References

REFERENCES

Index

absolute jitter, 30
AMI, 74
amplitude limiter, 44
analog PLL, 10
ASITIC, 135, 141
auto-correlation function, 35

Barkhausen's criteria, 39
bias noise, 75
bit error rate, 3, 30
BER, 3, 30
Bluetooth, 2, 107
by-pass capacitor, 80

channel charge injection, 114
charge pump, 4, 109
charge pump PLL, 13
clock feedthrough, 114, 115
clock recovery, 2
clock/data recovery, 3
CDR, 3
closed-loop, 19, 22, 112
common mode, 89, 101
common-mode feedback, 115
CMFB, 115
common-mode rejection, 117
conductivity, 132
coupled ring oscillator, 56, 61, 69
cross talk, 3, 28
current crowding, 133
current-starved ring oscillator, 56, 61
cyclostationary noise, 40

damping factor, 20
dC control characteristic, 101
dead zone, 15, 116
die photo, 101
die photograph, 62
differential, 101
differential control, 87, 89
differential frequency tuning, 126
digital PLL, 12
dynamic CMOS logic, 124
eddy current, 132, 133
effective Q factor \(Q_{eff} \), 55, 99
excess noise factor, 40, 45

\(f_T \), 72
fast switching, 106, 149
first-crossing theory, 59
flicker noise, 29, 52, 61, 65, 71, 72, 75, 77, 80, 117
folded cascode, 116
frequency divider, 4, 9, 120
frequency modulation, 81, 88, 102
FM, 81, 88, 102
frequency synthesizer, 1
fully differential, 56, 112
Hajimiri's model, 49
hard clipping, 68
hard limiter, 27
heterodyne, 4
homodyne, 4
HP, 69, 74, 105, 143
HSpice, 136
hysteresis, 92

impulse sensitivity function, 49, 64
\(\Gamma \), 49, 64
ISF, 49, 64
input-referred jitter, 30

KCL, 93

LabVIEW, 105
latch, 89
LC VCO, 126
DESIGN OF HIGH-PERFORMANCE CMOS VCOS

lead-lag compensation, 21
LeCroy, 143
Leeson’s model, 40
linear model
PLL, 18
linear time-invariant, 40
LTI, 40
load pulling, 29
loaded quality factor, 40
Q_L, 40
local oscillator, 1
LO, 1
loop bandwidth, 22, 24–26, 107–109, 118, 142, 144
loop filter, 4, 9, 109
loop gain, 24
Maneatis load, 56, 61
Maneatis ring oscillator, 69
maximum slew rate, 69, 72, 73
memory delay cell, 150
microphotograph, 69
MiM capacitor, 111
mismatch, 102
mobility, 90
mobility degradation, 90
modified linear model, 63, 149
MOS capacitor, 110
MOS varactor
accumulation mode, 126
MOSIS, 69, 129, 148
multiplier, 11
N-latch, 124
natural frequency, 20
noise sensitivity, 98
noise up-conversion, 74, 149
open-loop, 19, 21, 112
P-latch, 124
patterned ground shield, 135
period jitter, 31, 83
phase detector, 9
PD, 9
phase lock, 9
phase modulation, 81, 102
PM, 81, 102
phase noise, 3, 27
phase/frequency detector, 4, 10, 12, 119
PFD, 4, 10, 12, 119
positive feedback, 91
power spectral density, 28
PSD, 28
prescaler, 10, 120
program counter, 121
pull-in time, 107
pulse swallow frequency divider, 121
quadrature, 1
quadrature, 87, 100
quality factor (Q), 47
random walk process, 30
Razavi’s model, 46
relaxation oscillator, 48
ring oscillator, 5, 46, 55
RMS, 59, 64, 66, 78, 83
self-referred jitter, 30
signal-to-noise ratio, 60
SNR, 60
single-ended, 56, 101
single-sideband phase noise, 28
SSB phase noise, 28
skin depth, 133
skin effect, 132, 133
slew rate, 59
soft clipping, 66, 68
SONET, 2
network element, 3
NE, 3
optical carrier, 2
OC, 2
synchronous transport signal, 2
STS, 2
spiral inductor, 4, 46, 130
substrate induced loss, 132, 135
supply/substrate noise, 81
supply/substrate noise rejection, 88, 102
swallow counter, 121
switching noise, 88, 102
symmetrical spiral inductor, 131
tail current noise, 75
thermal noise, 52, 57, 65, 75, 76, 78, 80
thermal noise factor (γ), 57
time variant, 40
timing jitter, 3, 27
toggle flip-flop, 124
triode, 89, 109
TSMC, 74, 101, 108
two-stage, 91, 98, 108, 150
virtual ground, 115, 117
voltage clipping, 55, 149
voltage limiter, 64
voltage-controlled oscillator, 4
VCO, 4, 9
Weaver image reject receiver, 1
white Gaussian noise, 30, 33–35
white noise, 28