powerplants)
Heterogeneous effects, 175
Hydrocarbon emissions (see aircraft, emission index, exhaust emissions, kinetics)
condensibles, 357
effect of
air-fuel ratio, 285
atomization technique, 276, 285
pressure, 266, 287
reference velocity, 290
temperature, 266, 289
wall bleed, 300
kinetics of formation, 87, 98
computational methods, 33
odor, 358
oxygenates, 357
reduction techniques, 299
source of, 265
species, 357
Kinetics (see carbon monoxide, hydrocarbon, nitric oxide, 0 atoms, premixing)
reactions, 135, 158
Methane oxidation (see nitric oxide)
in shock tubes, 98, 124, 127, 131, 136
mechanism, 125
Modeling of combustion process
as reactors
basic considerations, 4, 49
radiation, 19, 20
basic flows
1-dimensional, 50
2-dimensional, 5, 6
3-dimensional, 67
mathematical solutions
grid size, 18, 19
turbulent, 7
carbon formation, 51, 52, 71, 73
coupled mixing and kinetics, 57
gas turbine combustor
comparison with experimental, 19, 20, 42, 51
flow, 24
multi-phase flows, 57
solutions, 74, 80
physical, 94
quasi-global finite rate HC kinetics, 67
with recirculation, 63
with swirl, 61

Nitric oxide (see aircraft, fuel, vehicular powerplants, vehicles)
computational methods, 37
computed results compared with experimental, 148-150
control techniques, 301, 341
flame temperature reduction, 89, 335, 428
fuel-air distribution, 368
gas recirculation – external, 333, 417, 456
gas recirculation – internal, 437
increased fuel-air mixing, 435
inert diluent, 438
off-stoichiometric combustion, 331
premixing, 368
primary zone equivalence ratio, 430, 449
quenching, 250, 429
staged combustion, 156, 316, 321, 331
uniformity of multi-fired combustors, 331, 336
variable geometry, 321, 368, 439
water injection, 369, 438
factors affecting formation
ambient humidity, 319
combustor design, 163
cool walls, 317
free radical concentration, 171
fuel additives, 171
fuel-air mixing, 162, 168
fuel-air ratio, 172, 183, 295, 367
peak NO\textsubscript{X} ratio, 341
fuel type, 212, 225
general considerations, 162
inlet temperature and lean limit, 447
mixing, 177
pressure, 231, 255, 295, 364
reference velocity, 294
temperature, 183, 255, 293, 364, 409,
428, 451
time, 318, 368, 429, 451
kinetics of formation
compared with CO/CO\textsubscript{2} formations, 169,
172
general considerations, 98, 110, 124, 147,
148, 162, 327, 363, 408
nonequilibrium, 103
“prompt” NO, 88, 89, 117, 119, 137,
155, 174
with methane in shock tube, 124, 127, 130
Zeldovich chain mechanism, 39, 124, 147,
150, 213, 408
sources
in combustors, 232
Nitrogen dioxide, 37, 50, 51, 251, 363
converter, 219
O atoms
general considerations, 87, 91, 136
kinetics, 39, 41, 82
overshoot, 88, 139
Odor (see hydrocarbon)
aircraft, 358
Oxygenates (see exhaust emissions, hydrocarbon)
Oxides of nitrogen (see aircraft, combustor, nitric oxide, nitrogen dioxide, vehicular powerplants)
Los Angeles APCD Rule 67, 337
Particulates (see aircraft, combustor, smoke)
effect of fuel additives, 203
formation, 190
measurement, 251
oxidation, 203
physical description, 203
size computation, 10
Pollution (see chemical species)
general, 458
Premixing (see flame, nitric oxide, smoke)
combustor, 308
homogeneous chemical kinetics, 33
NO control technique, 437
Pressure (see aircraft, carbon monoxide, combustor, correlating parameters, hydrocarbon, nitric oxide, smoke)
Probing
for combustion products (see combustor, diffusion flame)
in combustor, 245
in flame, 111
probes, 111
effect of material, 184
for temperature
calculated, 219, 247
with thermocouple, 245
water-cooled, 218, 245
“Prompt” NO (see nitric oxide)
Radiation (see combustion, modeling)
soot, 209
Rankine cycle (see steam)
Reactor (see modeling)
parallel stirred, 51
partially stirred, 24
plugged flow, 24
well stirred, 24, 52, 91
Residence time (see carbon monoxide, combustor, hydrocarbon, kinetics, nitric oxide)
Shock tube (see methane)
Smoke (soot) (see aircraft, combustor, exhaust emissions, fuel particulates)
effect of
air-fuel ratio, 262
fuel additives, 170, 181, 197-199
fuel type, 190, 196, 209
fuel volatility, 209
general considerations, 162
operating conditions, 195, 255, 259, 311
pressure, 260, 262
pressure atomizer, 259
spray cone angle, 261
spray penetration, 261
temperature, 260
water addition, 259
formation of
in combustors, 193
in diffusion flames, 191
in premixed flames, 192
reduction techniques
fuel additives, 195
general, 195, 296
smoke number, 296, 353
measurement of, 190-192
SAE ARP 1179, 353, 371
sources
in aircraft gas turbine, 189, 259
in automotive gas turbine, 190, 259
Specific emission (see combustor, vehicular powerplants)
Stationary (see combustor, nitric oxide)
Steam (see combustor, vehicles, vehicular powerplants)
Stirling (see combustor, nitric oxide, vehicles, vehicular powerplants)
Sulfur dioxide (see aircraft)
Swirl (see aircraft, combustor, modeling)
general considerations, 253
Temperature (see aircraft, carbon monoxide, combustion, diffusion flames, hydrocarbon, modeling, nitric oxide, probing, smoke)
Turbulence (see combustion, modeling, nitric oxide)
Vehicular powerplants (see nitric oxide, smoke)
driving cycle
California heavy duty, 390
Federal automotive
1970, 340
1972, 390
simulation
gas turbine, 392
steam, 393
emissions
comparisons, 405
GT-309, 402
SE-101, 403
Stirling, 405, 454
exhaust gas recirculation, 456
emission performance parameters
emission index, 388
specific emissions, 389
vehicular emissions, 390
Vehicles
 design and operation
 effect on mass emissions, 454
 gas turbine heavy duty, 377
 steam, 159, 160
 Doble, 1923 Model E, 403, 404
 SE-101, 377
 SE-124, 377
 Stirling
 StirLee I, 378
 StirLee II, 378

Water flow visualization rig, 166
 patterns, 166, 167

Zeldovich (see nitric oxide)