INDIAN SOCIETY FOR ATOMIC AND MOLECULAR PHYSICS
(ISAMP)

President
Dr. S. A. Ahmad
Spectroscopy Division
Bhabha Atomic Research Centre
Trombay, Mumbai - 400 085.

Vice President
Prof. Krishan K. Sud
Department of Physics
College of Science Campus
M. L. Sukhadia University,
Udaipur - 313 001.

Secretary
Prof. E. Krisnakumar
Tata Institute of Fundamental Research
Mumbai - 400 005.

Treasurer
Mr. I. A. Prajapati
Physical Research Laboratory
Navrangpura, Ahmedabad - 380 009.

Members
Prof. A. N. Tripathi
Department of Physics
University of Roorkee
Roorkee - 247 667.

Prof. K. L. Baluja
Department of Physics and Astrophysics
University of Delhi
Delhi - 100 007.

Prof. K. N. Joshipura
Department of Physics
Sardar Patel University
Vallabh Vidyanagar - 388 120.
Prof. Kanika Roy

Department of Theoretical Physics
Indian Association for the Cultivation of Science
Jadavpur, Calcutta - 700 032

Prof. Naresh Chandra

Department of Physics and Meteorology
Indian Institute of Technology
Kharagpur - 721 302

Dr. Y. N. Tiwari

Department of Physics
Pachhunga University College
North-Eastern Hill University
Aizwal - 796 001
Above threshold ionization (ATI)
double ionization of He, 21
enhanced ionization of H₂, C₄H₄⁺, 28
multiple ionization of Xe, 31
of atoms, 15, 356
spectra of He, 19-21
Adiabatic potential energy surfaces, 165
Angular distribution
of REC into the K-shell of
relativistic high Z-ion, 141
Atomic Clusters
abundance spectra & shell structure, 36
Car-Parrinello MD method, 48
chemical activity, 43
magnetic properties, 41
stability of multiply-charged clusters, 40
total energy calculation method, 46
vibrational measurements, 45
Atomic Orbital Collapse, 235, 238
Auger process, 319
Autoionization of atoms
excitation of states in Alkalis, 147
in Alkalis, 149
resonances, 348
states of Eu Atom, 391
Baker-Hausdorff Lemma, 191
Born-Bethe approximation, 122, 252
Bethe Ridge conditions, 61
Brauner-Briggs-Klar approximation, 87
Bremstrahlung radiation, 10
CDW-EIS approximation: see also heavy ion-atom collision, 283
Classical trajectory Monte Carlo simulation method (CTMC): see also heavy ion-atom collision, 252, 275
standard errors, 275
Coherent states (EM field), 202
Cooper minimum, 342
Coplanar asymmetric geometry, 65, 72
Coplanar symmetric geometry, 62, 74
Continuum distorted wave model (CDW), 283
Direct ionization, 148
Double photoionization
of atoms and molecules, 318
triple differential cross-section, 330
Ehrhardt geometry: see also coplanar asymmetric geometry, 65
(e,2e) process
electron, 98
laser excited atoms with spin-polarised orientation and alignment, 91
relativistic, 69
Electron correlation effect, 182
Electron energy loss spectroscopy (EELS), 174, 222
Electron impact excitation, 147
Electron-impact ionization: see also total ionization cross-section by electron impact, 85, 103
Fast ion-atom collision: see also heavy ion-atom collision, 281
(He, H) e-DDCS ratio, 292
electron double differential cross-section (e-DDCS), 288
First Born Approximation, 85
First Born Coulomb Wave Approximation, 66
Fluorescence
decay curve of NO₂, 401, 405
excitation spectra, 403
lifetime of NO₂ and SO₂, 397, 405
Four photon ionization: see also multiphoton ionization, 376
Heat pipe oven, 365
Heavy ion-atom collision
charge transfer, 268
classical-Hamiltonian, 273
continuum distorted wave eikonal initial state model, 281
fast-ion atom model, 281
quantum-Hamiltonian, 268
total cross-section, 275
transition amplitude, 273
two body potential, 271
Inelastic X-ray scattering spectroscopy (IXSS), 174, 180
Inner shell ionization, see also K-, L-shell ionization, 59, 104
Intense-field many-body S-matrix theory, 16
Ionization by heavy particle collision, 3
Ionization of confined atoms, 246
Ionization of molecules: see also total cross-section by electron impact,
Bethe model, 113
Binary encounter-dipole model, 113
outer shell, 109

425
Jaynes Cummings model, 189
 density matrix operator, 195
time development operator, 191

K-shell ionization cross-section
 by electron ionization of Ag, 105, 107

L-shell ionization cross-section
 by antiproton on atomic hydrogen, 258-264
 by electron impact, 108

Laser-solid interaction in picosecond and femtosecond time regime
 Bremsstrahlung spectra of Al, 11
 gamma ray emission from Cu, 11
 X-ray emission, 3

Lippmann Schwinger equation, 411

Molecular clusters in stratosphere, 232
Multiphoton ionization (MPI)
 of atoms, 353, 371
 multiple ionization, 358

Multiple charge states (of complex noble gases), 26
Multistep multiphoton resonance ionization (RIS), 363
Multistep resonant excitation, 361

Neutral atom traps
 clover leaf trap (CLT), 312
 dark spontaneous force optical trap (dark spot), 311
 IOFFE Pritchard Trap (IPT), 312
 magnetooptic trap (MOT), 301, 307
 spherical quadrupole magnetic traps (SQMT), 300

Ochkur approximation, 105
Oscillator strength,
 continuum generalised (GOS), 104, 173, 179
 continuum optical, 103, 107

Ozone chemistry, 223
 forbidden states, 228
 hole, 224
 spectroscopy and photolysis of depleting compounds, 229
 spectroscopy, 225

Photoabsorption spectroscopy, 220
Photoabsorption properties in isoelectric sequences, 347
Photoionization: see also multiphoton ionization in Ar isoelectric sequences, 339
 non relativistic born approximation, 135
 of Ba, 374

Photoionization: continued
 of the excited atom, 362

Pochat geometry: see also coplanar symmetric geometry, 62

Plane wave-Born Approximation (PWBA), 61, 87, 104

Positronium scattering
 cross-section for Ps-H, 409, 416, 418
 cross-section for Ps-H2, 409, 420
 cross-section for Ps-He, 409, 419
 three Ps-state model, 414

Pulsed excitation method: see fluorescence

Quantum defect, 349, 351

Radiative electron capture, 134, 135, 139
Radiative recombination, 135, 139
Relativistic random phase approximation, 340, 348
Relativistic-distorted wave Born approximation, 70
Resonance ionization spectroscopy, 382
Rotating wave approximation, 190
Rydberg atoms,
 depopulation of low-Rydberg atom, 159
 electron Hamiltonian, 163
Rydberg series of Eu Atom, 391

Slater orbital, 413
Stepwise resonance ionization spectroscopy, 359, 382

TDCS by electron impact
 on Ar(2p), 66-69
 on Ar, 63
 on Au, 73, 76-79
 on H, 90
 on He, 63, 64

Thermionic diode detector, 367
Total ionization cross-section by proton impact, 257-264
Total ionization cross-section by electron impact
 Khare, Sharma and Tomar Model, 115
 closed coupling approximation, 123
 on C2H2, 130
 on CO, 128
 on CO2, 129
 on H2, 110, 111
 on H2O, 110, 111
 on Kr, 127
 on N2, 110, 111, 127
 on N2O, 129,
 on Ne, 126
 on O2, 110, 111
 spherical-complex-optical potential model of molecules, 110, 122

Triple differential cross-section: see TDCS by electron impact,
Ultra short pulse excited plasmas, 3

Wave functions
- 3d wave functions of Ca⁺, 239
- 3p wave function of Ca⁺, 240
- Adiabatic electron wave function, 163
- Coulomb wave function, 255
- Hartree Fock wave function, 412, 413
- Self consistent wave function, 175