Appendix A
Proofs of Uncountability of the Reals

In this appendix, we summarize and review the proofs of uncountability of the reals given in the main text, and indicate how the methods of these proofs generalize and connect to other areas of mathematics. (This appendix is not an exhaustive list of such proofs.)

There were essentially three distinct proofs of uncountability of the reals given in the text. All proofs depend, in the end, on some form of order completeness of \(\mathbb{R} \), but they take very different forms and generalize in different ways to give other significant results in mathematics.

A.1 Order-Theoretic Proofs

Section 8.5 presented a proof of uncountability of the reals which follows immediately from Cantor’s powerful theorem characterizing the order type \(\eta \) (which says any countable dense order without endpoints has order type \(\eta \)). That theorem also implies \(\eta + \eta = \eta \), and so any countable dense order must have Dedekind gaps. Hence any dense linear order without Dedekind gaps, such as \(\mathbb{R} \), must be uncountable.

This proof is so short because it exploits a very powerful result of order theory. It is related to Cantor’s first proof of uncountability of \(\mathbb{R} \), which directly shows that a countable dense order cannot be complete:

Proof (Cantor’s first proof of uncountability of \(\mathbb{R} \)). To get a contradiction, suppose that the set of real numbers can be enumerated as \(p_1, p_2, \ldots \) (without repetition). Recursively define two sequences of reals \(\langle a_n \rangle \) and \(\langle b_n \rangle \) with

\[
a_1 < a_2 < \cdots < a_n < \cdots < b_n < \cdots < b_2 < b_1,
\]

in the following manner. Let \(a_1 = p_1 \), and \(b_1 = p_m \) where \(m \) is the least index such that \(a_1 < p_m \). Having defined \(a_1, a_2, \ldots, a_n \) and \(b_1, b_2, \ldots, b_n \) with \(a_n < b_n \), define...
\[a_{n+1} = p_j \] where \(j \) is the least index such that \(a_n < p_j < b_n \) and \(b_{n+1} = p_k \) where \(k \) is the least index such that \(a_{n+1} < p_k < b_n \). Then we have \(a_n < a_{n+1} < b_{n+1} < b_n \), and the recursive definition is complete. In particular, for each \(n \) we have \(a_n = p_{j_n} \) and \(b_n = p_{k_n} \) for some indices \(j_n \) and \(k_n \). Now, by completeness of \(\mathbb{R} \), there must be a real number \(p \) such that \(a_n < p < b_n \) for all \(n \), and so \(p = p_i \) for some \(i \). Since the indices \(j_n \) are all distinct, we can fix \(n \) with \(j_{n+1} > i \). Note that \(a_n < p_i < b_n \) and by definition of \(a_{n+1} = p_{j_{n+1}} \), we see that \(j_{n+1} \) equals the least index \(j \) such that \(p_j \) lies between \(a_n \) and \(b_n \), and so \(j_{n+1} \leq i \), a contradiction. \(\square \)

This was Cantor’s first published proof of the uncountability of \(\mathbb{R} \). Given any enumeration of a countable dense order, it effectively produces a gap in it.

Both the proof of Sect. 8.5 based on Cantor’s theorem characterizing the order type \(\eta \) and Cantor’s first proof given above appeal to order completeness, but note that full completeness is not necessary. For both proofs, it suffices to assume that there are no \((\omega, *\omega) \) gap in the ordering.

Proposition 1323. A dense order without \((\omega, *\omega) \) gaps has cardinality \(> \aleph_0 \).

In this form, the proof generalizes to \(\eta_1 \) orders without \((\omega_1, *\omega_1) \) gaps:

Proposition 1324. Any \(\eta_1 \) order without \((\omega_1, *\omega_1) \) gaps has cardinality \(> \aleph_1 \).

Proof. Recall that any two \(\eta_1 \) orders of cardinality \(\aleph_1 \) must be isomorphic to each other. If there were an \(\eta_1 \) order \(X \) of cardinality \(\aleph_1 \) without \((\omega_1, *\omega_1) \) gaps, then any suborder \(Y \) of \(X \) obtained by removing a single point of \(X \) would also be an \(\eta_1 \) order of cardinality \(\aleph_1 \) and so must be isomorphic to \(X \). But \(Y \) has a \((\omega_1, *\omega_1) \) gap, and so \(X \) has such a gap, a contradiction. \(\square \)

Another related generalization is this: Any dense-in-itself complete order contains an isomorphic copy of the real line and so has cardinality \(\geq \mathfrak{c} \).

Connected spaces and their uncountability. As mentioned in the text, the notion of connectedness in topology is a direct generalization of Dedekind’s definition of linear continuum: An order is a continuum if and only if in any Dedekind partition of the order at least one of the sets contains a point which is a limit point of the other. A metric or topological space is connected if and only if for any partition of the space into two nonempty sets, at least one set contains a limit point of the other. Under certain regularity conditions, the uncountability of linear continua carries over to connected spaces. To see this, note that the Intermediate Value Theorem generalizes: The range of any continuous function from a connected space to an order must be a linear continuum. Since the distance function on a metric space is continuous, any connected metric space with at least two points is uncountable.\(^1\)

\(^1\)By a basic topological result known as Urysohn’s Lemma, this generalizes to any \(T_4 \) (normal Hausdorff) topological space, and in fact to any \(T_3 \) (regular Hausdorff) space: Any connected \(T_3 \) space with at least two points must be uncountable. All these generalizations are thus related to the order-based proof of uncountability of \(\mathbb{R} \).
A.2 Proof Using Cantor’s Diagonal Method

Cantor discovered his “diagonal method” for proving uncountability several years after he obtained his order-based proof given above where he first discovered that \mathbb{R} is uncountable. Unlike the order-theoretic proofs, the diagonal method is applicable in much more general situations where no order may be present.

In a sense, diagonalization means that given an infinite list of conditions, we construct a “counterexample” real number which refutes all those conditions. The nested intervals theorem gives a direct version of this form of diagonalization: Given a sequence of reals (x_1, x_2, \ldots), one builds nested closed intervals of shrinking length $I_1 \supseteq I_2 \supseteq \cdots$ such that $x_1 \notin I_1$ (“I_1 avoids x_1”), $x_2 \notin I_2$, and so on. The unique real x in their intersection then differs from all the given reals x_1, x_2, \ldots. Here the n-th given condition is “$x = x_n$,” and the above method of diagonalization via nested intervals produces the real x which satisfies $x \neq x_n$ for all n. Therefore, we call x the diagonal counterexample for the given sequence (x_1, x_2, \ldots) of reals.

In this proof, we could, for definiteness, use the specific scheme for building nested closed intervals where the initial interval I_0 is the unit interval $I_0 = [0, 1]$, and each I_n is either the left-third or the right-third subinterval of I_{n-1} (whichever avoids the real x_n first). The diagonal counterexample will then always be a member of the Cantor set, and conversely, any member of the Cantor set can be seen to be a diagonal counterexample for a suitably given sequence of reals (x_1, x_2, \ldots). It follows that with this scheme of building nested intervals, the Cantor set is the set of all possible diagonal counterexamples to various given sequences of real numbers.

With a little modification, the above proof of uncountability of \mathbb{R} yields the Baire Category Theorem, where the n-th condition to be met is to be inside an arbitrary given dense open set G_n (instead of the special dense open set of the form $\{x \mid x \neq x_n\}$). The Baire category theorem holds in complete metric spaces as well as in locally compact Hausdorff spaces, and thus any such space without isolated points must be uncountable (and in fact of cardinality at least \mathfrak{c}). This illustrates how Cantor’s diagonal method leads to a powerful general theorem of very wide applicability.

In a more literal form of diagonalization we regard a family $\langle E_i \mid i \in E \rangle$ of subsets of a set E indexed by E itself as the following relation on E:

$$\{(i, j) \in E \times E \mid j \in E_i\},$$

(or, using the identification via characteristic functions, as a binary array $\langle a_{i,j} \mid i, j \in E \rangle$ where each $a_{i,j}$ is 0 or 1). We then form the diagonal set $D := \{i \in E \mid i \in E_i\}$, and finally take its complement to get the “anti-diagonal” set $A := E \setminus D = \{i \in E \mid i \notin E_i\}$, which must differ from all the sets E_i. In other words, it shows that $\mathcal{P}(E)$ cannot be listed as a family of sets indexed by E. This is Cantor’s theorem that $|E| < |\mathcal{P}(E)|$, another far reaching generalization (of the uncountability of \mathbb{R}) which ensures existence of sets of arbitrarily large infinite cardinality.
This last version is a more abstract form of diagonalization which is usually referred to as the Cantor diagonal method.

The Cantor set establishes a close connection between these two forms of the diagonal method: It is constructed by a “binary tree of nested intervals” in which infinite branches (of nested intervals) through the tree correspond, on the one hand, to the points of the Cantor set, and, on the other hand, to infinite binary sequences, i.e., to members of \(\{0, 1\}^\mathbb{N} \) or to subsets of \(\mathbb{N} \).

One thus obtains a variant of the diagonal proof of uncountability of \(\mathbb{R} \) by identifying the Cantor set with \(\mathcal{P}(\mathbb{N}) \) (or with \(\{0, 1\}^\mathbb{N} \)) and then appealing to the abstract Cantor diagonal theorem that \(|\mathcal{P}(\mathbb{N})| > |\mathbb{N}| \).

The more abstract version of the Cantor diagonal method has quite wide ramifications. It not only gives (via Cantor’s theorem that \(|\mathcal{P}(X)| > |X| \)) sets of larger and larger infinite cardinalities by iterating the power set operation, but also is a method used in the proofs of many important theorems of logic and computability, such as Gödel’s incompleteness theorem, the unsolvability of the Halting problem, and Tarski’s undefinability theorem.

A.3 Proof Using Borel’s Theorem on Interval Lengths

In Corollary 1018 it was shown that the interval \([a, b]\) is uncountable using properties of lengths of intervals. The length of a bounded interval in \(\mathbb{R} \) is defined by

\[
\text{len}([a, b]) = \text{len}((a, b)) = \text{len}([a, b)) = \text{len}((a, b)) = b - a \quad (a \leq b).
\]

The length function thus defined on the intervals has several natural properties (which are essential in obtaining the Lebesgue measure on \(\mathbb{R} \)). For example, the lengths of intervals are easily seen to satisfy the condition of finite additivity, which says that if an interval \(I \) is partitioned into finitely many pairwise disjoint intervals \(I_1, I_2, \ldots, I_n \), then

\[
\text{len}(I) = \text{len}(I_1) + \text{len}(I_2) + \cdots + \text{len}(I_n).
\]

However, the key fact about lengths of intervals used in the uncountability proof mentioned above was Borel’s theorem, which says that the interval \([a, b]\), which has length \(b - a \), cannot be covered by countably many intervals of smaller total length. This important condition is known as countable subadditivity of length, which was established (in Borel’s theorem) using the powerful Heine–Borel theorem. Since any countable set of reals can be covered by countably many intervals having arbitrarily small total length, countable subadditivity immediately implies that a proper interval must be uncountable.

The proof also readily generalizes to more abstract setups as follows. Let \(X \) be a fixed set. A nonempty collection \(S \) of subsets of \(X \) is called a semiring on \(X \) if for
any $A, B \in S$ the intersection $A \cap B$ is in S and the difference $A \setminus B$ can be expressed as the union of finitely many pairwise disjoint sets from S. By a set-function on a semiring S we mean a function μ defined on S which takes nonnegative extended real values (i.e., we allow $\mu(A)$ to be $+\infty$). A set-function μ on a semiring S on X is said to be continuous if for every $p \in X$ and every $\epsilon > 0$ there is a set $E \in S$ with $p \in E$ and $\mu(E) < \epsilon$, and μ is said to be countably subadditive on S if whenever $E \in S$ is covered by countably many sets $E_1, E_2, \cdots \in S$, we have $\mu(E) \leq \sum_{n=1}^{\infty} \mu(E_n)$. Essentially the same proof that a countable set has measure zero now immediately gives:

Proposition 1325. Suppose that μ is a nonnegative continuous set function on a semiring S of subsets of a fixed set X. If μ is countably subadditive on S, then E is uncountable for any $E \in S$ for which $\mu(E) \neq 0$.

Countable subadditivity is necessary here. For example, let X be the set Q of rational numbers. By a rational half-open interval we mean a set of the form $[a, b) \cap Q$ with $a, b \in Q$. The set of half-open rational intervals forms a semiring on Q on which the length function (defined as before) is continuous and finitely additive. But countable subadditivity fails and every rational interval is countable.

We conclude by noting that under finite additivity, the condition of countable subadditivity (as in Borel’s theorem) actually entails a much stronger and important result known as the measure extension theorem, whose proof can be found in any standard textbook of measure theory. By a measure we mean a nonnegative extended real valued set-function ν defined on a sigma-algebra which vanishes on the empty set ($\nu(\emptyset) = 0$) and which satisfies the condition that if $\langle A_n \rangle$ is a pairwise disjoint sequence of sets from the sigma-algebra then $\nu(\bigcup_{n=1}^{\infty} A_n) = \sum_{n=1}^{\infty} \nu(A_n)$ (countable additivity).

Theorem 1326 (The Measure Extension Theorem). Let μ be a finitely additive nonnegative extended real valued set-function on a semiring S of subsets of a fixed set X. Assume that $X = \bigcup_n A_n$ for some sets $A_n \in S$ with $\mu(A_n) < \infty$ for all n. If μ is countably subadditive on S, then there is a unique measure defined on the sigma-algebra generated by S which extends μ.

Taking S to be the semiring of all real intervals of the form $[a, b)$ and μ to be the length function on such intervals, we get the following immediate corollary of the theorem: There is a unique measure defined on the Borel subsets of \mathbb{R} for which the measure of any interval is its length. This measure is known as the Lebesgue measure, and it also uniquely extends as a measure to the collection of all Lebesgue measurable sets (the sigma-algebra generated by the Borel sets together with the measure zero sets).
Appendix B
Existence of Lebesgue Measure

This appendix gives a proof of the existence of Lebesgue measure. That is, we prove
Theorem 1028 whose statement is as below. Recall that $E \in L$, or E is measurable,
if for all $\epsilon > 0$ there exist closed F and open G with $F \subseteq E \subseteq G$ and intervals
I_1, I_2, \ldots covering $G \setminus F$ with $\sum_n \text{len}(I_n) < \epsilon$.

Theorem (Lebesgue). There is $m: L \rightarrow [0, \infty]$ such that
1. m is countably additive: If A_1, A_2, \ldots are pairwise disjoint measurable sets, then
 $m(\bigcup_n A_n) = \sum_n m(A_n)$.
2. $m(I) = \text{len}(I)$ for any interval I (thus $m(\emptyset) = 0$).

To prove the theorem, we first define the outer measure $m^*(E)$ of any set $E \subseteq R$
(not necessarily measurable), and then restrict m^* to L to get m.

Definition 1327 (Outer Measure). For any $E \subseteq R$, we define:

$$m^*(E) := \inf \{\sum_{n=1}^\infty \text{len}(I_n) | \{I_n\} \text{ is a sequence of intervals covering } E\}.$$

m is m^* restricted to L, so if $E \in L$, then $m^*(E)$ is denoted by $m(E)$.

Recall Borel’s theorem (Theorem 1011) which says $\text{len}(I) \leq m^*(I)$ for any interval I. The following facts are now immediate.

Problem 1328 (Monotonicity). If $A \subseteq B$ then $m^*(A) \leq m^*(B)$.

Proposition 1329. For any interval I, $m^*(I) = \text{len}(I)$.

Proof. $m^*(I) \leq \text{len}(I)$ is trivial and Borel’s theorem says $m^*(I) \geq \text{len}(I)$. □

Proposition 1330 (Countable Subadditivity of Outer Measure). For any sequence E_1, E_2, \ldots of sets, $m^*(\bigcup_n E_n) \leq \sum_n m^*(E_n)$.

Proof. Given $\epsilon > 0$, choose, for each n, a sequence of intervals $\{I_{n,k} | k \in \mathbb{N}\}$
covering E_n and with $\sum_k \text{len}(I_{n,k}) \leq m^*(E_n) + \frac{\epsilon}{2^n}$. Combining all these sequences
of intervals into a single sequence, we get a covering of \(\bigcup_n E_n \) with total length
\[
\sum_n (m^*(E_n) + \varepsilon / 2^n) = \sum_n m^*(E_n) + \varepsilon.
\]
So we can (and will) prove equalities of the form \(m^*\left(\bigcup_n E_n \right) = \sum_n m^*(E_n) \) by only showing \(m^*\left(\bigcup_n E_n \right) \geq \sum_n m^*(E_n) \) (by countable subadditivity).

Corollary 1331. If \(A \) is measurable and \(\varepsilon > 0 \) then there are closed \(F \) and open \(G \) such that \(F \subseteq A \subseteq G \), \(m^*(A) \geq m^*(G) - \varepsilon \), and \(m^*(F) \geq m^*(A) - \varepsilon \).

Proof. Let \(\varepsilon > 0 \). Fix closed \(F \) and open \(G \) such that \(F \subseteq A \subseteq G \) and \(m^*(G \setminus F) < \varepsilon \). Then by countable subadditivity and monotonicity, \(m^*(G) \leq m^*(A) + m^*(G \setminus A) \leq m^*(A) + m^*(G \setminus F) \leq m^*(A) + \varepsilon \), so \(m^*(A) \geq m^*(G) - \varepsilon \). Similarly \(m^*(F) \geq m^*(A) - \varepsilon \). \qed

Proposition 1332. Let \(G \) be an open set expressed as a disjoint union of open intervals \(\bigcup_n J_n = G \). Then \(m^*(G) = \sum_n \text{len}(J_n) \).

Proof. E easily \(m^*(G) \leq \sum_n \text{len}(J_n) \) (since the \(J_n \)'s cover \(G \)).

For the other direction, let \(\{I_n\} \) be any sequence of open intervals covering \(G \). Then for each \(n \), \(\{I_n \cap J_m \mid m \in \mathbb{N}\} \) is a sequence of pairwise disjoint intervals all contained in \(I_n \) and so \(\text{len}(I_n) \geq \sum_m \text{len}(I_n \cap J_m) \). Hence
\[
\sum_n \text{len}(I_n) \geq \sum_n \sum_m \text{len}(I_n \cap J_m) = \sum_m \sum_n \text{len}(I_n \cap J_m) \geq \sum_m \text{len}(J_m),
\]
where the last inequality follows by Borel's theorem since for each \(m \), the intervals \(\{I_n \cap J_m \mid n \in \mathbb{N}\} \) cover \(J_m \). \qed

Corollary 1333. If \(G_1 \) and \(G_2 \) are disjoint open sets then \(m^*(G_1 \cup G_2) = m^*(G_1) + m^*(G_2) \).

Proposition 1334. If \(F_1 \) and \(F_2 \) are disjoint closed sets then \(m^*(F_1 \cup F_2) = m^*(F_1) + m^*(F_2) \).

Proof. Let \(\varepsilon > 0 \). Fix open \(G \) with \(F_1 \cup F_2 \subseteq G \) and \(m^*(F_1 \cup F_2) \geq m^*(G) - \varepsilon \). Fix disjoint open \(G_1 \) and \(G_2 \) containing \(F_1 \) and \(F_2 \) respectively (Problem 938). Then we have \(m^*(F_1 \cup F_2) \geq m^*(G) - \varepsilon \geq m^*(\bigcup (G \cap G_1) \cup (G \cap G_2)) - \varepsilon = m^*(G \cap G_1) + m^*(G \cap G_2) - \varepsilon \geq m^*(F_1) + m^*(F_2) - \varepsilon \). \qed

Proposition 1335 (Finite Additivity). Let \(A \) and \(B \) be disjoint measurable sets. Then \(m^*(A \cup B) = m^*(A) + m^*(B) \).

Proof. Let \(\varepsilon > 0 \). Fix closed sets \(F_A \subseteq A \) and \(F_B \subseteq B \) with \(m^*(F_A) \geq m^*(A) - \frac{\varepsilon}{2} \) and \(m^*(F_B) \geq m^*(B) - \frac{\varepsilon}{2} \). Then \(m^*(A \cup B) \geq m^*(F_A \cup F_B) = m^*(F_A) + m^*(F_B) \geq m^*(A) + m^*(B) \). \qed

Proposition 1336 (Countable Additivity of Lebesgue Measure). If \(A_1, A_2, \ldots \) are disjoint measurable sets then \(m^*(\bigcup_n A_n) = \sum_n m^*(A_n) \).

Proof. \(\sum_n m^*(A_n) = \sup_n \sum_k m^*(A_k) = \sup_n m^*(\bigcup_{k=1}^n A_k) \leq m^*(\bigcup_n A_n) \). \qed

The main theorem now follows from and Propositions 1329 and 1336.
Appendix C
List of ZF Axioms

ZF 1 (Extensionality). \(\forall x \forall y (\forall z (z \in x \iff z \in y) \rightarrow x = y) \).

ZF 2 (Empty Set). \(\exists x \forall y (y \notin x) \).

ZF 3 (Separation Scheme). If \(\varphi(x, t_1, t_2, \ldots, t_n) \) is a ZF formula in which the free variables are among \(x, t_1, t_2, \ldots, t_n \), then the following is an axiom:

\[
\forall t_1 \forall t_2 \ldots \forall t_n \forall a \exists b \forall x (x \in b \iff x \in a \land \varphi(x, t_1, t_2, \ldots, t_n)) \).
\]

ZF 4 (Power Set). \(\forall x \exists y \forall z (z \in y \iff \forall w (w \in z \rightarrow w \in x)) \).

ZF 5 (Union). \(\forall x \exists y \forall z (z \in y \iff \exists w (w \in x \land z \in w)) \).

ZF 6 (Unordered Pairs). \(\forall x \forall y \exists z \forall w (w \in z \iff w = x \lor w = y) \).

ZF 7 (Replacement Scheme). If \(\varphi(x, y, t_1, t_2, \ldots, t_n) \) is a ZF formula with free variables among the ones shown, then we have the axiom:

\[
\forall t_1 \forall t_2 \ldots \forall t_n (\forall x \forall y \exists z (\varphi(x, y, t_1, \ldots, t_n) \land \varphi(x, z, t_1, \ldots, t_n) \rightarrow y = z)
\rightarrow \forall a \exists b \forall u \forall v (u \in a \land \varphi(u, v, t_1, \ldots, t_n) \rightarrow v \in b)) \).
\]

ZF 8 (Infinity). \(\exists b (\exists y (y \in b \land \forall z (z \notin y)) \land
\forall x (x \in b \rightarrow \exists y (y \in b \land \forall z (z \in y \iff z \in x \lor z = x))) \).

ZF 9 (Foundation). \(\forall x (\exists y (y \in x) \rightarrow \exists y (y \in x \land \neg \exists z (z \in y \land z \in x))) \).

ZFC is obtained by adding to ZF the Axiom of Choice, which says:

\[
\forall x ((\forall y (y \in x \rightarrow \exists z (z \in y)) \land
\forall u \forall v (u \in x \land v \in x \land u \neq v \rightarrow \neg \exists y (y \in u \land y \in v))
\rightarrow \exists w \forall y (y \in x \rightarrow \exists ! z (z \in y \land z \in w))) \).
\]

References

17. M. Foreman. Has the Continuum Hypothesis been settled? Talk presented in Logic Colloquium 2003 (Helsinki).

52. M. Magidor. Some set theories are more equal. preprint, 201?

Online Reference

List of Symbols and Notations

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Symbol</th>
<th>Definition</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>\mathbb{N}</td>
<td>1, 59, 87</td>
<td>[]</td>
</tr>
<tr>
<td>1</td>
<td>\mathbb{Z}</td>
<td>1, 60</td>
<td>[]</td>
</tr>
<tr>
<td>1</td>
<td>\mathbb{R}</td>
<td>1, 58</td>
<td>[]</td>
</tr>
<tr>
<td>1</td>
<td>\in</td>
<td>2</td>
<td>[]</td>
</tr>
<tr>
<td>1</td>
<td>\subseteq</td>
<td>2</td>
<td>[]</td>
</tr>
<tr>
<td>1</td>
<td>${x \mid P(x)}, {x : P(x)}$</td>
<td>4</td>
<td>[]</td>
</tr>
<tr>
<td>1</td>
<td>\emptyset</td>
<td>4</td>
<td>[]</td>
</tr>
<tr>
<td>1</td>
<td>${a}$</td>
<td>4</td>
<td>[]</td>
</tr>
<tr>
<td>1</td>
<td>${a, b}, {a, b, c}$</td>
<td>5</td>
<td>[]</td>
</tr>
<tr>
<td>1</td>
<td>$P(A)$</td>
<td>6</td>
<td>[]</td>
</tr>
<tr>
<td>1</td>
<td>$A \cup B, A \cap B, A \sim B$</td>
<td>6</td>
<td>[]</td>
</tr>
<tr>
<td>1</td>
<td>$A \Delta B$</td>
<td>6</td>
<td>[]</td>
</tr>
<tr>
<td>1</td>
<td>$\langle a, b \rangle$</td>
<td>8</td>
<td>[]</td>
</tr>
<tr>
<td>1</td>
<td>$A \times B$</td>
<td>8</td>
<td>[]</td>
</tr>
<tr>
<td>1</td>
<td>$\text{dom}(R), \text{ran}(R)$</td>
<td>8</td>
<td>[]</td>
</tr>
<tr>
<td>1</td>
<td>R^{-1}</td>
<td>9</td>
<td>[]</td>
</tr>
<tr>
<td>1</td>
<td>$F : A \to B$</td>
<td>10</td>
<td>[]</td>
</tr>
<tr>
<td>1</td>
<td>$x \mapsto \alpha(x)$</td>
<td>11</td>
<td>[]</td>
</tr>
<tr>
<td>1</td>
<td>${\alpha(x) \mid x \in A}$</td>
<td>11</td>
<td>[]</td>
</tr>
<tr>
<td>1</td>
<td>$F</td>
<td>_C, F \upharpoonright C$</td>
<td>11</td>
</tr>
<tr>
<td>1</td>
<td>$F[C], F^{-1}[D]$</td>
<td>11</td>
<td>[]</td>
</tr>
<tr>
<td>1</td>
<td>$F \circ G$</td>
<td>12</td>
<td>[]</td>
</tr>
<tr>
<td>1</td>
<td>B^4</td>
<td>13, 114</td>
<td>[]</td>
</tr>
<tr>
<td>1</td>
<td>$\bigcup_{i \in I} E_i, \bigcap_{i \in I} E_i$</td>
<td>13</td>
<td>[]</td>
</tr>
<tr>
<td>1</td>
<td>\mathcal{C}, \mathcal{C}</td>
<td>15</td>
<td>[]</td>
</tr>
<tr>
<td>1</td>
<td>${a_1, a_2, \ldots, a_n}$</td>
<td>16</td>
<td>[]</td>
</tr>
<tr>
<td>1</td>
<td>A^*</td>
<td>17</td>
<td>[]</td>
</tr>
<tr>
<td>1</td>
<td>A^0</td>
<td>17</td>
<td>[]</td>
</tr>
<tr>
<td>1</td>
<td>A^N</td>
<td>17</td>
<td>[]</td>
</tr>
<tr>
<td>1</td>
<td>2^N</td>
<td>17</td>
<td>[]</td>
</tr>
<tr>
<td>1</td>
<td>ε</td>
<td>18</td>
<td>[]</td>
</tr>
<tr>
<td>1</td>
<td>$\text{len}(u)$</td>
<td>18</td>
<td>[]</td>
</tr>
<tr>
<td>1</td>
<td>$u \ast v$</td>
<td>18</td>
<td>[]</td>
</tr>
<tr>
<td>1</td>
<td>$u \sim s$</td>
<td>18</td>
<td>[]</td>
</tr>
<tr>
<td>1</td>
<td>$a</td>
<td>n$</td>
<td>18</td>
</tr>
</tbody>
</table>

Chapter 2

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Definition</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>$[x]_\sim$</td>
<td>19</td>
<td>[]</td>
</tr>
<tr>
<td>A/\sim</td>
<td>20</td>
<td>[]</td>
</tr>
<tr>
<td>$\text{Pred}(a)$</td>
<td>22</td>
<td>[]</td>
</tr>
</tbody>
</table>

Chapter 3

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Definition</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>\varnothing</td>
<td>4</td>
<td>[]</td>
</tr>
<tr>
<td>${a}$</td>
<td>4</td>
<td>[]</td>
</tr>
<tr>
<td>${a, b}, {a, b, c}$</td>
<td>5</td>
<td>[]</td>
</tr>
<tr>
<td>R^+</td>
<td>58</td>
<td>[]</td>
</tr>
<tr>
<td>R^-</td>
<td>58</td>
<td>[]</td>
</tr>
</tbody>
</table>

Chapter 4

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Definition</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Δ</td>
<td>30</td>
<td>[]</td>
</tr>
<tr>
<td>$S(n)$</td>
<td>30</td>
<td>[]</td>
</tr>
<tr>
<td>$\text{len}(I)$</td>
<td>61</td>
<td>[]</td>
</tr>
</tbody>
</table>

Chapter 5

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Definition</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>$A \sim B, A \sim_c B$</td>
<td>77</td>
<td>[]</td>
</tr>
<tr>
<td>$A \preceq B, A \not\preceq B$</td>
<td>77</td>
<td>[]</td>
</tr>
<tr>
<td>$\alpha \preceq \beta$</td>
<td>79</td>
<td>[]</td>
</tr>
<tr>
<td>$\alpha \sim^* B, \alpha =^* \beta$</td>
<td>79</td>
<td>[]</td>
</tr>
<tr>
<td>$A \prec B, \alpha <^* \beta$</td>
<td>79</td>
<td>[]</td>
</tr>
<tr>
<td>$\alpha</td>
<td></td>
<td>\beta$</td>
</tr>
<tr>
<td>$\alpha + \beta$</td>
<td>81</td>
<td>[]</td>
</tr>
<tr>
<td>$\alpha \beta$</td>
<td>82</td>
<td>[]</td>
</tr>
<tr>
<td>R^*_s</td>
<td>84</td>
<td>[]</td>
</tr>
<tr>
<td>$\mathcal{J}, \mathcal{J}_x$</td>
<td>86</td>
<td>[]</td>
</tr>
<tr>
<td>\mathcal{N}_0</td>
<td>89</td>
<td>[]</td>
</tr>
<tr>
<td>\mathcal{R}/\mathcal{Z}</td>
<td>92</td>
<td>[]</td>
</tr>
<tr>
<td>\mathcal{R}/\mathcal{Q}</td>
<td>92</td>
<td>[]</td>
</tr>
<tr>
<td>\mathcal{C}</td>
<td>103</td>
<td>[]</td>
</tr>
<tr>
<td>\mathcal{M}</td>
<td>105</td>
<td>[]</td>
</tr>
</tbody>
</table>

Chapter 6

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Definition</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\sum_{i \in I} \alpha_i$</td>
<td>112</td>
<td>[]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\prod_{i \in I} A_i)</td>
<td>113</td>
</tr>
<tr>
<td>(\prod_{i \in I} \alpha_i)</td>
<td>113</td>
</tr>
<tr>
<td>(\alpha^\beta)</td>
<td>114</td>
</tr>
<tr>
<td>(\mathcal{E})</td>
<td>114</td>
</tr>
<tr>
<td>(F)</td>
<td>120</td>
</tr>
<tr>
<td>(K)</td>
<td>121</td>
</tr>
<tr>
<td>(K_n)</td>
<td>121</td>
</tr>
<tr>
<td>(h)</td>
<td>123</td>
</tr>
<tr>
<td>(f)</td>
<td>127</td>
</tr>
<tr>
<td>Chapter 7</td>
<td></td>
</tr>
<tr>
<td>(A \cong B)</td>
<td>136</td>
</tr>
<tr>
<td>(\text{OrdTyp}(X))</td>
<td>138</td>
</tr>
<tr>
<td>(\omega)</td>
<td>138</td>
</tr>
<tr>
<td>(\xi)</td>
<td>138</td>
</tr>
<tr>
<td>(\eta)</td>
<td>138</td>
</tr>
<tr>
<td>(\lambda)</td>
<td>138</td>
</tr>
<tr>
<td>(^*X)</td>
<td>138</td>
</tr>
<tr>
<td>(^*\alpha)</td>
<td>138</td>
</tr>
<tr>
<td>(\mathbb{N}_1^k)</td>
<td>146</td>
</tr>
<tr>
<td>Chapter 8</td>
<td></td>
</tr>
<tr>
<td>(D(A))</td>
<td>149</td>
</tr>
<tr>
<td>(\tau)</td>
<td>167</td>
</tr>
<tr>
<td>Chapter 9</td>
<td></td>
</tr>
<tr>
<td>(W(\alpha))</td>
<td>184</td>
</tr>
<tr>
<td>(S(\alpha))</td>
<td>187</td>
</tr>
<tr>
<td>(\text{Pred}[E])</td>
<td>188</td>
</tr>
<tr>
<td>(\sup E)</td>
<td>188</td>
</tr>
<tr>
<td>(\lim E)</td>
<td>188</td>
</tr>
<tr>
<td>(\alpha + \beta)</td>
<td>189</td>
</tr>
<tr>
<td>(\alpha \cdot \beta)</td>
<td>190</td>
</tr>
<tr>
<td>(\alpha^\beta)</td>
<td>192</td>
</tr>
<tr>
<td>(\varepsilon_0)</td>
<td>193</td>
</tr>
<tr>
<td>(D(\alpha)(A))</td>
<td>194</td>
</tr>
<tr>
<td>(\vartriangleleft)</td>
<td>196</td>
</tr>
<tr>
<td>Chapter 10</td>
<td></td>
</tr>
<tr>
<td>(\omega_1)</td>
<td>200</td>
</tr>
<tr>
<td>(\mathbb{N}_1)</td>
<td>201</td>
</tr>
<tr>
<td>(H(A), \omega(A), \mathbb{N}(A))</td>
<td>204</td>
</tr>
<tr>
<td>(\kappa^+)</td>
<td>204</td>
</tr>
<tr>
<td>(\omega^+ (\alpha))</td>
<td>204</td>
</tr>
<tr>
<td>(\omega_\alpha)</td>
<td>205</td>
</tr>
<tr>
<td>(\mathbb{N}_\alpha)</td>
<td>205</td>
</tr>
<tr>
<td>(\nabla)</td>
<td>206</td>
</tr>
<tr>
<td>(\rho_\psi)</td>
<td>207</td>
</tr>
<tr>
<td>(\text{cf}(\kappa))</td>
<td>208</td>
</tr>
<tr>
<td>((\omega_\alpha, ^*\omega_\beta))</td>
<td>212</td>
</tr>
<tr>
<td>(\mathfrak{D}_\alpha)</td>
<td>217</td>
</tr>
<tr>
<td>Chapter 11</td>
<td></td>
</tr>
<tr>
<td>(\rho_R(x))</td>
<td>231</td>
</tr>
<tr>
<td>(\text{rank}_R(A))</td>
<td>231</td>
</tr>
<tr>
<td>(\overline{R}[y])</td>
<td>232</td>
</tr>
<tr>
<td>(\text{root}(T))</td>
<td>234</td>
</tr>
<tr>
<td>(\text{ht}_T(x))</td>
<td>235</td>
</tr>
<tr>
<td>(\text{ht}(x))</td>
<td>235</td>
</tr>
<tr>
<td>(\text{Lev}_a(T))</td>
<td>235</td>
</tr>
<tr>
<td>(\text{ht}(T))</td>
<td>235</td>
</tr>
<tr>
<td>(T^{(a)})</td>
<td>239</td>
</tr>
<tr>
<td>(a \ast T)</td>
<td>240</td>
</tr>
<tr>
<td>([X]^n)</td>
<td>241</td>
</tr>
<tr>
<td>(\kappa \rightarrow (\mu)_k^n)</td>
<td>242</td>
</tr>
<tr>
<td>Chapter 12 (Postscript II)</td>
<td></td>
</tr>
<tr>
<td>(\phi)</td>
<td>250</td>
</tr>
<tr>
<td>Chapter 14</td>
<td></td>
</tr>
<tr>
<td>(D(A))</td>
<td>267</td>
</tr>
<tr>
<td>(\overline{A})</td>
<td>268</td>
</tr>
<tr>
<td>(\langle x_n \rangle \rightarrow x, \ x_n \rightarrow x)</td>
<td>270</td>
</tr>
<tr>
<td>(h_n)</td>
<td>278</td>
</tr>
<tr>
<td>(\mathfrak{g}, \mathfrak{r}_a)</td>
<td>278, 279</td>
</tr>
<tr>
<td>Chapter 15</td>
<td></td>
</tr>
<tr>
<td>(\mathbb{L})</td>
<td>288</td>
</tr>
<tr>
<td>(m, m(E))</td>
<td>289</td>
</tr>
<tr>
<td>(F_\sigma)</td>
<td>290</td>
</tr>
<tr>
<td>(G_\delta)</td>
<td>290</td>
</tr>
<tr>
<td>(G_\delta^{**})</td>
<td>295</td>
</tr>
<tr>
<td>(\mathbb{Y})</td>
<td>296</td>
</tr>
<tr>
<td>Chapter 18</td>
<td></td>
</tr>
<tr>
<td>(\mathbb{B})</td>
<td>322</td>
</tr>
<tr>
<td>(C_\sigma, C_\delta)</td>
<td>322</td>
</tr>
<tr>
<td>(F_{\sigma_\delta}, G_{\sigma_\delta})</td>
<td>322</td>
</tr>
<tr>
<td>(\mathbb{A}({E_u</td>
<td>u \in \mathbb{N}^* }))</td>
</tr>
<tr>
<td>(\mathbb{A}_n E_u)</td>
<td>326</td>
</tr>
<tr>
<td>(F_{u^* n}, { F_{u^* n}</td>
<td>u \in \mathbb{N}_n^* })</td>
</tr>
<tr>
<td>(u_n)</td>
<td>338</td>
</tr>
<tr>
<td>(U(x))</td>
<td>339</td>
</tr>
<tr>
<td>(\mathbb{W}_F, \mathbb{I}_F, \mathbb{W}_F)</td>
<td>339</td>
</tr>
<tr>
<td>(\mathbb{E}\sigma^0, \mathbb{P}\alpha^0)</td>
<td>343</td>
</tr>
<tr>
<td>(\mathbb{E}_1, \mathbb{P}_1, \mathbb{A}_1)</td>
<td>343</td>
</tr>
<tr>
<td>Chapter 19 (Postscript III)</td>
<td></td>
</tr>
<tr>
<td>(\mathbb{E}_n, \mathbb{P}_n, \mathbb{A}_n)</td>
<td>353</td>
</tr>
<tr>
<td>Chapter 21</td>
<td></td>
</tr>
<tr>
<td>(\mathbb{V}_n)</td>
<td>372</td>
</tr>
<tr>
<td>(A \cong B)</td>
<td>374</td>
</tr>
<tr>
<td>(\mathbb{V})</td>
<td>375</td>
</tr>
<tr>
<td>Symbol</td>
<td>Page</td>
</tr>
<tr>
<td>--------</td>
<td>------</td>
</tr>
<tr>
<td>Ord</td>
<td>381</td>
</tr>
<tr>
<td>On</td>
<td>381</td>
</tr>
<tr>
<td>V_α</td>
<td>386</td>
</tr>
<tr>
<td>$P^n(X)$</td>
<td>387</td>
</tr>
<tr>
<td>tc(x)</td>
<td>390</td>
</tr>
<tr>
<td>mk(x)</td>
<td>392</td>
</tr>
<tr>
<td>$H(\kappa)$</td>
<td>394</td>
</tr>
<tr>
<td>$</td>
<td>x</td>
</tr>
<tr>
<td>$[x]_R$</td>
<td>395</td>
</tr>
</tbody>
</table>

Chapter 22 (Postscript IV)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Page</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ϕ^C</td>
<td>399</td>
<td>$m^*(E)$</td>
</tr>
</tbody>
</table>
Index

A
 absolutism, 67
 abstract derivatives, 206–208
 derivative operators, 206
 monotone, 208
 strict, 206
 rank decomposition, 207
 rank function, 207
 strict, 206
 abstraction
 principle of, 20
 Addison, J. W., 353, 410
 aleph-, alephs
 aleph-one, \aleph_1, 201–203
 aleph-zero, \aleph_0 (aleph-null), 89, 94–100
 series of alephs, \aleph_α, 205
 \aleph_0, \aleph_1, \aleph_α, see aleph-, alephs
 algebra
 σ-algebra, see sigma-algebra
 (Boolean) of sets, 7
 the fundamental theorem of, 65
 almost disjoint family, 118–119, 225–226
 alphabet, 17
 binary, 18
 ternary, 259
 analytic determinacy, 409
 analytic sets, 324–343
 as projections of Borel sets, 343
 Baire property of, 333–335
 closure under the Suslin operation, 328
 complement of, see coanalytic sets
 continuum hypothesis for, 337–338
 definition of, 328
 in general spaces, 343
 Lebesgue measurability of, 333–335
 non-Borel, 338–342
 Lusin’s example, 342
 IF, 339
 perfect set property for, 335–337
 regularity properties of, 337–338
 Archimedean property
 in ordered fields, 62
 of the ratios, 39
 of the real numbers, 61
 Aronszajn tree, 246, 248
 arrow notation, 242
 axiom of
 choice, 13, 77, 90–94, 208–210
 and cardinal comparability, see cardinal comparability
 and well-ordering theorem, see well-ordering theorem
 choice function version, 94, 208
 consistency of, 401
 countable, see countable axiom of choice
 dependent, see axiom of dependent choice
 equivalents of, 224
 indexed family version, 94
 partition version, 94, 208
 comprehension
 limited, restricted, see axiom of separation
 unlimited (naive, unrestricted), 3, 363–364
 constructibility ($V=L$), 166, 250, 399–402, 405–406
 continuity, 53
 definable determinacy, 408
 dependent choice (DC), 77, 101
 determinacy (AD), 408
 consistency of, 411
 empty set, 370, 421

A. Dasgupta, Set Theory: With an Introduction to Real Point Sets.
axiom of (cont.)
 extensionality, 3, 370, 421
 foundation, 393–395, 421
 infinity, 72n, 384–385, 421
 Martin’s Axiom (MA), see Martin’s Axiom
 order, 48
 order-density, 48
 pairing, see axiom of unordered pairs
 power set, 372, 421
 regularity, see axiom of foundation
 replacement, 376–377, 421
 set theory without replacement, 387–389
 separation (axiom scheme), 366, 371–372, 421
 strong infinity, 247, 405
 subsets, see axiom of separation
 union, 372, 421
 unordered pairs, 373, 421

Baire category theorem, 291–293, 415
Baire property, 296–297
 CCC property, 297
 for all sets of reals, 404, 408
 of analytic sets, 333–335
 of PCA (Σ^1_2) sets, 354–355, 402, 404, 406, 409
 of projective sets, 404, 409–410
 translation invariance, 297
Baire, R., 291
Banach, S., 345, 346, 410
Banach–Mazur game, 295–296
Bendixson, I. O., 206, 273–274, 301, 303–305
Bernays, P., 395, 398
Bernstein sets, 298–299, 335, 345–346, 408
Bernstein, F., 111, 298
binary sequence, see sequences, binary
 binary tree, see tree, binary
Birkhoff, G., 53n
Blackwell, D., 410
Blass, A., 224n
Bolzano–Weierstrass property, 168–170, 206, 214
Borel
 Borel’s theorem, 283–286, 416–417
 conjecture, the, 287
 determinacy, 408–409
 separable sets, 332
 sets, 322–323
 continuum hypothesis for, 337
 in general spaces, 343
 projections of, 343
Borel, E., 282–287, 322
boundedness theorem
 for analytic subsets of WF, 341
bounds, bounded sets, see orders (linear), real
 numbers and sets
brace-list notation, 5–6
Brouwer’s theorem, 313–314
Brouwer, L. E. J., 313–314, 319
Burali-Forti paradox, the, 361, 381

C
CAC, see countable axiom of choice
Cantor
 -like sets, 264
 and the uniqueness problem for
 trigonometric series, 310–311
diagonlization, 105, 125–126, 362, 415–416
 machine, 105
normal form (of ordinal numbers), 198
set generated by a Cantor system, 264
set, the, 119–123, 263, 415–416
 elements as codes for subsets of \mathbb{N}^*, 338
 endpoints of, 316–317
 homeomorphic permutations of, 315–317
 internal points of, 316–317
 sets, generalized, 264, 274–275, 314–315
 versus the Cantor set, 315
system, 263
 set generated by, 264
system of intervals, the, 120
ternary functions, 278
tree of intervals, the, 120
uniqueness theorem (for trigonometric
 series), 311
Cantor’s paradox, 362
Cantor’s theorem
 on cardinality of the power set, 115, 126,
 362, 415–416
 on characterization of λ (order type of \mathbb{R}), 165
 on countability of \mathbb{Q}, 96
 on countability of the algebraic numbers, 107
 on countable dense orders, 160–163, 413
 characterization of η (order type of \mathbb{Q}), 161, 413
 on uncountability of \mathbb{R}, 103, 162, 413
 on uniqueness for trigonometric series, 311

Cantor–Bendixson
analysis, 303–310
derivative, see also derivative
abstract, see abstract derivatives
in orders, 194
rank (CB-rank), 305–309
theorem, 273–274, 303–305

Cantor–Bernstein theorem, 80, 100, 109–111

cardinal comparability, see cardinal numbers

aleph-zero (\aleph_0), aleph-one (\aleph_1), alephs
(\aleph_n), see aleph-, alephs
arithmetic of, 115–117
Cantor–Von Neumann definition, 78, 385–386
cofinality, see cofinality
comparability, 79–81, 209–210
continuum, cardinality of the, 101–106
c, cardinality of the continuum, 101–106
definition under AC as initial ordinals, 385–386
definition without AC, 394–395
effectively equal, 95
exponentiation, 114
finite, 86–87
Frege–Russell definition, 78
Frege–Russell–Scott definition, 394–395
general (arbitrary) products, 112–114
general (arbitrary) sums, 111–112
Hartogs’, see Hartogs’ cardinal
inaccessible
strongly, 215
weakly, 215
infinite, 86
large cardinals, 215, 247, 299, 405–407
limit cardinal, 212
measurable, 352, 354–355, 406, 408, 409
monotone order property, 245
product (multiplication), 82
product-adequate families, 113
real valued measurable, 351–352
reflexive, 89
regular cardinal, 212
singular cardinal, 212
strong limit, 215
successor cardinal, 212

tree property, 246
trichotomy, 80
weakly compact, 245–247, 406
Woodin, 410–411
cardinality, see cardinal numbers
c, cardinality of the continuum, see cardinal numbers

Carnap, R., 48n, 365
Cartesian product, 8, 373

closure of a set, 268
class sets, see ordinal numbers (ordinals), club sets
closed sets
continuum hypothesis for, 274, 294, 304
in orders, 172
of real numbers, 268–270
countable and bounded, classification of, 310
separation by open sets, 269
closed unbounded sets in $W(\omega_1)$, see ordinal numbers (ordinals), club sets

Church, A., 365, 366
classes, 375–376
proper, 396
closed sets
continuum hypothesis for, 274, 294, 304
in orders, 172
of real numbers, 268–270
countable and bounded, classification of, 310
separation by open sets, 269
closed unbounded sets in $W(\omega_1)$, see ordinal numbers (ordinals), club sets

coanalytic sets, 330
boundedness theorem for analytic subsets of \mathbf{WF}, 341

$\mathbf{WF}, \mathbf{WF}_\alpha$, 339
perfect set property for, 353, 354, 402
coding, codes for
ill-founded trees, 339
\textbf{IF}, 339
\(U(x)\), subset of \(\mathbb{N}^\ast\) coded by \(x\), 339
subsets of \(\mathbb{N}^\ast\) by elements of the Cantor set, 338
well-founded trees, 339
\textbf{WF}, \(\text{WF}_x\), 339
cofinal subset, see orders (linear), cofinal subset
cofinality, 128, 210–215
of cardinals, 212
cf(\(\kappa\)), 212
of ordinals, 211
of well-orders, 211

Cohen, P. J., 216, 354, 398, 402
comeager sets, 292
commensurability, 92–93
compactness, 277, 283
complete invariant, 19
Frege–Russell–Scott, 395
complete orders, 154
and the Bolzano–Weierstrass property,
168–170, 206, 214
and the Nested Intervals property, 168–170, 206, 214
sequential, 169, 206, 214
strong, 169, 206, 214
cardinality of perfect subsets in, 173
completion, Dedekind, 166–168

complex numbers, 64
comprehension
naive principle of, 3, 363–364
condensation points, 273–274, 305
connectedness, 64, 173–174, 414
and the intermediate value theorem, 173–174
as characterization of the continuum, 174
consistency strength, 406
constructible sets, 216, 399–402
continuity, continuous maps
continuous curve, 278
on orders, 50, 157
embedding, continuous, 158
on sets of real numbers, 275–276
continuity at a point, 275
removable discontinuity, 276
continuous order embedding, 158
Continuum Hypothesis, the (CH), 105–106, 216–217, 399
consistency of, 401
for \(G_\alpha\) sets, 293–294
for analytic sets, 337–338
for closed sets, 274, 294, 304

Generalized (GCH), 217
consistency of, 401
independence of, 402–404
truth value of, 411
Continuum Problem, the, 216
continuum, linear, 47, 154
CCC, 164, 166, 201, 226, 247
characterization of, 174
Dedekind’ definition of, 51–54
Dedekind’s theorem on the real continuum, 57
countability, countable sets, 94–100
countable axiom of choice (CAC), 77, 99–101
countable chain condition, see CCC
countable closed bounded sets
classification of, 310
cover, covering (of a set by a collection of sets), 281
cumulative hierarchy of sets (\(V_\alpha\)), 386–387, 392

\textbf{D}
Davis, M., 410
DC, see axiom of dependent choice
Dedekind complete orders, see complete orders
Dedekind completion, 166–168
Dedekind continuity, 154
Dedekind cuts, 51–52, 154
boundary cut, 52, 154
gap, 51, 52, 154
(\(\omega_\alpha\), \(\omega_\beta\)), (\(\omega_1\), \(\omega_1\)), (\(\omega\), \(\omega\)) gaps,
214, 218–219, 414
jump, 51, 52, 154
limit point cut, 154
Dedekind finite, 85–86
Dedekind infinite, 72, 85–86, 88–90, 100–101,
374–375
Dedekind partition, 154
of ratios, 39
Scott cut, 39n

Dedekind, R., 27, 29, 31n, 42, 47–48, 51–54,
57, 63–64, 67, 70–72, 85–89, 111,
154, 166–168, 173, 398
Dedekind–Peano axioms, 29–31, 67, 70, 383
categoricity of, 41, 70–72
model for, 87–88
Dedekind–Peano systems, 70–72
Dedekind’s theorem on, 41, 71
dense
order, 22, 152–153
\(\eta_1\)-orderings, 218–219
dense orders vs dense subsets, 153
relative density, 153
sets of real numbers, 270–271
subset of posets, 249
subsets of orders, 153
dense-in-itself
G_δ sets, 293
orders, 170–172
sets of real numbers, 268–270
subsets of orders, 171
denumerable set, 95
derivative, derived set, see also Cantor–Bendixson derivative
in orders, 149–152
iterated, 151
of real sets, 267
D(A), 149–152, 267
descriptive set theory, 311
determinacy, 407–409
analytic, 409
Borel, 408–409
definable, 408
open and closed, 408
projective, 409–411
◊, (Jensen’s Diamond Principle), see Diamond Principle
Diamond Principle (◊), 166, 250, 402
discrete set of real numbers, 272
domain, see relations, domain of

effective
choice, 77
choice set, 91
definition, 91–93
enumeration
of N x N, 96
of Q, 96
equality of cardinals, 95
equinumerosity and similarity, 95
pairing functions, 98
specification, 92
effectiveness, 77, 90–93
embedding
continuous, of orders, 158
order, 156
continuous, 158
empty
set (Ø), 4–5
string or word (ε), 18
Ø, see empty set
ε, see empty string or word
endpoint, see orders (linear), endpoint enumeration, 95
equicoherent, 406
equinumerosity, 77
effective, 95
equivalence class, 19
equivalence relations, 19–21
and partitions, 20–21
eventual containment, 270
everywhere dense, see dense
extensionality
principle of, 3, 370, 421

F
F_α sets, 290–291
families, 13–15
almost disjoint, 118–119, 225–226
indexed, 13
inductive, 83
unindexed, 14
Feferman, S., 93, 298, 405
field, ordered, see ordered field
filter
in posets, 249
fineness property of the ratios, 39
finite
cardinals, 86–87
Dedekind, see Dedekind finite
induction, see induction, principle of
(finite)
ordinals, 382–383
sequence, see sequences
sets, 82–84
Dedekind, see Dedekind finite
first category sets, 292
forcing
method of, 166, 216, 354, 402–404
poset, 402
relation, 402
formalism, 405
fractions, 34–37
Fraenkel, A., 367, 369, 376, 398
Frege, G., 67, 69, 363–364, 397
Frege–Russell–Scott invariant, 395
Friedman, H., 408
function builder notation, 11
functionals, 375–376
functions, 10–13
bijection, 12
Cantor ternary, 278
characteristic, 114
choice, 94
composition of, 12
continuous, see continuity, continuous
maps
extension, 11
functions (cont.)
homogeneous set for, 241
image of
forward, 11
inverse, 11
injective, 12
notation
function-builder, 11
one-to-one, 12
one-to-one correspondence, 12
onto, 12
pairing (effective), 98
restriction, 11
surjective, 12
fundamental theorem of algebra, 65

G
G Griffiths sets, 290–291
continuum hypothesis for, 294
dense-in-itself, 293
Gödel incompleteness theorem, 416
Gödel’s Program, 404–405, 411
Gödel, K., 215n, 216, 354, 365, 396, 398, 399,
401–402, 404–406
Gaifman, H., 406n
Gale–Stewart theorem, 408
Galileo, 85
games
Banach–Mazur, see Banach–Mazur game
infinite, see infinite games
generalized Cantor sets, see Cantor sets,
generalized
Generalized Continuum Hypothesis (GCH),
see Continuum Hypothesis,
Generalized
greatest lower bound, 155, 256

H
Harrington, L., 409
Hartogs’
cardinal, 203–205
ordinal, 203–205
set, 203–205, 377
theorem, 203–205
Hausdorff maximal principle, the, 224
Hausdorff, F., 159, 195, 217, 218, 224, 229
Heine–Borel
condition, 283
theorem, 281–285
Hilbert, D., 53n, 72, 216n
homeomorphic, homeomorphism of
order types, 301
orders, 301–303
sets of reals, 276–277
subsets of \(\mathbb{R} \) with orders and order types,
302–303
homogeneous set (for partitions, for functions),
241

I
ideal, \(\sigma \)-ideal (of sets), 286–287
inclusion map, 156
induction
principle of (finite), 2, 179, 383
principle of (over finite sets), 83
transfinite, see transfinite induction
inductive
family, 83
inductive set, 83
infimum, 155
infinitary combinatorics, 245
infinite
branch, see tree, infinite branch
cardinals, 86
Dedekind, see Dedekind infinite
sequence, 95
binary, 115
sets, 83, 84
Dedekind, see Dedekind infinite
infinite games, 407–409
inner models, 402n
intermediate value theorem, 50, 173–174, 276
as characterization of the continuum, 53,
174
failure of, 49–50
intervals
in orders, see orders (linear), intervals
of real numbers, see real numbers and sets,
intervals
invariant, see complete invariant
Frege–Russell–Scott, 395
irrationals
Dedekind’ definition of, 51
isomorphism
finite partial, 160
of orders, 135–136

J
Jensen’s Diamond Principle (\(\Diamond \)), 166, 250, 402
Jensen, R., 166, 250, 397
K

König’s inequality, 125, 126
cofinality version, 213
Infinity Lemma, 237–238, 246

König, J., 126
Kechris, A. S., 409, 410
Kelley, J. L., 396
Kleene–Brouwer order, 147, 162, 326
Kuratowski, K., 8n, 92, 345, 373

L

L, see constructible sets
lambda-calculus, 366
Landau, E., 38n, 57n, 59n, 64n
large cardinals, see cardinal numbers, large cardinals
least upper bound, 155, 256
Least Upper Bound property, 155
Lebesgue measurability
of all sets of reals, 404, 408
of analytic sets, 333–335
of PCA (Σ^1_1) sets, 354–355, 402, 404, 406, 409
of projective sets, 404, 409–410
Lebesgue measurable sets, 287–290, 419
non-measurable sets, 297, 299
Lebesgue measure on \mathbb{R}, 289–290, 417
CCC property, 290
existence, 419–420
monotonicity, 289
outer regularity, 289
translation invariance, 289
uniqueness, 289
Lebesgue measure zero, 285–287
Lebesgue, H., 285–290, 324, 419
lengths (magnitudes), 54–58
lexicographic
see orders (linear), 218
limit points (lower, upper)
in orders, 149–152
of order ω, 151
second and higher order, 151
two-sided, 149
of real sets, 266–267
two-sided, 267
Liouville constant, 107
Liouville, J., 107
logicism
logician program, 363–365
long line, the, 201
Lusin separation theorem, 331–333
Lusin’s problem, 352–355, 402
Lusin, N., 216, 332, 342, 352–355, 406

M

magnitudes (lengths), 54–58
signed, 58
Martin’s Axiom (MA), 249–250, 354
Martin, D. A., 354, 389n, 407–410
Mazur, S., 410
Mazurkiewicz, S., 343
meager sets, 292
measurable
cardinal, see cardinal numbers
sets, see Lebesgue measurable sets
measure problem, 299, 345–352
measure zero, see Lebesgue measure zero
measures
κ-complete, 347
atomless, 347
continuous, 347
finite, 347
non-trivial, 347
probability, 347
total, 347
two-valued, 347
monotone
convergence property, the, 170
real functions, 128
sequences (increasing, decreasing), 170
monotone order property, 245
Morse, A. P., 396
Morse–Kelley set theory (MK), 396
Moschovakis, Y., 410
Mostowski, A., 390
Mycielski, J., 408, 410

N

natural numbers
defined, 87
nested interval property, the, 61, 256
and complete orders, 168–170, 206, 214
Cauchy, 61
in \mathbb{R}, 256
sequential, 169, 206, 214
strong, 169, 206, 214
New Foundations, see NF set theory
NF set theory (of Quine), 397
stratified formula, 397
non-measurable sets, 297, 299
nowhere dense sets of real numbers, 272–275
numbers
algebraic, 106
cardinal, see cardinal numbers
ordinal, see ordinal numbers
transcendental, 106

O
open sets, see real numbers and sets
order types, 138–145
\(\omega, \zeta, \eta, \lambda \), 138
characterization of
order type \(\eta \) of the rationals, 161
order type \(\lambda \) of the reals, 165
defined as Frege–Russell–Scott invariant, 395
operations of, 138–145
product, 143–145
sum, 139–142
reverse, 138
symmetric, 138
ordered
\(n \)-tuple, 16
field, 58–62
definition of, 60
of the real numbers, 58–61
properties of, 62
pair, 8, 373
Kuratowski’s definition, 8n, 373
orders (linear), 21–23, 131–133
\(\eta_1 \)-orderings, 218–219, 414
anti-lexicographic, 142
bounded sets (below, above), 133
bounds (lower, upper), 133
greatest lower bound, 155
infimum, 155
least upper bound, 155
supremum, 155
CCC (countable chain condition), 163–164, 247
closed subsets, 172
cofinal subset, 135
cointersection, 135
complete (Dedekind), see complete orders
completion (Dedekind), 166–168
continuity, continuous maps, 50, 157
continuous (Dedekind continuity), 154
continuous embedding, 158
continuum, 154
dense, 22, 152–153
\(\eta_1 \)-orderings, 218–219
dense orders vs dense subsets, 153
relative density, 153
subsets, 153
dense-in-itself, 170–172
derived set, derivative, 149–152
\(D(A) \), 149–152
embedding, 156
continuous, 158
endpoint, 22, 133
gaps, \((\omega_n, *\omega_n), (\omega_1, *\omega_1), (\omega, *\omega), 214, 218–219, 414 \)
intervals, open and closed, 135
isomorphism, 135–136
Kleene–Brouwer order, 147, 162, 326
lexicographic, 142
powers, 218
limit points (lower, upper), 149–152
of order \(\omega \), 151
second and higher order, 151
two-sided, 149
monotone order property, 245
ordinal, see ordinal numbers
perfect subsets, 172
predecessors, 133
immediate, 22, 133
rearrangements, 136–138
reverse, 137, 138
segments, initial and final, 135
separable, 164
short, 226–228
similar, similarity of, 135–136
suborders, 134
successors, 133
immediate, 22, 133
symmetric, 138
types, see order types
well-orders, see well-ordering
orders (partial), see posets
ordinal numbers (ordinals), 175–179
canonical order, 195–197
Cantor normal form, 198
club (closed unbounded) sets in \(W(\omega_1) \), 202–203
cofinality, see cofinality
comparability theorem for, 185
countable ordinals, 193, 199–201
division algorithm, 191
epsilon numbers, 193
\(\varepsilon_0 \), 193
even (and odd), 191
expansion in powers of a base, 197
exponentiation, 191–195
Hausdorff’s definition of, 195
finite, 382–383
Hartogs’, see Hartogs’ ordinal
initial ordinals, 204
\(\omega_\alpha \), 205
Index

439

initial set of, 186, 381
$W(\alpha)$, 184–186
least uncountable ordinal ω_1, 200
ω_1, 200
limit, 177, 381
limit of a set of, 188
normal functions on, 194
odd (and even), 191
operations defined by transfinite recursion, 189–191
ordering of (comparing), 183
product (multiplication), 177, 187
defined by transfinite recursion, 190
product-closed, 194
rank, rank function, see rank
remainder ordinals, 191–195
characterization of, 194
second number class, 204
subtraction, 190
successor, 177, 381
successor of, 187
sum (addition), 177
defined by transfinite recursion, 189
sum-closed, 194
supremum of a set of, 188
transfinite induction, 179–181
transfinite recursion over, 189, 381
Von Neumann ordinals, 377–389
comparability theorem for, 379
definition of, 380–381
existence, 380
uniqueness, 379–380
well-ordered sum of, 186–187

outer measure, 419

P
pairing functions (effective), 98
paradoxes, set-theoretic, 361–363
Burali-Forti paradox, the, 361, 381
Cantor’s paradox, 362
impact on the logicist program, 363–364
resolutions of, 364–367
Russell’s paradox, 362–363
partial orders, see posets
partitions, 15–16
and choice (axiom of), 90–93
and equivalence relations, 20–21
homogeneous set for, 241
PCA sets (Σ^1_1 sets), 352
Baire property of, 354–355, 402, 404, 406, 409
Lebesgue measurability of, 354–355, 402, 404, 406, 409

perfect set property for, 354, 406, 409
regularity properties of, 352–355, 406, 409
Peano Arithmetic, 29
Peano curves, 278–279
Peano, G., 29
perfect set property, 295
for all sets of reals, 404, 408
for analytic sets, 335–337
for coanalytic sets, 353, 354, 402
for PCA (Σ^1_1) sets, 354, 406, 409
for projective sets, 404, 409–410
perfect sets, 303–305, 335–337
cardinality of
in \mathbb{R}, 294
in complete orders, 173
in orders, 172
of real numbers, 268–270, 274–275, 294
property, see perfect set property
platonism, 405
pluralism, 405
Polish spaces, 343
posets (partial orders), 221–229
antichain, 222
bounded set (below, above), 222
bounds (lower, upper), 222
CCC (countable chain condition), 249
chain, 222
comparable and incomparable elements, 222
containing η_1 chains, 228
$P(\mathbb{N})$ modulo finite sets, 228
order of magnitude for positive sequences, 228
orders of infinity for sequences, 228
dense subset, 249
downward closed subset, 222
embedding of, 223
filters in, 249
greatest and least element, 222
initial part, 222
isomorphisms of, 223
maximal and minimal element, 222
reflexive, 221
representation theorem for, 223
strict, 221
strictly increasing maps on, 223
power set, 6
pre-well-ordering, 208
primitive recursion, 42–45
definition by, 44–45
principle of definition by, 45
Principia Mathematica (PM), 365–366
principle of abstraction, 20
comprehension, naive, 3, 363–364
definition by primitive recursion, 45
extensionality, 3, 370, 421
finite induction, see induction, principle of (finite)
induction (finite), see induction, principle of (finite)
recursive definition, 42–44
transfinite induction, recursion, see transfinite induction, recursion
projective determinacy, 409–411
projective sets, 352–355
Baire property of, 404, 409–410
Lebesgue measurability of, 404, 409–410
perfect set property for, 404, 409–410
regularity properties of, 352–355, 409–410
property of Baire, see Baire property

Q
Quine, W. V. O., 78, 365, 365n, 397
quotient map, 20

R
Ramsey’s theorem, 241–243, 245–246
general, 242
Ramsey, F. P., 365
range, see relations, range of rank (ordinal)
Cantor–Bendixson (CB-rank), see Cantor–Bendixson rank
for well-founded trees, 238
of regular sets, 392–393
on well-founded structures, 230–232
of elements, 231
of structure, 231
rank function (ordinal)
for abstract derivatives, 207
for well-founded relations, 231
canonical, 231
rational numbers
b-adic, dyadic, triadic, 262
repeating infinite digit expansions of, 262
ratios, 34–41
Archimedean property of, 39
Dedekind partition of, 39
finiteness property of, 39
inadequacy of (in geometry and algebra), 49–50
integral, 37
nonsquare, 40
square, 40
density of, 40
R, the set of all real numbers, see real numbers and sets
real numbers and sets
analytic, see analytic sets
Baire property, see Baire property
Bernstein sets, see Bernstein sets
Borel, see Borel sets
bounded set, 256
bounds (lower, upper), 255–256
greatest lower bound, 256
infimum, 256
least upper bound, 256
supremum, 256
closed sets, 268–270
closure, 268
comeager set, 292
compactness, 277
condensation points, 273–274, 305
continuity of a function at a point, 275
continuous functions on, 275–276
convergent sequence, 270
countable closed bounded sets
classification of, 310
definition of real numbers and R, 58
dense (everywhere dense) sets, 270–271
dense-in-itself sets, 268–270
derived set, derivative, 267
D(A), 267
discrete sets, 272
everywhere dense sets, 270–271
Fσ sets, 290–291
first category set, 292
Gδ sets, 290–291
homeomorphisms, homeomorphic sets, 276–277
intervals, 1, 101, 255
bounded, 102
closed, 255
half-infinite, 102
nested ternary sequence of, 261
open, 255
proper and improper, 102, 255
subdivision trees of, 257
ternary subdivisions of, 258
isolated point, 267
limit points (lower, upper), 266–267
two-sided, 267
meager set, 292
measurable, see Lebesgue measurable sets
measure zero, see Lebesgue measure zero
nested intervals theorem, 256
nowhere dense sets, 272–275
open sets, 265–266
canonical decomposition into intervals, 266
countable base for, 265
countable chain condition, 266
PCA (Σ^1_2) sets, see PCA sets
perfect set property, see perfect set property
perfect sets, 268–270, 274–275, 294,
303–305, 335–337
regularity properties, see regularity properties
residual set, 292
somewhere dense sets, 272
strong measure zero, 287
ternary expansions of, 261
Vitali sets, see Vitali sets
realism, 405
recursive definition, 42–45
basic principle of, 42
principle of, 42–44
reflection, 85
reflexive
cardinals, 89
sets, 72, 85, 374–375
regular sets, 391–393
rank of, 392–393
regularity properties
of analytic sets, 337–338
of PCA (Σ^1_2) and projective sets, 352–355
relational, 375–376
relations, 8–10
antisymmetric, 9
asymmetric, 9
composition of, 9
connected, 9
domain of, 8
equivalence, see equivalence relations
inverse, 9
irreflexive, 9
product of (relative), 9
properties of, 9
range of, 8
reflexive, 9
symmetric, 9
transitive, 9
transitive closure of, 84, 232
well-founded, see well-founded relations
relativization, 399
residual sets, 292
reverse mathematics, 243
Robinson, R. M., 396
Rowbottom, F., 406n
Russell set, 363
Russell’s paradox, 362–363
Russell, B., 67, 69–70, 93, 113, 361–365, 367,
397
S
Schröder, E., 111
Schröder–Bernstein theorem, see Cantor–Bernstein theorem
Scott, D., 78, 394–395, 406n
second number class, 204
segments
in orders, see orders (linear)
of sequences, strings, see sequences, strings
selector, 93
separable orders, 164
separating family, 347
sequences, 16–19
binary
finite, 117
infinite, 115
Cauchy, 270
concatenation of, 18
convergent, 170, 270
extension of, 18
finite, 16
infinite, 95
limits of, 270
monotone (increasing, decreasing), 170
prefix (initial), 18
segment (initial), 18
uniqueness of limits of, 270
set builder notation, 4
set, sets
(Boolean) algebra of, 7
analytic, see analytic sets
Bernstein, see Bernstein sets
Borel, see Borel sets
choice, 91
comeager, 292
constructible, see constructible sets
countable, 94–100
cumulative hierarchy of (V_α), 386–387
Dedekind finite, 85–86
Dedekind infinite, 72, 85–86, 88–90,
100–101, 374–375
denumerable, 95
empty (\emptyset), 4–5
equinumerous, 77
effectively, 95
F_ω, 290–291
finite, 82–84
Dedekind, see Dedekind finite
first category, 292
set, sets (cont.)
G, 290–291

Hartogs’, see Hartogs’ set
ideal, σ-ideal (of sets), 286–287
inductive, 83
infinite, 83, 84

Dedekind, see Dedekind infinite
meager, 292
measurable, see Lebesgue measurable sets
measure zero, see Lebesgue measure zero
membership, 2
notation
brace-list, 5–6
set builder, 4
of uniqueness, 311
operations, 6–7
power, 6
reflexive, 72, 85, 374–375
regular, 391–393
rank of, 392–393
residual, 292
similar, similarity of, 77
effective, 95
singleton, 4–5, 78
strong measure zero, 287
successor of, X⁺, 379
transitive, see transitive sets
Vitali, see Vitali sets
well-founded, see regular sets
set-theoretic paradoxes, see paradoxes, set-theoretic

SH, see Suslin hypothesis

Shelah, S., 404
short linear orders, 226–228
Sierpiński’s theorem, 318–319
Sierpiński, W., 313, 318–319
Σ²₁ sets, see PCA sets
σ-ideal (sigma ideal) of sets, 286–287
sigma-algebra (σ-algebra), 321–322

CCC modulo a σ-ideal, 335

Silver indiscernibles (sharps), 409
Silver, J., 355, 406n
similarity
of orders, 135–136
of sets, 77
effective, 95
singleton, see set, singleton, see set, singleton
Skolem, T., 367, 369, 371, 398
space filling curves, 278–279
Steel, J., 407, 410
Steinhaus, H., 408
string, 16–19
concatenation, 18
empty (ε), 18
extension, 18
prefix (initial), 18
segment (initial), 18
ternary strings, 259
strong measure zero, 287
structuralism, 67, 70–72
successor of a set, X⁺, 379
supremum, 155

Suslin
Hypothesis, the (SH), 166, 249, 402
independence of, 404
line, 247–248
operation A., 326–330
Problem, the, 166, 247
Suszlin’s theorem, 333
systems, 328
tree, 248
normal, 248
Suslin, M. Y., 166, 324, 333
Swierczkowski, S., 410

T
Tarski, A., 53n, 365
topology, 364–366
simple, 365
topological properties, 277
transfinite induction, see well-ordering, ordinal
numbers, well-founded relations
transfinite recursion, see well-ordering, ordinal
numbers
transitive sets, 382
transitive closure of a set, 390–391
tree, trees, 234–240, 324–326
Aronszajn, 246, 248
binary, 117–119
full, 236
branch, 235
finitely-branching, 235
height
of a tree, 235
of an element ht_T (x), 235
infinite branch
as digit string, 260
as nested intervals, 261
through finitely branching trees, see
König Infinity Lemma
through the binary tree, 118
through trees, 259
König Infinity Lemma, 237–238
levels of, $\text{Lev}_a(T)$, 235
nodes, 234
of strings over a set, 236
over a set, 236
representation theorems for, 236–237
subtree, 235
Suslin, 248
normal, 248
tree property of cardinals, 246
well-founded, 238–240, 325–326, 339–342
existence of (all ranks), 240
ranks for, 238
truncated ranks for, 239

types
order, see order types
theory of, see theory of types

U
Ulam matrix, 333, 335
Ulam, S., 299, 346, 349–351
uniformization, 93
uniqueness problem for trigonometric series, 310
universal sets, 343
universe, set theoretic, 393

V
V, the set theoretic universe, 375, 393
V_α, the cumulative hierarchy of sets, 386–387, 392–394
$V=L$, see axiom of constructibility, see axiom of constructibility, see axiom of constructibility, see axiom of constructibility
Vitali sets, 297–298, 335, 345–346
Von Neumann
ordinals, 377–389
comparability theorem for, 379
definition of, 380–381
existence, 380
uniqueness, 379–380
well-order, 378–381
comparability theorem for, 379
existence, 380
uniqueness, 379–380
Von Neumann, J., see Neumann, J. von
Von Neumann–Bernays set theory (VNB), 395–396

W
weakly compact cardinals, see cardinal numbers
Weierstrass, K., 29
well-founded relations and structures, 229–234
canonical rank decomposition, 230
extensional, 390
Mostowski’s theorem, 390
ordinal ranks, 230–233
of elements, 231
of structures, 231
rank functions for, 231
canonical, 231
transfinite induction, 230, 233
well-founded sets, see regular sets
well-founded trees, 238–240, 325, 326, 339–342
existence of (all ranks), 240
ranks for, 238
well-ordering, 22, 175–179
basic facts, 182–183
cofinality of, see cofinality
comparability theorem for, 185
equivalent conditions for, 176
initial rigidity, 183
pre-well-ordering, 208
property, the, 32
representation by initial sets of ordinals, 184–186
theorem, 208–210
Zermelo’s, 208
transfinite induction, 179–181
transfinite recursion, 181–182
over ordinals, 189
unique ranks for elements, 183
uniqueness of isomorphisms, 182
Von Neumann, 378–381
comparability theorem for, 379
existence, 380
uniqueness, 379–380
Whitehead, A. N., 365
winning strategy, 407
Woodin, W. H., 343, 407, 410–411
word, 17
binary, 117
empty (ε), 18

Z
Zermelo set theory (Z), 387–389
Zermelo’s
axiomatization of set theory, 366–367
Z, see Zermelo set theory
well-ordering theorem, 208
<table>
<thead>
<tr>
<th>Term</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zermelo–Fraenkel system, see ZF set theory</td>
<td></td>
</tr>
<tr>
<td>ZF set theory, 367, 369–385</td>
<td></td>
</tr>
<tr>
<td>language of (formal), 369–370</td>
<td></td>
</tr>
<tr>
<td>atomic formulas, 369</td>
<td></td>
</tr>
<tr>
<td>bound occurrence of a variable, 370</td>
<td></td>
</tr>
<tr>
<td>free occurrence of a variable, 370</td>
<td></td>
</tr>
<tr>
<td>logical symbols, 369</td>
<td></td>
</tr>
<tr>
<td>ZF formula, 370</td>
<td></td>
</tr>
<tr>
<td>ZF property, 371</td>
<td></td>
</tr>
<tr>
<td>ZFC, Zermelo–Fraenkel set theory with Choice, 367</td>
<td></td>
</tr>
<tr>
<td>Zorn’s Lemma, 223–224</td>
<td></td>
</tr>
</tbody>
</table>