The practical radiation formulas presented in Chapter 2 and applied from that point onward have been established via the process described in this appendix.

When the source is at a distance $D < \lambda/2\pi$ (near-field conditions), the E/H ratio of an electromagnetic field departs from the free-space impedance Z_0, which is:

$$Z_0 = \sqrt{\frac{\mu_0}{\varepsilon_0}} = \sqrt{\frac{4\pi \times 10^{-7} \text{ Henry/m}}{1 \text{ (10}^{-9} \text{ F/m)}}} = 120\pi, \text{ or } 377 \Omega$$

The near-field E/H ratio depends on the source impedance but can never exceed $377 \times \lambda/2\pi D$ nor be less than $377 \times 2\pi D/\lambda$. The question of how source-circuit and wave impedance are related in the near field is important because the estimation of E and H, and the shielding effectiveness of barriers, are dependent on this relation.

The development of a discrete relation between circuit impedance, Z_c, and wave impedance, Z_w, in the near field is beyond the scope of this handbook. However, the following mathematical relations are suggested for all conditions in which the circuit dimensions, $D \ll \lambda$:

279
For $Z_c \geq Z_0$ (high-Z source):

$$Z_w = \frac{Z_0 \lambda}{2\pi D}, \text{ for } Z_c > \frac{Z_0 \lambda}{2\pi D} \geq Z_0$$

$$\equiv Z_c, \text{ for } \frac{Z_0 \lambda}{2\pi D} > Z_c \geq Z_0$$

$$\equiv Z_0, \text{ for } Z_c = Z_0$$

For $Z_c \leq Z_0$ (low-Z source):

$$Z_w = Z_c, \text{ for } Z_c > Z_c \geq \frac{Z_0 2\pi D}{\lambda}$$

$$\equiv \frac{Z_0 2\pi D}{\lambda}, \text{ for } Z_c > \frac{Z_0 2\pi D}{\lambda} > Z_c$$

These equations are plotted in Fig. A.1 for several values of common circuit impedances of 50, 100, 300 and 600 Ω. To the extent that these conditions exist, the finite source circuit impedance, then, does not "permit" an infinitely high or null wave impedance E/H.

Rewriting the above equations in more practical terms, the near-field wave impedance for any circuit is:

$$Z_w (\Omega) = \frac{18000}{D \times F_{\text{MHz}}}, \text{ for } Z_c = \frac{18000}{D \times F}$$

$$Z_w (\Omega) = Z_c, \text{ for } \frac{18000}{D \times F} \geq Z_c > 7.9 \text{ DF}$$

$$Z_w (\Omega) = 7.9 \text{ DF}, \text{ for } 7.9 \text{ DF} \geq Z_c$$

Far-Field Values

The E field radiated by an isolated wire at a distance $D > \lambda/2\pi$ is:

$$E_{V/m} = \frac{1}{D} \times 60\pi \times \frac{I'}{\lambda}$$
If, instead, we have two wires carrying equal but opposite currents, the radiated field in the plane of the two wires is calculated from the phase lag of the equal and opposite fields:

$$E = \frac{1}{D} \times 60\pi \times \frac{I}{\lambda} \times \sin \frac{2\pi s}{\lambda}$$

Recognizing that, for small values of "x," \(\sin x = x\), replacing \(\lambda\) by \(300/F_{\text{MHz}}\) and expressing \(\ell \times s\) in cm²:

$$E_{\mu V/m} = \frac{1.3}{D_m} \times \frac{V}{Z_L} (\ell \times s) F_{\text{MHz}}^2$$

This is the same expression as the loop model, in the far field.

Values at Transition Distance

Replacing \(F\) by its corresponding value at the near-far transition distance, i.e., \(F_{\text{NF}} = 300/2\pi D\), or \(48/D_m\):
E_{\mu V/m} = \frac{1.3}{D} \times \frac{V}{Z_L} \times l \times s \times \left(\frac{48}{D}\right)^2

= \frac{V \times (l \times s) \text{ cm}^2}{Z} \times \frac{3000}{D^3}

This new formula is used as the reference value to calculate the near-field terms, since the near-field wave impedance will become asymptotic to the impedance of the source circuit, increasing from 377 Ω to Z_c (if Z_c > 377 Ω) for high-impedance circuits, or decreasing to Z_c if Z_c < 377 Ω.

Near-Field Values (i.e., $F < F_{NF}$)

$$E_{\mu V/m} = \frac{V \times (l \times s) \text{ cm}^2}{Z} \times \frac{3000}{D^3}, \text{multiplied by:}$$

$$\frac{F}{F_{NF}}, \text{if } Z < 377(F/F_{NF}), \text{or } \frac{Z}{377}, \text{if } Z > 377(F/F_{NF})$$

Therefore,

1) If $Z < 377(F/F_{NF})$ (low-Z circuit), or $Z < 7.9 F \times D$:

$$E_{\mu V/m} = \frac{62 V \times (l \times s)}{Z \times D^2} \cdot F_{MHz}$$

2) If $Z > 377(F/F_{NF})$ (high-Z circuit), or $Z > 7.9 F \times D$:

$$E_{\mu V/m} = \frac{7.9 V \times A}{D^3}$$

Quasi-static Values for E or H

In the near field, field prediction curves of Chapter 2 (Fig. 2.6) show that E becomes constant for a given drive voltage and distance. This raises the question: What happens to the associated H field? The previous equations, plus Figs. A2 and A3, provide the answer.
For a constant voltage excitation, the wave impedance increases when F decreases below F_{NF}, until it reaches Z_c (unless $Z_c = \infty$). This would meet the case of a monopole, or open loop excited in dc, creating a static E field but no H field.

Conversely, for a magnetic, low-Z circuit, the wave impedance decreases when F decreases below F_{NF}, until it reaches Z_c (unless $Z_c = 0$). Therefore, the associated E field decreases, but not down to zero, unless $Z_c = 0$. This would meet the case of a perfectly shorted loop at dc, having no E field and a static H field.

FIGURE A.2 Wave Impedance vs. Circuit Impedance
FIGURE A.3 Electric and Magnetic Field Trends at Very Low Frequencies (Quasi-static)
Appendix B

Some Validation Results
Supporting the Simplified Radiation Model

Several validation measurements performed by the author on simple circuits, as well as other measurements reported in the literature, give an indication of the error margin incurred.

Figures B.1 and B.2 show the results for a personal computer single-layer board radiation and a backplane with 10 MHz clock runs, both measured on calibrated FCC test sites. Interestingly, in Fig. B.1, the influence of changing from a clock oscillator supplied by source A to one provided by source B, with slightly different rise times, is clearly visible.

The compilation of about 60 radiated test results, compared to the predicted results per this book’s method, showed a mean of differences of 8.5 dB.
FIGURE B.1 Measured vs. Predicted Radiated Emissions from a PCB, 3 m Test Site per FCC Part 15-J (Ref. 22) (continued next page)
OSC. = 7.5 MHz Clock
A = Loop Area, 6.5 cm²
B = Driver Module

FIGURE B.1 (continued)
FIGURE B.2 Measured vs. Predicted Radiated Emissions from PCB Traces
References

8. Charoy, A. PCB Design Seminars. (Various times and locations.)
290 Controlling Radiated Emissions by Design

 Government Printing Office.
 (RTCA).
 IEEE EMC Symposium*. Piscataway, NJ: Institute of Electrical and Electronics Engi-
 neers, 1981.
Index

Absorption (loss) 184, 185
Analog circuits,
 Grounding of 120, 159, 163
 PCB layout 106
Aperture,
 leakage (shield) 192
 treatment (shield) 198
Balanced links 222
Balun ... 175
Broadband units 6
Cabinet (shielded) 215
Cable,
 absorptive, lossy 234
 box penetration 212
 shield ... 159
Capacitor,
 I/O decoupling 165, 173
 power distribution decoupling 78–82, 89
CISPR .. 7–10, 76, 260
Clock,
 trace, crosstalk 108, 111
 trace, radiation 63, 105, 125
CMOS ... 74
Coaxial cable 155, 240
Common mode,
 current ... 175, 221, 234, 237, 240, 275
 radiation .. 34–37, 165, 167
Connector,
 filtered ... 167, 175
 I/O .. 165
 PCB ... 116–119
 pin assignment 116, 124
 shielded .. 251
 special, high-speed 120
Covers (bonding) 200
Crosstalk .. 107–112, 127, 154
CRT radiation 179
Current,
 common-mode (see Common Mode) 77, 78
 logic switching
Differential-mode
 radiation .. 30–34, 221, 232, 235
DIP (dual in-line package) 83, 86
ECL ... 74
European Norm (EN) 261
Far field .. 19, 24, 280
FAST logic .. 74
Ferrites .. 171, 172, 228
FCC ... 10, 11, 72, 109, 261, 277
FDA ... 11
Filter,
 feed-through 168
 I/O .. 167
 power supply 146
Fourier,
 broadband spectrum 56
 envelope .. 49, 50
 series ... 48
GaAs (gallium arsenide) 74
Gaskets (shielding) 203–207
Glass (shielded) 210
Ground,
 loop ... 34, 39
 plane .. 44, 96
 plane, perforated 104
Grounding,
 0V-to-chassis 120

291
Controlling Radiated Emissions by Design

single-point, star 163, 164

HCMOS 74, 75

Impedance,
 characteristic 114, 117
 contact (connector) 117
 matching 112, 127
 transfer (see Transfer Impedance)
 wave 279, 280

Inductance,
 parasitic 89
 PCB 96

Integrated circuits (ICs),
 package 83
 radiation 78, 81

Least significant bit (LSB) 62, 106
Logic families 74
Long wire 46

Magnetic leakage 137
Magnetic moment 29, 91
Magnetic shielding 186
MIL-Standard 461 12, 256–259, 277
Multilayer (PCB) 99

Narrowband units 5
Near field 19, 23, 186, 282

Open wire (radiation) 42
Optical fibers 255

Permeability 184
Pigtail (shield) 251
Pin grid array 82, 91, 105
Plastic,
 box design 204
 conductive 189–191
Power supply 66

Ribbon cable,
 crosstalk 154
 shielded 247
 twisted 153
RTCA 12, 265

S (Schottky) TTL 74
Shield, cable 159, 237
Skin depth 184
Slot,
 in ground plane 106
 leakage 192
Society of Automotive Engineers
 (SAE) 11
Surface-mount technology (SMT) .. 83, 86

Tempest 7, 11
Transformer,
 leakage 137
 power 131
 shielded 138
 signal 222–227
Transistor (switching, power) 131
Transfer impedance,
 cable shield 241, 245, 253
 connector 248
TTL 74
Twisting 235, 236
VDE 261, 263
Wire wrap (backplane) 126