Index

Ab-initio potential surfaces, 48
Ab-initio potential techniques, 41
Above threshold dissociation (ATD), 19
Above threshold ionization (ATI), 19, 34
Absorption
cross section, 80
excited state (ESA), 65
potential, 224
two-photon (TPA), 65
Acetonitrile, 40
Adaptive re-meshing, 92
Aerosols, 253, 254
Alignment
information of, 10
Anthropogenic emissions, 253
Approximation
Bethe, 159
Born, 167, 168, 231
distorted wave Born, 167
one photon exchange 186
Astrophysical object, 153, 154
Asymmetry
longitudinal spin, 189, 190
transverse spin, 190
Asymptotic region, 81
Asymmetric stretch mode, 61
Atmospheric gases, 254
Atomic photoabsorption, 205
Atomic spectroscopy
of fusion plasmas, 279
Autocorrelation function, 80
Autodetaching states
of H, 239
of positronium, 237
Autodetachment, 217
Autoionization, 10
Beam-foil spectroscopy, 281
Becke’s hybrid exchange expression
(B3LYP), 232
Bloch wave function, 261
Born Approximation, 231
Born-Oppenheimer Simulation, 22, 23
Born scattering amplitude, 240
Branching fraction, 82
Broad band radiation, 275
Bohemiandynamics, 109
Channeling, 259-261
Channeling radiation, 259, 262
Channelons, 259
Chirped pulse, 63, 74
Circular polarization, 199
Cis-trans isomerization, 55
Close coupling
approximation (CCA), 239-246
expansion, 154, 157, 158
Coherence, 66
Coherent control, 74
Co-incidence techniques, 191-197
Collision processes
electron, 143, 154
Collision processes (cont.)
 electron-atom, 154
 experiments, 163
Collision radiative (CR) models, 265-272
Collision strength, 144, 159
Configuration interaction (CI)
 calculations, 155
 expansion, 155
Cooling
 molasses, 10
 Zeeman, 10
Cooper minimum, 206
Continuum, 58
Continuous wave laser, 61
Continuity equation, 87
Core-penetrating Rydberg states, 55
Core-non-penetrating Rydberg states, 55
Correlation
 core-valence, 248
 corrections, 154
 effects, 155
 intra-valence, 248
Correlation time, 66
COSMIC (Country Specific model for
 inter-temporal climate), 254-257
Coulomb
 blockade of electrons, 1
Coupled-cluster singles and doubles
 (CCSD), 230
Coupling matrix, 108
Coupling mechanisms
 direct, 51
 doorway-mediated, 51
Cross-sections
 absolute differential cross-section, 197
 CCA cross-section, 241
 collision, 144, 159
 differential, 158, 174, 179
 double (DDCS) and triple (TDCS)
 differential, 191
 elastic cross-section, 232, 234
 electron impact induced emission, 144
 emission, 144, 148
 excitation, 144, 157, 158
 ionization 164, 171
 multi-coincident, 185
 photoabsorption, 206
 photoionization, 153
 s-, p-, & d-wave cross section
 239, 241
Cross-sections (cont.)
 total cross-section, 173, 241
Curve crossing
 Landau-Zener (LZ) type, 72
 nonadiabatic tunneling (NT) type, 72
DZP basis, 232
D-state excitation, 197
Decoherence, 91
Degenerate four-wave mixing incoherent
 light (DFWN-IL), 66
Density functional theory (DFT),
 230-234
Density matrix evolution, 92
Dephasing, 62
Dielectric recombination rate coefficient,
 266, 272
Dipole approximation, 205
Dipole interaction, 215
Dipole moment operator, 59
Dirac delta function, 80
Dirac-Frenkel variational principle, 109
Discrete variable representation (DVR),
 107
Dissipative systems, 86
Dissociative attachment, 217
Dissociative ionization, 218
Dissociative rate, 27
Dissociative trajectories, 29
Divergence, 87
Doppler broadening, 282
Doppler temperature, 5
Double well potential, 86
Downhill ramp potential, 90
Dry etching process, 219
Eckart barrier, 89, 112
Eigenvectors, 62
Elastic electron scattering, 232-233
Electron-attachment, 217, 219
Electron channeling, 261
Electron channeling radiation, 260
Electron collisions, 265
Electron correlation, 229-234, 192
Electron-cyclotron heating (ECH), 269
Electron cyclotron resonance ion source
 (ECRIS), 163
Electron-electron correlation effect, 191
Electron hydrides, 232, 233
Electron molecule collisions, 217
Electron–positronium continuum, 237
Electron–positronium scattering, 237
Electron proton dynamics, 23
Electron scattering, 229, 219
Electron scattering intensity, 229
Electron transition processes, 191
Emission line intensity, 268
Entanglement, 2
Equilibrium thermodynamic, 153
Evolution operator, 82
Excitation
 coherent, 57
 dissociative, 154
 electron-impact, 154, 158
 energies, 155
 incoherent, 57
 mechanism, 154
 multiphoton, 57, 58
 two-photon, 249
Fermi Golden rule, 260
Fermi wave vector, 225
Feshbach resonance, 242-244
 Doppler temperature, 5
 entanglement, 2
Figure of merit (F), 67
Fixed width approach, 110
Floquet matrix, 60
Floquet method, 58, 59
Floquet theorem, 59
Fluorescence
 infrared laser induced (IR LIF), 50
 single atom, 1
 single molecule, 1
 ultraviolet laser induced (UV-LIF), 50
Fock states, 1, 2
Fourier expansion techniques, 110
Fractal geometry, 26
Fractal singularities, 25
Fragmentation
 cross-section, 164
 total, 173
Full-width at half maximum (FWHM), 43
Fusion plasmas
 magnetically confined, 279
 inertial confinement, 275
Fusion plasma devices, 217
Gaussian form, 82
Gaussian probe pulse, 42
Global warming, 253
Green-house gases, 253
Halocarbons, 253
Hamiltonian, 58
Harmonic oscillator, 108
Hartee Fock (HF), 230-233
Heat bath, 110
Heaviside function, 225
Heliostatic, 254
Helium
 correlated wave function, 192
 Hermite polynomials, 108, 110
 Higher harmonic generation (HHG), 34, 275
 High power lasers, 274
 HITRAN data base, 254
Hydrodynamic
 equations, 85
 fields, 86
 formulation, 85
Hydrogen spectra, 271
Inertial confinement fusion, 275
Independent particle approximation, 205
Initial value representation (IVR), 76
Intensities
 elastic-inelastic, 231
Interaction
 magnetic, 186
 transverse, 186
Interstellar medium (ISM), 143
Interplanetary spacecraft, 144
Intramolecular
 dynamical studies, 49
 vibrational energy, 49
Ionization
 amplitude, 168
 double ionization, 179, 192
 electron impact, 167, 171, 177
 mechanism, 165
 multiple, 165
 process, 165
 simultaneous ionization & excitation
 (SIE), 192
 simultaneous transfer ionization (TI), 192
 single, 173
 triple ionization, 192
Ionization rate coefficient, 265, 268
<table>
<thead>
<tr>
<th>Index</th>
</tr>
</thead>
<tbody>
<tr>
<td>IR (infra-red) vibration mode, 214</td>
</tr>
<tr>
<td>Isoelectronic sequence, 206</td>
</tr>
<tr>
<td>Isointensity contours, 276</td>
</tr>
<tr>
<td>Isomeric forms, 50</td>
</tr>
<tr>
<td>Joulakian et al., 183</td>
</tr>
<tr>
<td>JPL (Jet propulsion laboratory), 143</td>
</tr>
<tr>
<td>KAM (Kolmogorov-Arnold-Moser) tori, 28</td>
</tr>
<tr>
<td>Kohn-Sham formulation, 230</td>
</tr>
<tr>
<td>Kohn-Sham orbital, 229-232</td>
</tr>
<tr>
<td>Kohn-variational model, 237</td>
</tr>
<tr>
<td>KS (Kohn-Sham) wave function, 230-231</td>
</tr>
<tr>
<td>LDA functional, 232</td>
</tr>
<tr>
<td>LHD (Large Helical Device), 265, 269, 272</td>
</tr>
<tr>
<td>LSDA functional, 232</td>
</tr>
<tr>
<td>LTE (Population densities), 267</td>
</tr>
<tr>
<td>Lagrangian, 86</td>
</tr>
<tr>
<td>Lamb shift correction, 281-282</td>
</tr>
<tr>
<td>Lanczos propagator method, 111</td>
</tr>
<tr>
<td>Landau-Zener formula, 72</td>
</tr>
<tr>
<td>lagrangian, 86</td>
</tr>
<tr>
<td>Lasers</td>
</tr>
<tr>
<td>chirped pulse laser, 74, 274</td>
</tr>
<tr>
<td>control, 61</td>
</tr>
<tr>
<td>control of molecules, 19</td>
</tr>
<tr>
<td>coulomb explosion imaging (LCEI), 20, 22</td>
</tr>
<tr>
<td>excimer laser, 220</td>
</tr>
<tr>
<td>high power lasers, 274</td>
</tr>
<tr>
<td>induced electron diffraction (LIED), 20</td>
</tr>
<tr>
<td>induced molecular potential (LIMP), 19</td>
</tr>
<tr>
<td>manipulation of molecules, 19</td>
</tr>
<tr>
<td>Nd-glass laser, 274</td>
</tr>
<tr>
<td>picosecond laser pulses, 275</td>
</tr>
<tr>
<td>Lawrence-Knight deconvolution method, 51</td>
</tr>
<tr>
<td>Lifetimes, short, 249</td>
</tr>
<tr>
<td>Line emission, 153, 154</td>
</tr>
<tr>
<td>Line intensity, 153, 268-269</td>
</tr>
<tr>
<td>Line width, 260</td>
</tr>
<tr>
<td>Lorentz contraction, 259</td>
</tr>
<tr>
<td>Lorentz half width, 254</td>
</tr>
<tr>
<td>L-shell carbon ions, 265</td>
</tr>
<tr>
<td>MR-SDCI (multi references wave function, 230, 232</td>
</tr>
<tr>
<td>MOPA (master oscillator-power amplifier), 274</td>
</tr>
<tr>
<td>Magneto-optical traps (MUTS): See traps, 9</td>
</tr>
<tr>
<td>Maser, 1</td>
</tr>
<tr>
<td>Micromaser, 1</td>
</tr>
<tr>
<td>Minimum error method, 106</td>
</tr>
<tr>
<td>Modified cavity rule calculation (optical traps MAR), 227</td>
</tr>
<tr>
<td>Molasses</td>
</tr>
<tr>
<td>1D, 12</td>
</tr>
<tr>
<td>2D, 12</td>
</tr>
<tr>
<td>Molecular</td>
</tr>
<tr>
<td>collision axis, 10</td>
</tr>
<tr>
<td>Molecule</td>
</tr>
<tr>
<td>H₂⁺ molecule, 20</td>
</tr>
<tr>
<td>quasi, 10</td>
</tr>
<tr>
<td>Monte Carlo simulations, 4</td>
</tr>
<tr>
<td>Morse potential, 26</td>
</tr>
<tr>
<td>Multi-photon</td>
</tr>
<tr>
<td>dissociation, 25,57</td>
</tr>
<tr>
<td>down conversation, 1</td>
</tr>
<tr>
<td>multipole moments, 214</td>
</tr>
<tr>
<td>porphyrins, 65</td>
</tr>
<tr>
<td>processes, 31</td>
</tr>
<tr>
<td>two-photon Fock states, 1</td>
</tr>
<tr>
<td>Multiphoton photofragmentation processes, 50</td>
</tr>
<tr>
<td>Nd: YAG laser, 66</td>
</tr>
<tr>
<td>Newton diagram, 10-11</td>
</tr>
<tr>
<td>Newton's mechanics, 111</td>
</tr>
<tr>
<td>NF₃ molecule, 219</td>
</tr>
<tr>
<td>Nodal structure, 83</td>
</tr>
<tr>
<td>Non-adiabatic processes, 106</td>
</tr>
<tr>
<td>Non-adiabatic transition, 71</td>
</tr>
<tr>
<td>Non-perturbative method, 58</td>
</tr>
<tr>
<td>Nonlinear nonperturbative response, 19</td>
</tr>
<tr>
<td>Nonlocal quantum potential, 86, 87</td>
</tr>
<tr>
<td>multimode system bath dynamics, 86</td>
</tr>
<tr>
<td>Non-radiative relaxation processes, 51</td>
</tr>
<tr>
<td>NO₂ molecule, 219</td>
</tr>
<tr>
<td>Normal modes of vibration, 213</td>
</tr>
<tr>
<td>Optical</td>
</tr>
<tr>
<td>limiting devices, 65</td>
</tr>
<tr>
<td>nonlinearly, 65</td>
</tr>
</tbody>
</table>
Index

Optimal control
 experiment, 40
 theory, 40
Optimization of laser pulse, 62
Oscillator strengths, 153 250
Ozone, 219

Partial cross section, 81
Partial waves, 238, 242
Pauli blocking absorption potential, 225
Perturbation theory, 58, 110
Phase shift, 238
 s-wave & p-wave, 241, 245
Phase transitions, 105
Photoabsorption cross-section, 206
Photon-absorption process, 80
Photoassociation ionization of cold atoms, 9
Photodissociation, 25, 80
Photon emission/absorption, 265
Photoionization double, 173
Pi-pulse, 74
Plasmas, 265, 274
 cooling, 276
 diagnostics, 153
 ionizing, 265, 268
 laser produced, 249
 modeling, 265
 production, 249
 recombining, 265, 268
 spectroscopy, 279
Planetary systems, 144
Poincaré surfaces, 25
Polarization, 275
 p & s-polarization, 276
Poly-atomic molecules, 213
Poly-electron systems, 237
Population redistribution function, 262
Positronium
 autodetaching states, 237
 electron scattering, 237
 negative ion, 237
Positron molecule collision, 215
Positron wave function, 261
Potential curve crossing, 71
Potential curve method, 245
Probabilities
 density, 87
 fluid, 85
 transition, 247, 250
Pseudo-state summation technique, 32
Pulsed ion extraction technique, 21
Polyatomic molecules, 57
Q-cavities, 1
Quadratic chirping, 75
Quantum
 amplitude, 111
 computing, 1
 communication, 1
 co-ordinates, 112
 cryptography, 1
 delocalization, 108
 dressed classical mechanics, 107
 electro-dynamics cavity (QED), 1
 mechanical interference, 73
 trajectory method, 86
 tunneling, 108
Quasi energy, 60
 spectra, 60
Rabi
 cycles, 2
 oscillations, 2, 3
Radiation intensity, 260
Radiation UV, 144
Radiative forcings, 253
Radiative processes, 153
Recombination rate coefficient, 265, 268
 charge-exchange recombination, 277
Relative flow technique, 218
Relativistic
 distorted wave, 200
 effects, 205, 248
 experiments, 185
Resonance
 Botero & Greene resonance, 245
 Feshbach resonance, 242
 frequency, 62
 Ho resonance, 243
 shape resonance, 215
 transitions, 153
Resonant excitation, 283
R-Matrix
 B spline method, 156
 elements, 156
 expansion, 156
 Runge-Kutta methods, 35
 Rydberg band emissions, 144
SCF (wave function), 234
SCGS (single configuration ground state) calculations, 200
SDCI (wave function), 230, 234
wavefunctions, 231
S -D transitions, 198
SLS (Strained Layer Super Lattices), 262
Saddle point, 75
Scattering
amplitudes, 240, 198
cohherent scattering factors, 231
elastic electron scattering, 233
electron–positronium scattering, 237
probabilities, 79
X-ray scattering, 229-232
Schrödinger Equation, 240
S-matrix
formulation, 106
singularities, 105
splitting procedure, 111
Spacecraft, Earth orbiting, 144
Space time dynamics, 85
stars, 92
Spectra
emission, 248
UV fluorescence, 144
Spectroscopy
mass spectroscopy, 217
spectroradiometer, 253, 254
time of flight spectrometer, 218
UV by electron impact, 143
Spectrometer
far UV, 144
medium spectral resolution, 145
UV, 145, 148
VOIR, 145
Spin orbit energy splitting, 210
Spin rovibronic eigenstates, 50
S-S transitions, 197
Stabilization, 34
Static exchange model, 238
Stokes parameter, 199
Stress tensor, 92
Telescope, 144
Tetra tolyl porphyrins (TTP), 65
Tetra-watt laser system, 273
time-delay function, 28
Three body fragmentation, 43, 46
Time dependent quantum theory, 79
Time dependent Gauss hermite basis,
107, 108
Tokamak plasmas, 279-280
Transitions
electric dipole, 159
matrix elements, 173
Transmission, 74
Transmittance, 65
Trajectory surface hoping (TSH), 71, 72
Triplet, 50
Tunneling, 52
dynamics, 86
Two-electron transition processes, 191
UV-spectra
ionizing phase, 269
recombining phase, 270
Variational method, 107, 245
Vibrational excitation, 213
normal mode, 214
infrared mode, 214
Vibrationally close coupling approach,
214
Vibrational mode,
local, 59, 62
symmetric, 59, 62
Wavefunctions
antisymmetrised, 174
atomic, 174
continuum, 168
Hartree-Fock, 168, 171
hydrogenic, 168
Wavelength
far UV, 153
Wave packet dynamics, 74
X-ray
emission from plasmas, 273, 275
plasma diagnostics, 274
scattering cross sections, 229
scattering intensities, 232-234
total x-ray scattering, 232
X-ray line intensity, 275, 276
soft-x-ray, 275
Index

XUV emission spectra, 275-276
XUV-lasers, 273
Zeeman effect, 279, 282-283
Zhu-Nakamura theory, 72, 76