Index

A
ABCB1 polymorphisms, 811–812
Abscopal effect, 548–549
Absorption, distribution, metabolism, elimination (ADME), of drugs
description, 434
platforms, genotyping genes
AmpliChip, 447–448
DMET, 449–450
drug metabolism and transport, 451–452
Illumina, 450–451
microfluidics, 451
PHARMAchip, 448
Activator protein 1 (AP1), 335–337
Acute lymphocytic leukemia, 816–817
Acute myelogenous leukemia (AML), 379, 427
Acute promyelocytic leukemia, 818
Adenovirus nanoparticle, 724
Aflibercept and ramucimab, 598
Aging, pharmacokinetic changes associated with absorption and bioavailability, 664–665
distribution, 665
hepatic metabolism, 665–666
renal elimination, 666–667
Aldehyde dehydrogenase (ALDH), 231–232
Aldehyde oxidase (AO), 235–236
AmpliChip, 447–448
Androgen-deprivation therapy (ADT), 560–561
Androgen receptors (ARs), 6
Angiogenesis inhibitors, 487
Anthracyclines, 43–44
Antibiotics
anthracycline microbial, 44
microdialysis, 491–493
Anticancer clinical pharmacology principles
drug disposition, 141–142
interpatient variability, 155
pharmacodynamics
drug action, 143–144
models, 147–148
non-receptor-mediated drug actions, 147
receptor pharmacology and function, 143–147
pharmacokinetic–pharmacodynamic relationship, 154–155
pharmacokinetics
absorption, 148–149
distribution, 149
excretion, 150–151
metabolism, 150
parameters, 151–154
population, 154
therapeutic index, 141–142
Anticancer drugs
concentration-dependent binding, 216–217
drug formulation interference, 219–220
drug monitoring, 216
irinotecan, 279–280
irreversible binding, 218–219
metabolic interconversion, 220–221
molecular-targeting drugs, 280–281
older adults, 668, 669
oxazaphosphorine, 277–278
screening
cell-based screens vs. cell-free high-throughput screening (see Cell-based screens vs. cell-free high-throughput screening)
drug–target interactions, 36
history, 24
model organisms, 32
NCI (see National Cancer Institute (NCI) screening)
nude mice, 35
tamoxifen and aromatase inhibitors, 278
tegafur, 276–277
thalidomide, 279
vinca alkaloids, 278–279
Antigen cascade, 555
Antineoplastic dosage regimens, 175
Apoptosis, 13–14
inhibitor proteins, 14
pathways, 614–615
Arterial input function, 735
Assay detection methods
colorimetry/luminescence, 49–50
fluorescence, 49
image-based screens, 50
radioisotopes, 49
Astrocytomas, 520–521
ATP-binding cassette (ABC) transporters, 375, 627
ABCG2, 386–387
anticancer agent specificities, 378
drug resistance mechanisms, 373–374
human ABC transporters, 376–377
MRP family, 385, 386
multidrug transporters, 375
P-glycoprotein
drug levels in mice, 379
dual effect, 388
first-generation inhibitors, 380–382
multidrug resistance, 379
physiologic role, 375–378
second-generation inhibitors, 380–383
substrates and inhibitors, 380
third-generation inhibitors, 383–384
single nucleotide polymorphisms, 389–390
surrogate assays, 384

B
Barcode chip measuring miRNA, 724
B-cell-directed therapy
alemtuzumab, 611–612
ofatumumab, 609–611
radiolabeled isotope, 612
rituximab
dosage and administration, 609
immunogenicity and drug–drug interaction, 609
pharmacokinetics and pharmacodynamics, 607–608
Bcl-2 family, 14
Bevacizumab, 75
dose and administration, 597
drug–drug interaction, 598
immunogenicity, 598
pediatric population, 598
pharmacokinetics and pharmacodynamics, 596–597
Biliary excretion, 360
Bioanalytical methods
accuracy and precision
concept of total error, 129–130
control samples, 129
definition, 129
fixed acceptance criterion, 131
imprecision/random error component, 130
total error criterion, 130
calibration
back-calculated standards, 122
correlation coefficient, 122
F-test, 123
residual error, linear model, 121
schematic representation, 121–122
detectability
blank noise, 127–128
coefficient of variation, 129
graphical representation, 128
lower limit of detection, 128–129
signal-to-noise ratios, 127
incurred sample reanalysis, 137–138
method development
calibration, 120–121
chromatographic methods, 120
instrument response variability, 119
relative standard deviations, 120
selective recovery, 119
method transfers and comparisons, 135–137
quality control
acceptance criterion, 134
control chart concept, 133
decision-making, 134
FDA guidance, 135
random and systematic error, 135
Westgard’s rules, 133
selectivity
atmospheric pressure ionization, 124
interferences, 123
phospholipids, 125
post-column infusion hardware setup, 125
predose blank matrix approach, 124
stable isotope-labeled internal standards, 126
stability testing, 131–133
Biomarkers, 104–105
cancer chemotherapy, 204–205
development, 805
identification, 203
imaging technique
nonspecific tumor, 740–741
radiolabeling chemotherapeutic agents, 742–743
targeting specific tumor receptors, 742
oncology, 202–203
response variables, 751
validation, 203–204
Blood–brain barrier (BBB)
characteristics, 524–525
systemic drug administration, 531
Blood–CSF barrier, 458
Blood pool input function
arterial input function, 735
image-derived input functions, 736–737
population-based input functions, 736
venous input function, 735–736
Body surface area (BSA), 632–633
blood volume, 73
drug clearance, 73
drug disposition, 74
history, dose calculation, 70
Bortezomib, 281
Brain metastases, 522
Brain tumors. See Central Nervous System malignancies
Breast cancer, 15
BCRP, 386–387, 525–526
drug disposition, 811–812
estrogen receptor and progesterone receptor, 810–811
Index

human epidermal growth factor receptor 2 (HER2) gene expression signature, 809
HER2 positivity, 807–808
mamma print, 809
oncotype Dx, 809
polymorphisms, 808
prognosis, 807
trastuzumab ado-trastuzumab emtansine, pertuzumab and lapatinib, 808–809
5,10-methylenetetrahydrofolate reductase, 317
targets and drugs, 807–811
thymidylate synthase, 305
vascular endothelial growth factor angiogenesis inhibitors, 810
prognosis, 809–810
BSA. See Body surface area (BSA)
Busulfan
intra-thecal chemotherapy, 469–470
pediatric patients, 185, 189

C
Camptothecin, 43
Cancer chemotherapy biomarkers, 204–205
Candidate gene approach, 444, 446
Capecitabine, 813
Carbon nanotubes, 718
Carbonyl reductase, 240
Carboplatin
exposure–response relationship, 754
pharmacokinetics, 510
Carcinoembryonic antigen (CEA), 554
Cell-based molecularly targeted assays
adenosine triphosphate binding cassette family, 54
botryllamides, 55–56
fumitremorgin C, 55
radiolabeled prazosin, 56
Cell-based screens vs. cell-free high-throughput screening
biochemical screening assays, 29–31
cellular screens, 28–29
target and cell screens combination, 31
Central nervous system (CNS) malignancies
brain tumors types, 520–522
drug delivery
convection-enhanced delivery, 532–533
evaluation methods, 533
influencing factors, in brain tumors, 528
intra-thecal therapy, 531–532
intratumoral and intracavitary therapy, 532
systemic administration, 528–531
glutathione, 526
multidrug resistance-associated proteins
breast cancer resistance protein, 525–526
OATPs, 526
O6-methylguanine-DNA methyltransferase, 526–527
patient care issues in
blood–brain barrier characteristics, 524–525
control of brain edema, 523
control of seizures, 523
P-glycoprotein, 525
topoisoeromase II, 527
Cetuximab, 75–76
BRAF, 267
colon cancer, 812
dosage and administration, 601
drug–drug interaction and immunogenicity, 601
KRAS, 266–267
pediatric and adolescent patients, 601
pharmacokinetics and pharmacodynamics, 599–601
Chinese hamster ovary (CHO) cells, 334
Chromatin moduilation, 7–8
Chronic myelogenous leukemia, 817–818
Circulating tumor cells (CTCs), 204
Cisplatin, 213, 218, 487–488
CNS malignancies, 530
isolated lung perfusion
clinical studies, 507–508
pharmacokinetics, 506–507
lung cancer, 816
resistance, 344–345
Clinical pharmacogenetics
acute lymphocytic leukemia, 816–817
acute promyelocytic leukemia, 818
biomarker development, 805
breast cancer
drug disposition, 811–812
targets and drugs, 807–811
challenges in translation, 804
chronic myelogenous leukemia, 817–818
colon cancer
drug disposition, 813–814
targets and drugs, 812–813
defining key therapeutic targets, 804
early predictors identification, 805
economic opportunities and challenges, 806
lung cancer
drug disposition, 816
targets and drugs, 814–816
melanoma
BRAF mutations, 818
vemurafene, 819
representative study subjects, 805
robustness and analytical validation, 806
strong partnerships, 806
validation studies, 805
Clinical trial designs
analogs, 799–800
approval, 787, 793
clinical benefit, 797–799
indications and primary parameter for approval, 788–792
patients as controls, 794–795
personalized medicine approach, 800
preclinical data package, 787
puncture-free survival, 799
randomized discontinuation, 796–797
randomized phase II trial, 795–796
sample size, 787
select agents, 786
survival, 787
well-controlled and randomized trials, 787
placebo vs. targeted agent, 766–767
standard therapy vs. targeted agent, 767–768

targeted therapy
 EML4-ALK translocation, 773–776
 imatinib in CML and GIST, 771–773
 vemurafenib, advanced melanoma, 773

Drug disposition
absorption and clearance, 70
aminoglycosides, 72
pharmacokinetic correlation, 72
schematic representation, 70–71

Drug–drug interactions (DDI), 351–352, 593–594
bevacizumab, 598
cetuximab, 601
drug absorption, 352–353
drug distribution, 354
drug metabolism
 induction, 359
 inhibition of, 355–358
 reduced expression, 358
excretion
 biliary, 360
 renal, 359–360
investigation of, 360–361
oral delivery, 363–364
panitumumab, 603
prediction and evaluation
 clinical setting, 363
 clinical studies, 362–363
 historical data, 361
 in silico and preclinical studies, 362
 in vitro experiments, 361–362
rituximab, 609
systemic administration, 364
trastuzumab, 605

Drug formulations
drug delivery to tumors, 690–691
drug penetration into solid tumors, 691
nanoscale drug delivery systems
 enhanced permeability and retention, 691, 692
 liposomes, 692–695
 polymer–anticancer drug conjugates, 695–698
tumor-targeted nanomedicines, 690

Drug metabolism
drug inactivation process, 230
phase I enzymes, 629–630
phase II enzymes, 630–631
phase II reactions
 glucuronidation, 242–243
 glutathione S-transferases, 243–244
 N-acetyltransferase, 245
sulfation, 243
phase I reactions
 aldehyde dehydrogenase, 231–232
 aldehyde oxidase, 235–236
 cytidine deaminase, 242
 dihydropyrimidine dehydrogenase, 236–238
 esterases, 241–242
 flavin-containing monooxygenases, 232–233
 myeloperoxidase, 234–235
reductases, 240–241
thiopurine methyltransferase, 238–240
xanthine oxidoreductase, 232–235
prodrugs, 230
toxicity, 229–230

Drug-metabolizing enzymes and transporters (DMET) platform, 449–450

Drug–protein interactions, 210–211

E
Ecteinascidin-743, 44–46
EML4-ALK translocation, 773–776
Enhanced permeability and retention, 691, 692
Enzyme-inducing anticonvulsants (EIAs), 642
Enzyme-inducing antiepileptic drugs (EIAED), 523
Enzyme inhibitors, 146
Epidermal growth factor receptor (EGFR)
cetuximab, 306–307
erlotinib, 265–266
gefitinib-related efficacy, 307–308
gefitinib-related toxicity, 308
gene and protein expression level, 306
ligand binding, 305
lung cancer, 815
pathway
cetuximab, 599–601
panitumumab, 602–604
pertuzumab, 606
trastuzumab, 604–606
prognostic value, 308–309
Epipodophyllotoxins, 216–217
Equilibrative nucleoside transporter (ENT)
 protein structure–function, 417
 transporters and substrate selectivity, 426–428
 transport mechanisms, 415
Erlotinib, 75, 280, 644
 lung cancer, 816
 pediatric cancer, 644
Esophageal cancer, 304–305
Esterases, 241–242
Estrogen receptors (ERs), 6
Etoposide, 282–284, 638–639
Everolimus, 754–755
Exploratory investigational new drug (IND)
 requirements
 drug manufacture and animal toxicology, 93
 investigational agents, 93–94
 limited human exposure, 93
 preclinical toxicology study, 92
 quality control procedure, 94
Exposure–response relationship (ER), of drug
dose–toxicity relationship, 748–749
exposure variables, 750
guidance on, 756–757
in labeling, 757–759
measures, of exposure and response, 749–750
in oncology drug development
carboplatin, 754
doctetaxel/taxotere, 754
Exposure–response relationship (ER), of drug (cont.)
everolimus, 754–755
imatinib, 753–754
ipilimumab, 755–756
vandetanib, 754
zoledronic acid, 752–753
response variables
biomarkers, 751
clinical endpoints, 752
surrogate markers, 751–752
target-based therapy, 748

F
Facilitated diffusion, 524
18F-AH111585 ([18F]fluucilatide), 742
18F-Fluorodeoxyglucose ([18F-FDG), 740–741
18F-Fluoropaclitaxel, 742–743
First-generation Pgp inhibitors, 380–382
First-pass effect, 353
Flat dose, 79–80
Flavin-containing monooxygenases (FMOs), 232–233
Fluorescence in situ hybridization (FISH), 404, 407
Fluorouracil
 dihydropyrimidine dehydrogenase, 262
 methylenetetrahydrofolate, 261–262
 microdialysis, 490
 thymidylate synthase, 260–261
Fullerenes, 719

G
Gastric cancer
 5, 10-methylenetetrahydrofolate reductase, 317
 thymidylate synthase, 303–304
Gastric emptying time, 627
Gastrointestinal transit time, 627
Gefitinib, 644
Gemcitabine
 intrathecal chemotherapy, 470
 isolated lung perfusion, 508–510
 lung cancer, 816
Genetic polymorphisms
 dihydropyrimidine dehydrogenase, 317–319
 drug targets and metabolism, 290–291
 epidermal growth factor receptor
cetuximab, 306–307
gefitinib-related efficacy, 307–308
gefitinib-related toxicity, 308
 gene and protein expression level, 306
 ligand binding, 305
 prognostic value, 308–309
human epidermal growth factor receptor 2, 312–313
 5,10-methylenetetrahydrofolate reductase
 breast cancer, 317
 chemosensitivity, 314
 colorectal cancer, 315–316
 folate metabolism, 313
 gastric cancer, 317
 rectal cancer, 316
thymidylate synthase, 290, 292
 breast cancer, 305
 colon cancer (see Colon cancer)
esophageal cancer, 304–305
gastric cancer, 303–304
 rectal cancer, 302–303
 uridine diphosphate glucuronosyltransferase 1A1
 irinotecan-related efficacy, 321, 323
 irinotecan-related toxicity, 319–322
 variant allele, 319
vascular endothelial growth factor
 endothelial cell-independent pathway, 310
 predictive value, 310–311
 prognostic value, 311–312
Genome-wide association study (GWAS), 446–447
Genotype-directed phase III trials
 ethical implications, 777–778
 methodologic implications, 776–777
Genotyping platforms, pharmacogenetics
 AmpliChip, 447–448
 DMET, 449–450
 drug metabolism and transport, 451–452
 Illumina, 450–451
 microfluidics, 451
 PHARMAchip, 448
Germline vs. somatic DNA, 257–258
Glioblastoma multiforme, 520, 576
Glucocorticoid receptors (GRs), 6
Glutathione, 526
Glutathione S-transferases (GSTs), 243–244, 631
GoldenGate technology, 450
Graphical analysis techniques
 Logan graphical analysis, 738
 Patlak graphical analysis method, 738–739
 reference regions, 739–740

H
Hairy cell leukemia (HCL), 572, 574–575
Heat-shock proteins/chaperones, 15
Hedgehog ligand, 344
Hepatic dysfunction
 CALGB/NCI classification, 680
 Child–Pugh classification, 680
 clinical trials, 682–684
 etiology and laboratory evaluation, 675–676
 overview, 674
 stratification by severity, 679–681
 trial design/conduct, 678–679
Hepatic metabolism, older adult, 665–666
High-performance liquid chromatography (HPLC), 111–114
Histone deacetylases (HDAC), 548
Hollow fiber assay, 25, 33
Hormone receptors, 15–16
Hormone therapy, 560–561
Human epidermal growth factor receptor 2 (HER2)
 breast cancer
 gene expression signature, 809
 HER2 positivity, 807–808
mammary print, 809
oncotype Dx, 809
polymorphisms, 808
prognosis, 807
trastuzumab ado-trastuzumab emtansine, pertuzumab and lapatinib, 808–809
polymorphisms, 312–313
Hybridoma technique, 587
Hydrophilic N-(2-hydroxypropyl) methacrylamide (HPMA), 697–698
Hypoxia-inducible factor 1 alpha (HIF-1alpha), 718–719

I
Imaging in drug development
biomarker
nonspecific tumor, 740–741
radiolabeling chemotherapeutic agents, 742–743
targeting specific tumor receptors, 742
positron emission tomography
blood pool input function, 735–737
compartmental modeling, 733–735
graphical analysis techniques, 738–740
instrumentation, 732
tissue TAC, 737
Imatinib, 74–75, 284
breakpoint cluster region-ABL, 268
chronic myelogenous leukemia, 817
C-kit, 269
in CML and GIST, 771–773
exposure–response relationship, 753–754
pediatric cancer, 643–644
Immunogenicity, 592–593
bevacizumab, 598
cetuximab, 601
ofatumumab, 611
panitumumab, 603
rituximab, 609
trastuzumab, 606
Inhalation-related pulmonary injuries, 500
Interleukin-2
isolated lung perfusion, 514
clinical studies, 514
pharmacokinetics, 513–514
receptor alpha, 572
Intralumbar methotrexate, 465–466
Intrathecal chemotherapy
busulfan, 469–470
cytarabine liposome, 467–468
cytosine arabinoside, 466–467
drug delivery, 461–464
factors affecting drug exposure and distribution
age of patient, 464
drug distribution alterations, 465
patient position, 465
gemcitabine, 470
mafosfamide, 469
methotrexate
intralumbar, 465–466
toxicities, 466
monoclonal antibodies
rituximab, 470
trastuzumab, 470–471
radioimmunotherapies, 471
rationale, 458–460
systemic chemotherapy, 460–461
thiotepa, 467
topotecan, 468
In vitro calibration, microdialysis, 481
In vivo calibration, microdialysis, 481–482
Ionizing radiation
abscopal effect, 548–549
fractionation vs. single dose, 542
oxygen and cell cycle effects, 542–543
radiation sensitizer vs. radiation modifier
clinical considerations, 547–548
histone deacetylases, 548
in vitro models, 544–546
in vivo models, 546–547
Ipinlimumab, 755–756
Irinotecan, 279–280, 813
breast cancer, 811–812
pediatric cancer, 641–642
Irinotecan and uridine diphosphate glucuronosyltransferase 1A1, 259–260
Isolated lung perfusion (ILuP)
clinical studies
doxorubicin, 505–506
melphalan, 502–503
paclitaxel, 511–513
TNF-α, 513
nitrogen mustard and melphalan preclinical studies, 500–503
pharmacokinetics
doxorubicin, 504–505
gemcitabine, 508–510
melphalan, 500–502
paclitaxel, 511
TNF-α, 513

K
Ketoconazole, 282–283, 357
KRAS, 266–267, 812

L
Lapatinib, 280, 808–809
Leptomeningeal metastases, 522
Lipid nanoparticles, 717
Liposomal anticancer agents, 487–488
Liposomes
chemotherapy/photodynamic therapy, 713–714
clinical development, 694
conventional liposomal carriers, 693
drug formulations, 694
liposomal formulation, 694–695
Liquid chromatography coupled with mass spectrometric detector (LC-MS-MS), 110, 112–114
Liver impairment. See Hepatic dysfunction
Local drug administration, CNS malignancies
convection-enhanced delivery, 532–533
intratumoral and intracavitary therapy, 532
Logan graphical analysis, 738
Lumbar puncture, 461
Lung cancer
drug disposition, 816
targets and drugs, 814–816
vaccines, 558–559
Lymphomas, CNS, 522
Lymphotropic SPIOs, 723

M
Mafosfamide, 468–469
Magnetic resonance imaging, 711–712
Maximum tolerated dose (MTD), 100–104
MDV3100, 9
Medulloblastoma, 521
Melanoma
BRAF mutations, 818
vaccines, 559–560
vemurafenib, 819
Melphalan
clinical studies, 502–503
pharmacokinetics, 500–502
6-Mercaptopurine and thiopurine-S-
methyltransferase, 260
Metabolite pharmacokinetics, 170
Metformin, 16, 411
Methodology for the development of innovative cancer
therapies, 104–105
Methotrexate, 262–263
intralumbar, 465
microdialysis, 489–491
pediatric cancer, 634–635
toxicities, 465–466
5,10-Methylenetetrahydrofolate reductase (MTHFR)
polymorphisms
breast cancer, 317
chemosensitivity, 314
colorectal cancer, 315–316
folate metabolism, 313
gastric cancer, 317
rectal cancer, 316
Microdialysis
advantages, 479–480
calibration
in vitro, 481
in vivo, 482–483
clinical studies
tissue drug distribution, 489–490
tumor drug distribution, 490–491
drug disposition in tumors and tissue, 479
online/real-time analysis, 483–484
pharmacodynamic studies
antibiotics, 491–493
brain neurochemistry, 493–494
liver transplant, 494
preclinical studies
angiogenesis inhibitors, 487
liposomal anticancer agents, 487–488
PK brain studies in nonhuman primates, 488–489
tumor and tissue distribution, 484–487
principles, 480
solid tumor drug deliver issues, 478
study design, 481–483
system components and setup, 480–481
Microenvironments, 786
Microfluidics, 451
Microtubules, 5, 8–9
Mitotic kinases, 13
Model-based drug development (MBDD), 177–178
Molecular inversion probe (MIP) technology, 449
Molecularly targeted anticancer drugs, 103–104
Molecularly targeted biochemical assays, RNase H
botryllamides, 57–58
bovine serum albumin, 56
RNA cleaving activity, 56
selectivity testing, 57
Molecular targets
activator protein-1 family, 11
anticancer drug development, 1–2
apoptosis, 13–14
chemoprevention
cyclooxygenase-2, 16
hormone receptors, 15
metformin, 16
retinoic acid receptors, 15–16
chromatin modulation, 7–8
c-Myc, 11
cyttoplasmic kinases, 12
cyttoplasmic signaling proteins, 7
DNA
damage, 8
dihydrofolate reductase and thymidylate
synthase, 4–5
nucleotides, 3–4
purine and pyrimidine incorporation, 4
topoisomerase I and II, 5
epigenetic modifications, 13
growth factor receptor signaling and tyrosine kinase
inhibition, 9
heat-shock proteins/chaperones, 15
JAK/STAT pathway, 11
MDV3100, 9
microtubules, 5, 8–9
mitotic kinases, 13
NF-κB, 11
nuclear hormone receptors, 5–6
PI3K/Akt/mTOR, 10
protein folding and degradation, 8
receptor tyrosine kinases, 7
tumor blood vessels, 9–10
Monoclonal antibodies
anti-angiogenesis
aflibercept and ramucimab, 598
bevacizumab, 596–598
Index

apoptosis pathway, 614–615
B-cell-directed therapy
 alemtuzumab, 611–612
 ofatumumab, 609–611
 radiolabeled isotope, 612
 rituximab, 607–609
dosing regimens, 595
EGFR pathway
 cetuximab, 599–602
 panitumumab, 602–604
 pertuzumab, 606
 trastuzumab, 604–606
engineering, 587
IgG structure, 586–587
immunomodulatory therapy, 613
insulin-like growth factor pathway, 615
mechanism of action, 587–588
Met/HGF pathway, 614
pharmacodynamics, 588, 594
pharmacokinetics, 588
 absorption, 589
 clearance, 589–591
 distribution, 589
 drug–drug interactions, 593–594
 immunogenicity, 592–593
 with pharmacodynamics, 594–595
rituximab, 470
trastuzumab, 470–471
mTOR pathway, 10
Mucin 1, 554
Multidrug resistance-associated proteins (MRPs)
 breast cancer resistance protein, 525–526
 OATPs, 526
Myeloid zinc finger 1 (MZF1), 338–339
Myeloperoxidase (MPO), 234–235

N
N-acetyltransferase (NAT), 245
Nanoscale drug delivery systems
 enhanced permeability and retention, 691, 692
 liposomes, 692–695
 polymer–anticancer drug conjugates, 695–698
 tumor-targeted, 690
Nanoscale in cancer, 704
Nanotechnology
 advantages, 725–726
 cancer cell-specific interactions, 705–706
 carbon nanotubes, 718
 challenges, 726
 combined therapeutics and diagnostics, 725
 definition and scope, 704
 dendrimers, 717–718
 detection and diagnosis, 723–724
 enhanced permeability and retention effect, 704–705
 fullerenes, 719
 image-guided therapy, 721
 imaging techniques
 CT, X-ray, PET and ultrasound, 712
 magnetic resonance imaging, 711–712
 optical imaging, 710–711
 limitations, 726
 lipid nanoparticles, 717
 liposomes, 713–714
 nanogel, 715–717
 nanoscale in cancer, 704
 nucleic acid delivery, 720–721
 optical imaging, 710–711
 polymer conjugates, 714–715
 polymeric micelles, 715
 safety considerations, 722–723
 screening and detection, 707–709
 thermal ablation, 719–720
 treatment
 adenovirus nanoparticle, 724
 siRNA delivery, 724
 targeted polymeric nanoparticles, 725
National Cancer Institute (NCI) screening
 developmental therapeutics program, 25, 27
 hollow fiber assay, 33
 human xenografts, 25
 in vivo filter system, 25
 predictive value of colony-forming assay, 33–35
Natural disease progression modeling, 181
Natural product screening
 assay detection methods, 49–50
 cancer drugs, 41–46
 cell-based molecularly targeted assays, 54–56
 history, 40–41
 molecularly targeted biochemical assays, 56–58
 phenotypic screen, 52–54
 practical considerations
 high-vs. low-throughput screening, 57, 59
 hits and hit rate, 59–60
 miniaturization, 57
 nuisance compounds, 61–63
 optimization, 60–61
 robustness, 60
 selection of control compounds, 59
 throughput screens, 57
 products research, 46–47
 NCI 60 cell line, 25–26, 28, 31
Nonlinear pharmacokinetics, 168–170
NQO1, 240–241
Nucleic acid delivery
 pDNA, 721
 siRNA, 720–721

O
OATPs. See Organic anion-transporting polypeptides (OATPs)
Ofatumumab
 dosage and administration, 610
 immunogenicity, 611
 pharmacokinetics and pharmacodynamics, 609–610
Older adult pharmacokinetics
 chemotherapeutic agents, 667–670
 definition, 662
 pharmacokinetic changes associated with aging
 absorption and bioavailability, 664–665
 distribution, 665
Older adult pharmacokinetics (cont.)
hepatic metabolism, 665–666
renal elimination, 666–667
pharmacokinetic studies, 663–664
Oligodendrogliomas, 521
O^6^-methylguanine-DNA methyltransferase (MGMT), 526–527
Oncology biomarkers, 202–203
Online/real-time analysis, microdialysis, 483–484
Organ dysfunction
adjusting to future, 685–686
barriers to clinical trials
commercial and regulatory, 677
practical barriers, 677–678
etiology and laboratory evaluation
hepatobiliary dysfunction, 675–676
renal dysfunction, 676–677
guidance for industry, 685
hepatic and renal dysfunction trials, 682–684
liver impairment, 674
overcoming barriers
cooperative groups and the national cancer institute, 678, 681
FDA initiatives, 681
stratification by severity, 679–681
trial design/conduct, 678–679
renal dysfunction, 674–675
Organic anion-transporting polypeptides (OATPs), 526
protein structure–function, 415–416
transporters and substrate selectivity, 418–420
transport mechanisms, 413–414
Organic cation/anion/zwitterion transporter (OCT/OAT) transporters and substrate selectivity, 421–424
transport mechanisms, 414
Osteonecrosis of jaw (ONJ), 446
Oxazaphosphorines (cyclophosphamide and ifosfamide), 277–278, 636

P
Paclitaxel, 42, 283, 719
breast cancer, 811
isolated lung perfusion
clinical studies, 511–513
pharmacokinetics, 511
Panitumumab
BRAF, 267
colon cancer, 812
dose and administration, 603
drug–drug interaction, 603
immunogenicity, 603
KRAS, 266–267
pharmacokinetics and pharmacodynamics, 602–603
special populations, 603–604
Patlak graphical analysis method, 738–739
Pediatric cancer pharmacokinetics
anticancer drugs dosing methods, 632–633
drug disposition
absorption, 626–628
distribution, 628–629
metabolism, 629–631
renal excretion, 631–632
pharmacokinetics of anticancer agents
etoposide, 638–639
gefitinib and erlotinib, 644
imatinib, 643–644
irinotecan, 641–642
methotrexate, 634–635
oxazaphosphorines (cyclophosphamide and ifosfamide), 636
temozolomide, 642–643
topotecan, 639–640
vincreistine, 637–638
practical issues
blood collection, 633–634
population pharmacokinetics and limited sampling, 634
Pemetrexed, 816
Pertuzumab, 808
P-glycoprotein (Pgp), 525
drug levels in mice, 379
dual effect, 388
inhibitors
first-generation, 380–382
second-generation, 380–383
structures, 383
third-generation, 383–384
multidrug resistance, 379
physiologic role of, 375–378
substrates and inhibitors, 380
PHARMAchip, 448
Pharmacodynamics, 588, 594
anticancer drug, 194
bias and precision evaluation, 197
biomarkers
cancer chemotherapy, 204–205
identification, 203
oncology, 202–203
validation, 203–204
classical measures
annexin V, 201
cytotoxic chemotherapeutic agents, 200–201
investigational agents, 201
pathophysiologic factors, 202
toxicity, 200
clinical trial design, 198–200
data interpretation, 206
drug action, 143–144
individual pharmacodynamic models
Hill equation, 196
Kaplan–Meier survival analysis, 195–196
receptor interaction theory, 196–197
segregation analysis, 195–196
Wilcoxon Rank-Sum analysis, 195
microdialysis
antibiotics, 491–493
brain neurochemistry, 493–494
liver transplant, 494
model implementation and assessment, 205
models, 147–148
non-receptor-mediated drug actions, 147
plasma drug concentrations, 193
population models, 200
receptor pharmacology and function
agonsists, 144–145
antagonists, 146
endogenous ligands, 143
enzyme inhibition, 146
partial agonists, 144, 147
sampling and measurement, 198
Pharmacogenetics, 443–444
candidate gene approach, 444, 446
genome-wide method, 446
genotyping platforms, 447–452
pathway-based method, 446
relationships, 445
Pharmacogenomics
cetuximab/panitumumab
BRAF, 267
KRAS, 266–267
crizotinib and anaplastic lymphoma kinase, 265
drug development, 256–257
erlotinib and epidermal growth factor receptor, 265–266
fluorouracil
dihydropyrimidine dehydrogenase, 262
methylene tetrahydrofolate, 261–262
thymidylate synthase, 260–261
imatinib
breakpoint cluster region-ABL, 268
C-kit, 269
irinotecan and uridine diphosphate
glucuronosyltransferase 1A1, 259–260
6-mercaptopurine and thiopurine-S-
methyltransferase, 260
methotrexate and methenyltetrahydrofolate, 262–263
platinums
glutathione-S-transferase, 263–264
nucleotide excision repair enzymes, 264
somatic vs. germline DNA, 257–258
tamoxifen and cytochrome P450 (CYP) 2D6, 258–259
toxicity, 255
trastuzumab and human epidermal growth factor
receptor type 2, 267–268
vemurafenib and BRAF V600E, 264–265
Pharmacokinetics, 588
absorption, 148–149, 589
clearance, 589–591
compartamental analysis
drug plasma concentration–time profile, 162–163
Laplace transforms, 163
model assessment, 166–167
parameter estimation, 164–166
single-dose intravenous bolus injection, 163
two-compartment model, 163–164
distribution, 149, 589
drug–drug interactions, 593–594
excretion, 150–151
immunogenicity, 592–593
metabolism, 150
metabolite kinetics, 170
noncompartamental analysis
clearance, 161
estimation of area under zero moment curve, 160–161
mean residence time, 161
moments of random variable, 160
multiple dosing, 162
oral bioavailability, 162
terminal half-life, 161–162
nonlinear, 168–170
parameters
clearance, 151–152
elimination half-life, 153
noncompartamental modeling, 153
nonlinear “dose-dependent,” 153–154
plasma drug concentration–time curves, 149, 151
volume of distribution, 151–152
with pharmacodynamics, 594–595
population, 154
sampling strategies, 167–168
SLCO variants, 408
Pharmacometrics
antineoplastic dosage regimens, 175
applications, 174–175
biomarkers and clinical outcomes, 180–181
busulfan, pediatric patients, 185, 189
conceptual framework
clearance, 183
intraindividual variability, 182
nonlinear mixed-effect modeling, 182
population parameters, 181
residual error, 183
data sampling, 178
degarelix, prostate cancer, 185
disease progression model, 189–190
drug development process, 185–188
model-based drug development, 177–178
model qualification, 184–185
natural disease progression model, 181
pediatrics, 177
placebo effect, 181
population analysis techniques, 183–184
prognostic factors, 176–177
quantitative disease–drug–trial models, 176
trial design, 175–176, 179
Phase 0 trials
ABT-888, 95–96
clinical trials, 95
drug suitability
first-in-human trial, 91–92
pharmacokinetic assay, 91
phase 0/phase I decision chart, 92–93
putative mechanism of action, 92
therapeutic index, 92
exploratory investigational new drug requirements
drug manufacture and animal toxicology, 93
investigational agents, 93–94
Phase 0 trials (cont.)
limited human exposure, 93
preclinical toxicology study, 92
quality control procedure, 94
imaging studies, 94–95
pharmacokinetic and pharmacodynamic endpoints, 91
vs. phase I clinical trials, 90
safety and toxicity, 89

Phase I trials
biomarkers, 104
development of innovative cancer therapies task force, 104–105
dose escalation, 101–102
endpoints, 102
limitations, 103
molecularly targeted anticancer drugs, 103–104
patient selection, 100
schedule selection, 101
starting dose selection, 101

Phase III trials, 764–765, 776–778
Phenotypic screen, NCI 60
anticancer agents, 53
human tumor cell lines, 51
natural product isolation, 53–54
Pearson correlation coefficient, 52
V-ATPase inhibitors, 52–53

Photodynamic therapy, 713–719
Placebo effect, 181

Platinums
glutathione-S-transferase, 263–264
nucleotide excision repair enzymes, 264
Podophyllotoxin, 42–43
Polymer–anticancer drug conjugates, 695–698
Polymer conjugates, 714–715
Polymeric micelles, 715

Positron emission tomography
blood pool input function
arterial input function, 735
image-derived input functions, 736–737
population-based input functions, 736
venous input function, 735–736
compartmental modeling, 733–735
graphical analysis techniques
Logan graphical analysis, 738
Patlak graphical analysis method, 738–739
reference regions, 739–740
instrumentation, 732
tissue TAC, 737

Poxviral vectors, 555–556

Protein binding
anticancer drugs
concentration-dependent binding, 216–217
drug formulation interference, 219–220
drug monitoring, 216
irreversible binding, 218–219
metabolic interconversion, 220–221
capillary electrophoresis, 212
composition of human blood, 214–215
diffusion equilibria, 210
disposition factor, 213–214
drug–protein interactions, 210–211
equilibrium dialysis, 212
human serum albumin, 214
hyperbilirubinemia, 215
microdialysis, 213
plasma protein fractions, 214
protein–ligand interactions, 211–212
separation methods, 212
ultrafiltration, 212
unbound drug concentration, 221
Pulmonary metastases, 499–500. See also Isolated lung perfusion (ILuP)

Q
Quality control
acceptance criterion, 134
control chart concept, 133
decision-making, 134
FDA guidance, 135
random and systematic error, 135
Westgard’s rules, 133

Quantitative analytical methods
analytical assays, 108
clinical, pharmacological and chemical considerations
availability of reference standards, 108
drug/compounds evaluation, 108
matrices evaluation, 108–109
processing techniques, 109–110
sample storage, 110
sample volume, 110

method development
chromatography, 113–114
detection, 113
graphical representation, 110–111
instrumentation, 110–112
internal standard selection, 112–113
pre-validation studies and method revision, 115
sample preparation, 114–115

R
Radiation sensitizer, 544
clinical considerations, 547–548
description, 543
in vitro models, 544–546
in vivo models, 546–547
novel radiation modifiers, 548
Radiation therapy, 541, 560. See also Ionizing radiation
Radioimmunotherapies, 471
Radiolabeling chemotherapeutic agents, 742–743
Randomized phase II trial, 795–796
Receptor-mediated endocytosis, 524
Receptors
agonists, 144–145
antagonists, 146
endogenous ligands, 143
enzyme inhibition, 146
partial agonists, 144, 147
Recombinant immunotoxins
 anti-CD22, 575–576
 BL22
 phase II testing, 574–575
 phase I testing, 574
 CD22, 572–575
 cell death mechanisms, 570
denileukin diftitox, 571
Erb-38, 576
interleukin-2 receptor alpha, 572
LMB-2 activity, 572
mesothelin, 576–577
production, 571
protein toxins, 569–570
Renal dysfunction
 clinical trials, 682–684
 etiology and laboratory evaluation, 676–677
 overview, 674–675
 trial design/conduct, 680–681
Renal excretion, 359–360
infants, 631–632
older adult, 666–667
Retinoic acid receptors, 6, 15–16
Retrodialysis calibration method, 482
Rituximab, 75–76
S
 Second-generation Pgp inhibitors, 380–383
 Serum creatinine (SCr), 631
Signaling pathways
 activator protein-1 family, 11
 c-MYC, 11
 NF-kB, 11
 PI3K/Akt/mTOR, 10
 Ras–Raf–MEK–ERK, 12
 SRC, 12
Sipuleucel-T, 557
siRNA delivery, 724
SN-38, 641
Solute carriers (SLC)
 gene organization, 404–407
 nomenclature
 SLC29, 404
 SLC22 and SLC28, 403
 SLCO, 403
 polymorphisms
 SLCO variants, 408–411
 SLC22 variants, 411–412
 SLC28/29 variants, 412–413
 protein structure–function (see Protein structure–function)
 transporters and substrate selectivity
 CNT1 and CNT2, 425
 CNT3, 425–426
 ENT1, 426–427
 ENT2 and ENT3, 427
 ENT4, 428
 OAT1 and OAT2, 423
OAT3 and OAT4, 424
OATP1A2, 418–419
OATP1B1, 419
OATP1B3, 420
OATP2B1, 420
OCT2 and OCT3, 422–423
 transport mechanisms
 CNT, 415
 ENT, 415
 OATP, 413–414
 OCT/OAT, 414
Somatic vs. germline DNA, 257–258
Starting dose
 body size
cytotoxic drug clearance, 73–74
 measures and obesity, 76–77
targeted therapies, 74–76
cytotoxic drugs, 79
dose grid development, 82
drug disposition
 absorption and clearance, 70
 aminoglycosides, 72
 pharmacokinetic correlation, 72
 schematic representation, 70–71
 history of BSA, 70
 interindividual variability, 70
 selection, 101
 significance of wrong dose
 antitumor effect, 77
 imatinib, 79
 monoclonal antibodies, 78
 pharmacokinetic parameters, 78
 phase I study, 77–78
 sunitinib, 79
 toxicity, 77
tamoxifen, 81
 targeted agents
 flat dose, 79–80
 therapeutic drug monitoring, 80–81
 Suicide inhibition, 355–356
 Sunitinib, 74
Surrogate markers, 751–752
Systemic drug administration, CNS malignancies
 biochemical disruption, 531
 high-dose chemotherapy, 529–530
 high-dose methotrexate, 530
 hyperosmolar disruption of, 531
 intra-arterial administration of therapy, 530
 intrathecal therapy, 531–532
temozolomide, 529
Tamoxifen, 810
 anticancer drugs, 278
 and aromatase inhibitors, 278
 breast cancer, 811–812
 and cytochrome P450 (CYP) 2D6, 258–259
 pharmacogenomics, 258–259
Targeted polymeric nanoparticles, 725
Targeted therapy, drug development
EML4-ALK translocation, 773–776
imatinib in CML and GIST, 771–773
vemurafenib, advanced melanoma, 773
Target-mediated drug disposition model, 591
Tariquidar, 384
Taxotere, 754
Tegafur, 276–277
Temozolomide, 529, 642–643
Temsirolimus, 281
Thalidomide, 279
Therapeutic cancer vaccines
antigen cascade, 555
combination therapy
chemotherapy, 561–562
hormone therapy, 560–561
radiation, 560
targeted molecular inhibitors, 562
effective strategies, 555–556
lung cancer vaccines, 558–559
melanoma vaccines, 559–560
non-Hodgkin’s lymphoma vaccines, 558
prostate cancer vaccines, 556–558
tumor-associated antigens, 554–555
Therapeutic drug monitoring (TDM), 80–81
Thiopurine methyltransferase (TMPT), 238–240
Thiotepa
intrathecal chemotherapy, 468
metabolism, 357–358
Third-generation Pgp inhibitors, 383–384
Thymidylate synthase, 814
Thymidylate synthase polymorphisms
breast cancer, 305
colon cancer
adjuvant fluoropyrimidine, 295
adjuvant setting, 295–297
capcitabine monotherapy, 294
haplotype analysis, 298
metastatic setting, 299–301
multivariate analysis, 294
oral fluoropyrimidines, 298
oxaliplatin, 299
preoperative radiotherapy, 295
prognostic value, 302
toxicity, 292–293
esophageal cancer, 304–305
fluoropyrimidines sensitivity, 290
functional polymorphism, 290, 292
gastric cancer, 303–304
rectal cancer, 302–303
Topoisomerase II, 527
Topotecan, 525
intrathecal chemotherapy, 468–469
pediatric cancer, 639–640
Total drug exposure (AUC), 749, 750
Trastuzumab, 75–76
dose and administration, 605
drug–drug interaction, 605
and human epidermal growth factor receptor type 2, 267–268
immunogenicity, 606
pharmacokinetics and pharmacodynamics, 604–605
special population, 606
Trastuzumab ado-trastuzumab emtansine, 808
Tumor blood vessels, 9–10
Tumor clonogenic assay (TCA), 33–34
Tumor models, 24, 33, 34

U
Uridine 5’-diphosphate glucuronosyltransferase (UGT), 630
Uridine diphosphate glucuronosyl transferase 1A1 (UGT1A1), 641, 813
irinotecan-related efficacy, 321, 323
irinotecan-related toxicity, 319–322
variant allele, 319

V
Valspoda, 283
Vandetanib, 754
Vascular endothelial growth factor (VEGF), 767
breast cancer
angiogenesis inhibitors, 810
prognosis, 809–810
endothelial cell-independent pathway, 310
predictive value, 310–311
prognostic value, 311–312
Vemurafenib
advanced melanoma, 773
and BRAF V600E, 264–265
melanoma, 819
Venous input function, 735–736
Vinca alkaloids, 41–42, 278–279
Vincristine, 637–638

W
Well-controlled and randomized trials, 787

X
Xanthine oxidoreductase (XOR), 232–235
Xenografts, 25, 34

Z
Zoledronic acid, 752–753