Note Added in Proof (Chapter 1)

Since the completion of this review, a number of important advances has been made in the field of atomic physics in heavy-ion reactions at energies near the Coulomb barrier (cf. Section 7). An up to date presentation related to this subject can be found in (Me 84).

K-hole production in 7.5 MeV/u $U + U$ collisions has been studied by Meyerhof and collaborators (St 84) as a function of the Q-value. According to the predictions of Figure 7.2b the vacancy rate should strongly decrease as a function of delay time. Since such an effect indeed has been observed experimentally, one may hope to obtain information on the magnitude of delay times and their relation to the energy loss in deep inelastic nuclear collisions. The data show indications that the delay time is underestimated by conventional reaction models.

Similarly, the energy spectra of electrons and positrons in deep inelastic nuclear collisions leading to nuclear fission have been studied (Ba 83). In general agreement with theoretical expectations, cf. Figure 7.6b, the slopes of the observed spectra are clearly steeper than those originating from elastic scattering events. The data are not yet, however, fully consistent with detailed coupled-channel calculations (Mü 84) based on friction models for the deep inelastic reaction.

The first observations of narrow line structures in the spectrum of positrons emitted in very heavy collision systems have been impressively corroborated and extended by two experimental groups working at the GSI accelerator (Darmstadt). Striking line structures have been observed in $U + U$, $U + Th$ and $U + U$ collisions by the EPOS group (Sch 83). The first two systems also were studied by the Munich group (C I 84) with similar results. Convincing evidence has been compiled by both groups which seems to rule out a trivial explanation of the effect in terms of conversion of γ-lines. The expected accompanying line structures in the electron or γ-ray spectrum are not observed. Furthermore the width of the positron line and its angular distribution strongly hint that the source of the positron emission moves with center-of-mass system. The most convincing interpretation of these facts assumes that in a small fraction of all collisions a combined nuclear system ("giant nucleus") is formed for up to $\approx 10^{-19}$ s (Re 81b, Mü 83).

Inspired by the experimental evidence attempts have been undertaken to go beyond the phenomenological analysis of the positron line in terms of a classical time delay picture. The fully quantal theory and its semiclassical limit have been discussed in (He 83a). To obtain a workable description one may start from quantum mechanical scattering theory and introduce two regions in the radial coordinate R. For large distances the nuclei do not interact and the semiclassical treatment is appropriate. In the interior region atomic excitations may be neglected while the nuclear scattering is described
by the nuclear S-matrix. This leads to a factorization of the excitation amplitudes (To 84, He 84b). Averaging over the spread of the beam energy, it turns out that the electronic excitation is determined by the nuclear autocorrelation function (To 83).

Using an expression for the autocorrelation function motivated by the statistical model for nuclear reactions, Tomoda and Weidenmüller could qualitatively reproduce the line structure in the positron spectrum. This is not surprising, since it can be shown (Re 83) that such a description is completely equivalent to the semiclassical picture of a nuclear time delay employed earlier (Re 81b). The lifetime distribution function $\rho(T)$, cf. equation (7.9), is given by the Fourier transform of the nuclear autocorrelation function.

In an attempt to understand the mechanism behind reactions with long delay times, the heavy-ion internuclear potential has been examined. Seiwert et al. (Rh 83) predict that in system like $^{238}U + ^{244}Cm$ the potential under favourable conditions (head-on-head orientation of the deformed nuclei to minimize Coulomb repulsion) should exhibit a pocket. Based on this result Heinz et al. (He 83b), (He 84a,b) constructed a simple reaction model assuming the presence of several rotational bands of resonance states in a potential pocket. The autocorrelation function and its Fourier transform, the distribution of reaction times, could be calculated analytically. The positron emission spectra resulting from delayed collisions exhibit a narrow positron line (He 83b). The effect has a narrow excitation function (He 84a) centered at the top of the barrier, since only here the required long-lived resonance levels can be excited with sufficient probability. To get a quantitative description of the process, the incorporation of inelastic mechanisms will be required. These may also lead to additional structure in the positron spectrum due to the conversion of nuclear excitations during the lifetime of the combined nuclear system (Re 81b, Mü 83).

At the time of writing no completely satisfactory understanding of the “positron line” has been achieved, in particular the weak dependence of its position on the charge of the colliding system is not understood. Nevertheless, there is much evidence that indeed the phenomenon is connected with the supercritical vacuum of QED discussed in Section 2. At the same time this means that remarkably long lived “giant” nuclear systems with $Z > 180$ have been observed. The study of these objects probably will reveal surprising facts about nuclear properties far off the domain of stable elements.

References to the Note Added in Proof

Joachim Reinhardt and Walter Greiner

(St 84) Ch. Stoller, M. Nessi, E. Morenzoni, W. Wölfli, W. E. Meyerhof, J. D. Molitoris, E. Grosse, and Ch. Michel, to be published.

Index

Adiabatic limit, 120
Adiabatic molecular orbitals, 163
Adiabaticity condition, 68
Alignment transfer studies, 450
Allowed transitions, 454
Angular distribution of collisional x-radiation, 85
Angular momentum operator, 30
Anisotropy parameter, 92
Approximation,
 Born, 145, 304
 Born–Oppenheimer, 53, 159
distorted wave Born, 51
distortion, 52
monopole, 70, 172, 239, 286, 330
Plane wave Born, 49, 189, 239
quasistatic, 323
Astrophysics, 456, 471
Asymmetric systems, 48, 188, 192, 274
Atom–nucleus system, 124
Atomic clock, 7, 119
Atomic collision, 26
Atomic K shell, 16
Atomic lifetimes, 446
Atomic models, 49
Atomic positron production mechanisms, 326
Atomic pseudostate expansion, 52
Atomic QED processes, 374
Atomic screening, 51
Atomic transition probabilities, 425
Autoionization, 13
Autoionizing states, 442
Avoided level crossings, 62, 162
Bang–Hansteen scaling law, 80
Basis states, 29
Be-like ions, 461
Beam-foil light source, 426
Beam-foil spectroscopy, 425, 434
Beam-laser techniques, 429, 450
Beats,
 quantum, 428, 461
 Stark, 466
 Zeeman, 466
 zero-field quantum, 463, 465
Binary encounter approximations, 192
Binding energy, 4
Binding energy correction, 206
Bohr magneton, 81
Bohr radius, 11, 160, 189
Bohr velocity, 189
Bohr–Sommerfeld parameter, 26, 159
Born approximation, 145, 304
Born–Oppenheimer approximation, 53, 159
Breit–Wigner resonance, 14, 334
Characteristic K x-radiation, 179
Characteristic x-ray production, 148, 157
Charge state, 181
target thickness dependence, 196
Charge transfer theory, 194
Charged vacuum, 5, 154
Classical trajectories, 5, 47
Coincidence between K x-rays and Mo x-rays, 260, 262
Coincidence measurements, 183
Cold rearrangement, 382
Collapse of the wave functions, 60
Collision time, 111, 321, 341
Collisional line broadening, 93, 323
Collisional magnetic fields, 80
Compound nuclear lifetimes, 124
Compound nucleus, 124
Compton scattering, 257
Compton wavelength, 5, 153
Continuum, 4
Index

Feynman diagram, 24, 103, 325
Feynman propagator, 23
Field fluctuations, 4
Fine-structure constant, 4
First-order time-dependent perturbation theory, 171
Fission fragments, 379
Fluorescent yields, 270
Fock expansion, 39, 90
Fock operators, 39
Foil targets, 182
Forbidden processes, 457, 460
Formula,
 Demkov–Meyerhof, 68
 Sommerfeld, 9
Fourier frequencies, 285, 321
Frictional forces, 128
Fully stripped ions, 104
Furry’s theorem, 24
Fusion research, 473
Fusion–fission reactions, 126

Galilean transformation, 34
Gamma-ray spectra, 349, 370, 384
Gas avalanche detectors, 185
Gas targets, 181, 197, 218, 228
Giant nuclear complex, 393, 403
Grazing-incidence spectrometers, 431
Green’s function, 23, 107

Hanle-effect techniques, 452, 467
Hartree–Fock calculations, 51, 204
Hartree–Fock–Slater correlation diagram, 59
He–like systems, 458
Heavy-ion accelerators, 3, 429
Heisenberg state, 90
Heitler–Nordheim formula, 103
Hellmann–Feynman identity, 69
High voltage machines, 429
High-energy atomic plasmas, 141, 150
High-momentum components, 286
High-temperature atomic plasmas, 473
Hydrogen-like ions, 439, 457
Hyperfine effect, 457, 459

Impact parameter dependence, 28, 50, 74, 84, 98, 114, 177, 183, 186, 204, 230, 245, 248
Impact velocity, 29

Impurity concentrations, 473
Induced spontaneous positron couplings, 108
Inelastic nuclear reactions, 7
Inner shell excitation, 3, 6, 47, 56, 81, 144, 153, 160, 163, 177, 324, 436
Interaction time, 67
Intercombination lines, 457
Interference effects, 95, 119, 126, 235, 428
Internal conversion, 253, 290, 347
Internal pair conversion processes, 345, 393
Interradioactive distance, 26, 285
Interstellar abundances, 472
Intrinsic germanium x-ray detector, 178
Inverse bremsstrahlung, 150
Ion source, 429
Ion–atom collision, 3, 118, 142, 153
Isotopic purity, 183

K Auger electron excitation, 189, 193
K x-ray cross sections, 237, 244
K x-ray satellite structure, 185
K-hole production, 68
K-shell excitation processes, 182
K-shell fluorescent yields, 189
K-vacancy production probabilities, 65, 158
Klein paradox, 5, 17, 106
Klein–Gordon equation, 15

Lamb shift, 458, 467
Landau–Zener model, 64
Level crossings, 56
Lienard–Wiechert potentials, 84
Lifetime distribution function, 123
Lifetime measurements, 321, 425, 446
Limiting field theories, 21
Line positron spectra, 334
Linear polarization, 229
Lithium drifted silicon detectors, 179
Logarithmic derivatives, 10

Magnetic spin–orbit spin–spin interactions, 445
Magnetic transport system, 354
Many-electron system, 37
Massey criterion, 67, 304
Metastable nuclear complexes, 381
Microcanonical distribution, 47
Microscopic friction model, 379
Minimum momentum transfer, 249
Models, atomic, 49
continuum shell, 106
Landau–Zener, 64
microscopic friction, 379
promotion, 53
relativistic Thomas–Fermi, 154
semiclassical quasimolecular, 112
statistical, 191
Thomas–Fermi–Dirac–Weizsacker, 56
variable screening, 56
Mo K x-rays, 158, 213, 222, 256
Molecular axis, 100, 211
Molecular coupling, 6, 53, 161, 220
Molecular orbital x-ray, 6, 85, 157
Molecular orbitals, 148
Monopole approximation, 70, 172, 239, 286, 330
Monopole vibrations, 42, 172
Multiple exponential fitting programs, 448
Multiple excitations, 40, 441
Multiply ionized atoms, 433

NaI crystal, 179
Near degeneracy in positron peak energies, 404
Negative energy continuum, 4, 12, 154
Nonadiabatic transition, 88
Nonautoionizing levels, 442
Nonresonant charge transfer, 67
Nuclear background, 366
Nuclear bremsstrahlung, 120, 121, 177
Nuclear dynamics, 141
Nuclear radius, 4
Nuclear reaction mechanism, 119
Nuclear recoil, 51
Nuclear scattering trajectories, 160
Nucleus–nucleus bremsstrahlung, 98, 150, 180, 257, 265, 274

One-collision mechanism, 94
Operator,
angular momentum, 30
Fock, 39
Heitler–Nordheim, 103
projection, 107
spin orbit angular momentum, 9
One-electron correlation diagram, 54
Optimum basis states, 44
Oscillator strength, 454
Pair creation, 4
Parameter,
anisotropy, 92
Bohr–Sommerfeld, 26, 159
Particle and x-ray coincidence measurements, 230
Pauli principle, 5, 199
Perturbation theory, 4, 252
Perturbed stationary states, 53, 239
Phase space, 43
Photon alignment, 93
Photon anisotropy, 101
Photon propagator, 89
Photon spectroscopy, 442
Photon vacuum, 86
Photospheric elemented abundance, 472
Plane wave Born approximation, 49, 189, 239
Plasma physics, 425, 456
Plastic scintillator detectors, 185
Point nucleus, 23
Point source, 18
Poison equation, 20
Polarized nuclei, 478
Positron continuum, 106
Positron creation, 103, 111, 126
Positron emission, 60, 104, 317, 323
Positron energy spectra, 350, 370, 383, 389, 392
Positron spectroscopy, 317, 351
Positrons from nuclear transitions, 177, 345
Potential coupling, 29, 167
Projectile charge state, 187
Projectile electron capture, 190
Projectile energy dependence, 190
Projectile excitation, 188
Projection operators, 107
Promotion model, 53
Pseudo-impact-parameter, 231
Pseudostates, 48

QED of strong fields, 158
Quantum beats, 428, 461
Quantum chemistry, 6
Quantum electrodynamics, 4, 21, 142
Quantum electrodynamics of strong fields, 53
Quantum field theory, 89, 142
Quantum statistical approach, 56
Quasiatomic wave functions, 289
Quasimolecular Auger electron emission, 95
Quasimolecular basis states, 6
Index

Quasimolecular correlation diagrams, 53, 95
Quasimolecular orbitals, 159
Quasimolecular phenomena, 147
Quasimolecular x-ray spectra, 88, 125
Quasistatic approximation, 323

Radial coupling, 30, 37, 63, 66, 71, 76, 104, 168, 199, 207, 257, 286
Radial Dirac equation, 330
Radial probability distributions, 332
Radial rotational coupling, 98
Radiative corrections, 21
Radiative dipole matrix elements, 225
Radiative electron capture, 87, 177, 265, 271
Radiative ionization, 150
Rayleigh–Ritz variational equation, 41
Relativistic Coulomb problem, 333
Relativistic coupling, 70
Relativistic Dirac–Fock method, 165
Relativistic effect, 6, 11, 60, 153, 160, 227, 324, 425
Relativistic Hartree–Fock approach, 10, 329
Relativistic Thomas–Fermi model, 21
Resonance, 154
RF–spectroscopy, 467
Rotational coupling, 30, 44, 65, 100, 168, 188, 191, 211, 257
Rutherford scattering, 184
Rydberg states, 436

Satellite structure, 203
Scaling behavior, 145, 171, 248, 312
Scanning monochromators, 430
Scattering theory, 3
Schrödinger equation, 15
Schwinger’s propagation function, 90
Search for positron peak structure, 381
Second quantization, 16, 82
Secondary electron bremsstrahlung, 150, 265, 273
Self energy, 4, 25, 156
Semiclassical approximation, 26, 48, 49
Semiclassical impact parameter method, 145
Semiclassical quasimolecular model, 112
Separated atom K x-ray radiation, 816
Separated atom limit, 54, 161
Shake-off of the vacuum polarization charge, 112
Shell effects, 46
Single-electron excitations, 37

Solar abundances, 472
Solid target, 218, 228
Solid-state x-ray detectors, 176
Sommerfeld formula, 9
Spatial confinement, 285
Spectroscopy of superheavy quasimolecules, 68, 76, 96, 265
Spin degeneracy, 4
Spin orbit angular momentum operator, 9
Spin polarization, 82
Spin–flip transitions, 85
Spontaneous coupling, 115
Spontaneous decay of the vacuum, 157
Spontaneous pair creation, 16
Spontaneous positron emission, 5, 7, 129, 143, 151, 158, 318, 324, 327, 328, 341, 393, 400, 407
Spontaneous vacuum transition, 325
Stark beats, 466
Statistical model, 191
Sub-Coulomb collisions, 341
Supercritical bound state resonance, 4, 105, 126, 143, 318, 320
Supercritical charge, 318
Supercritical collision systems, 104, 115, 340, 390
Supercritical Dirac Hamiltonian, 13
Superheavy atom, 4, 10, 130, 142, 158, 217
Superheavy quasimolecules, 6, 53, 98, 151, 156, 407
Surface barrier detectors, 185
Switching function, 34
Symmetric/asymmetric collision systems, 185, 187, 188
Symmetrized scattered particle yields, 185
Synchrotron radiation, 442

Tandem accelerator, 429
Target atom, 299
Target foils, 432
Target ionization, 188
Targets, 181
Tensor polarization, 428
Theory, charge transfer, 194
Demkov charge transfer, 200
first-order time-dependent perturbation, 171
limiting field, 21
quantum field, 89, 142
scattering, 3
Thomas–Fermi approach, 46, 56
Thomas–Fermi–Dirac–Weizsacker model, 56
Three-electron systems, 460
Time delay effects, 123, 128
Time development of the nuclear reaction, 402
Time evolution of quasimolecular orbitals, 319
Time-delayed supercritical collisions, 126
Time-dependent Hartree–Fock equations, 45, 331
Time-dependent Schrödinger equation, 45, 86
Time-independent Schrödinger equation, 428, 462
Time-resolved experiments, 476
Tokamak discharges, 438, 473
Total differential x-ray production, 254
Total positron creation cross section, 374
Trajectory, 50
Transient molecule formation, 213
Transition probability, 28, 33
Transmission strength to the continuum, 78
Traveling orbital, 33, 88
Triple coincidence measurements, 74, 280, 312
Triplet states, 458
Two-center Coulomb potential, 172
Two-center Dirac equation, 6, 53, 59, 150, 161, 165, 172, 253, 329
Two-center Hartree–Fock equations, 56
Two-center Schrödinger equation, 54, 70, 161, 176
Two-center shell model, 53
Two-collision process, 218
Two-electron one-photon processes, 165, 177, 178, 218, 457

Uehling sum, 22
United atom effects, 118, 229
United atom limit, 54, 147, 161, 171, 220, 299

Vacancy creation probabilities, 70, 182, 189, 323
Vacancy sharing, 66, 168, 188, 207, 242, 269
Vacuum polarization, 4, 16, 23, 25, 156
Vacuum state, 5
Vacuum ultraviolet, 431
Variable screening model, 56
Variational principle, 41
Vector polarization, 428
Vector potential, 27
Virial theorem, 286

Weizsacker–Williams method, 103
Whittaker functions, 14
Wigner–Neumann noncrossing rule, 161
Window foils, 181

X-ray cross sections, 177
X-ray spectroscopy, 176

Yrast states, 441

Zeeman beats, 466
Zeeman splitting, 82
Zero-field quantum beats, 463, 465