Epilogue

Globally healthcare delivery is turning to ICT (Information Communication Technologies) as a silver bullet to remedy its current woes of escalating costs, increasing ageing population, increase in the prevalence of chronic of chronic disease and pressures on providers to deliver quality, patient-centred healthcare. However, to date many are becoming disenchanted with ICT because too often it is failing to deliver the promised nirvana. We believe that one key reason is connected to the fact that simultaneous to the application of ICT it is necessary to also incorporate key management principles and techniques; one such management perspective being lean thinking.

With this in mind, we set about to compile the preceding content to share with our readers the benefits of incorporating lean thinking and related or complementary perspectives can afford to healthcare delivery. Clearly, in one volume it is not possible to delineate all possibilities but we believe we have provided sufficient depth and breadth, covering macro- and micro-perspectives as well as providing case studies that demonstrate how to move forward with key lean thinking initiatives. We trust you have found this illuminating, useful and instructive and we wish you all the best as you move forward to do your part to develop superior patient-centred healthcare solutions.

Nilmini Wickramasinghe, Nov 2012
<table>
<thead>
<tr>
<th>A</th>
<th>Actor network theory (ANT), 198–199</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Adaptive mapping to realization methodology (AMR), 322, 323</td>
</tr>
<tr>
<td></td>
<td>After action review (AAR) approach, 236</td>
</tr>
<tr>
<td></td>
<td>Alzheimer’s Queensland’s (AQ), 147, 148</td>
</tr>
<tr>
<td></td>
<td>American Indians and Alaska Natives (AI/AN) population</td>
</tr>
<tr>
<td></td>
<td>diabetes</td>
</tr>
<tr>
<td></td>
<td>DiaMonD (see Diabetes monitoring device (DiaMonD))</td>
</tr>
<tr>
<td></td>
<td>education and mentoring, 327</td>
</tr>
<tr>
<td></td>
<td>EHR system, 327</td>
</tr>
<tr>
<td></td>
<td>ICCC, 327, 328</td>
</tr>
<tr>
<td></td>
<td>long-term impact, 327</td>
</tr>
<tr>
<td></td>
<td>low income patients, 326, 327</td>
</tr>
<tr>
<td></td>
<td>prevalence, 318</td>
</tr>
<tr>
<td></td>
<td>underinsured patients, 327</td>
</tr>
<tr>
<td></td>
<td>healthcare delivery, 316–317</td>
</tr>
<tr>
<td></td>
<td>HSoS</td>
</tr>
<tr>
<td></td>
<td>cancer diagnosis, 311–312</td>
</tr>
<tr>
<td></td>
<td>collaborative technologies, 308–309</td>
</tr>
<tr>
<td></td>
<td>cultural awareness lack, 310</td>
</tr>
<tr>
<td></td>
<td>federal funding, 310</td>
</tr>
<tr>
<td></td>
<td>funding agencies, 310</td>
</tr>
<tr>
<td></td>
<td>funds disparity, 310</td>
</tr>
<tr>
<td></td>
<td>health delivery summary, 300, 301</td>
</tr>
<tr>
<td></td>
<td>IHS, 300, 301, 310</td>
</tr>
<tr>
<td></td>
<td>intelligence continuum model</td>
</tr>
<tr>
<td></td>
<td>(see Intelligence continuum model)</td>
</tr>
<tr>
<td></td>
<td>Native Americans misclassification, 310</td>
</tr>
<tr>
<td></td>
<td>quality healthcare barriers, 310</td>
</tr>
<tr>
<td></td>
<td>Analysis findings, Epworth HealthCare external analysis</td>
</tr>
<tr>
<td></td>
<td>entrants and substitution threat, 443–444</td>
</tr>
<tr>
<td></td>
<td>market forces, 443, 444</td>
</tr>
<tr>
<td></td>
<td>power of buyers/patients, 445</td>
</tr>
<tr>
<td></td>
<td>power of suppliers, 444–445</td>
</tr>
<tr>
<td></td>
<td>rival intensity, 445</td>
</tr>
<tr>
<td></td>
<td>substitute products/services threat, 445–446</td>
</tr>
<tr>
<td></td>
<td>internal analysis</td>
</tr>
<tr>
<td></td>
<td>clinical systems alignment, 441, 442</td>
</tr>
<tr>
<td></td>
<td>strategic goals, 439–441</td>
</tr>
<tr>
<td></td>
<td>vision, objective and priorities, 439, 440</td>
</tr>
<tr>
<td></td>
<td>people, process, technology and security analysis, 441–443</td>
</tr>
<tr>
<td></td>
<td>SWOT analysis, 438</td>
</tr>
<tr>
<td></td>
<td>Analytic Hierarchy Process (AHP), 64, 118, 121</td>
</tr>
<tr>
<td></td>
<td>Artificial neural network (ANN)</td>
</tr>
<tr>
<td></td>
<td>activation function, 33, 35</td>
</tr>
<tr>
<td></td>
<td>advantage and disadvantage, 31</td>
</tr>
<tr>
<td></td>
<td>computer-assisted analysis, 14</td>
</tr>
<tr>
<td></td>
<td>country healthcare profiles, 38</td>
</tr>
<tr>
<td></td>
<td>definition, 14, 30</td>
</tr>
<tr>
<td></td>
<td>elements of, 33</td>
</tr>
<tr>
<td></td>
<td>evolutionary algorithms, 30</td>
</tr>
<tr>
<td></td>
<td>features, 30</td>
</tr>
<tr>
<td></td>
<td>indicator, 39</td>
</tr>
<tr>
<td></td>
<td>issues, 14</td>
</tr>
<tr>
<td></td>
<td>medicine’s definition, 38</td>
</tr>
<tr>
<td></td>
<td>merits and demerits, 36</td>
</tr>
<tr>
<td></td>
<td>MLP, 15</td>
</tr>
<tr>
<td></td>
<td>modeling and optimization, 30</td>
</tr>
<tr>
<td></td>
<td>multilayer feed-forward network, 35</td>
</tr>
<tr>
<td></td>
<td>network architectures, 35</td>
</tr>
<tr>
<td></td>
<td>nonlinear model, 33, 34</td>
</tr>
<tr>
<td></td>
<td>product/service, 13</td>
</tr>
<tr>
<td></td>
<td>pyramidal cell, 33, 34</td>
</tr>
<tr>
<td></td>
<td>QOL</td>
</tr>
<tr>
<td></td>
<td>assessment criteria, 15</td>
</tr>
<tr>
<td></td>
<td>healthcare contexts, 16–19</td>
</tr>
</tbody>
</table>
Artificial neural network (ANN) (cont.)
leave-one-out cross-validation, 22, 24
patients, 20
pharmacists and nurses, 20–22
prediction performance, 22, 23
scores, 24
three-layered ANN architecture, 21, 22
quality characteristics, 39
service quality
attribute characteristics, 33, 37
customer’s expectations, 31
feature, 32
forecasting, 37
measurement tools, 31, 33
normed quality model, 32
perception and performance, 31
Qualitometro, 32
SERVPERF, 32
SERVQUAL, 32, 36
two-way model, 32
variable characteristics, 33, 37
supervised and unsupervised learning, 14, 36
Assistive technologies (ATs)
carers experience
advantage, 155–156
alternative equipment, 157
benefit, 156
exit sensor, 156
perception, 157
significant outcome, 156
data collection
ethics, 149
limitations, 149
sampling and recruitment, 148–149
definition, 145
dementia process, 154
devices, 154
impact of, 150–151
implementation
carer burden and anxiety, 160
falls/injuries, 161
residential and community care, 161
safety, home, 159
wandering, 161
interventions, 154
issues
carer nervousness, 151, 152
carer stress levels, 151, 153
client, 151, 152
correlation, 153
pre-AT and post-AT usage, 151
limitations
frustrations, 158
GPS watch, 157
participation, 158
qualitative analysis, 159
method, 148
objective, 147–148
person with dementia, 150–151
qualitative data, 155
use of, 153
wandering, 154
ATs. See Assistive technologies (ATs)
Australia’s and Germany’s e-health
definition, 210
developments, 210, 212–213
e-prescribing module, 215
key facts, 210–211
lack of awareness, 214
lean six sigma, 217–218
lean thinking, 215, 217
macro and micro levels, 214
NCHO, 209–210, 215
public healthcare system, 210
qualitative data analysis, 214
six sigma approach, 217
thematic analysis, 214
2-tier healthcare system, 210
TOWS analysis, 218–220
triangulation, 214
B
Best–Worst scaling (BWS), 270–272, 276, 277, 283
C
Calorie Cruncher application, 377
BMI measures, 372
calorie consumption, statistics on, 372, 373
data collection, 372, 373
user registration for, 371, 372
Canadian Institute for Health Information (CIHI), 240
Centralized Emergency Department, 552, 553
CFA. See Confirmatory factor analysis (CFA)
Chronic disease care model, 319, 320
Cloud computing, 498–499
Conceptual model
adoption and implementation, 197
analytical lens, 199
ANT, 198–199
clinical practices, 73–74
delivery operations, 73
development, 197, 198
e-health solutions, 197
hardware and software, 198
healthcare ecosystem, 73
issues, 198, 199
IT formulations, 72
predominant approach, 72
sociotechnical aspect, 73
STS perspective, 198
system structure, 73
Confirmatory factor analysis (CFA)
coping mechanism, 276
Fornell-Larcker criterion, 274
goodness of fit statistics, 273
information involvement distribution, 274
psychometric properties, 274, 275
Consumer health informatics,
See Online social networks
Content validity index for items (I-CVI), 175, 180
Content validity index for scales (S-CVI), 175, 180

D
Data clustering, 281–282
Data mining, 303
Define-measure-analyse-improve-control (DMAIC) methodology, 7
Delphi method, 171
Diabetes monitoring device (DiaMonD), 347
AMR, 322, 323
Australian healthcare context, 339–341
barrier to access, 325
chronic disease care model, 319, 320
HA1C levels, 325
INET web-based model, 321, 322
intelligence continuum techniques, 322–323
logical design, 324
patients monitoring, quality lifestyle, 337
physician availability, 325
physician-led mobile e-health project, 322
processing steps, 325
proof-of-concept, 320–321
regular monitoring, 325
solid institutional regulatory context, 342
solution, 337–338
TBSS, 350–351
ubiquitous monitoring, 320
wireless healthcare program, 322
Diabetes self-management
DiaMonD, 347, 350–351
existing system, 346
health service quality, 347–349
patient satisfaction, 353–354
quality of life, 353–354
service quality perception, 353–354
TBSS
assurance, 352
ease of use, 352
e-service quality, 349
E-S-QUAL, 350
14-item eTailQ scale, 349
perceived control, 353
perceived enjoyment, 352
reliability, 352
service quality perceptions, 349
speed of delivery, 352
technology-facilitated telemedicine, 346–347
DiaMonD. See Diabetes monitoring device (DiaMonD)

E
EDs. See Emergency departments (EDs)
e-Health solutions
Australia and Germany (see Australia’s and Germany’s e-health)
conceptual model, 197
credible and transparent regulatory rules, 332
development and deployment, 332, 333
DiaMonD, 336–339
institution-based view, 333–334
regulatory issues
knowledge deployment, 336
knowledge development, 336
online health content quality, 335
privacy, 334–335
standardization, 336
subsidies, 336
e-Health strategy definition
strategy options, 449, 450
strategy principles, 450
TOWS analysis
Maxi-Maxi strategy, 447
Maxi-Mini strategy, 448–449
Mini-Maxi strategy, 447, 448
Mini-Mini strategy, 449
Electronic health records (EHR)
conceptual framework
attitudes, 170
characteristics factors, 171
physician’s acceptance, 171, 174
social factors, 171, 172
user acceptance, 171, 173
user’s perception, 170
cost benefits, 501
CVI results, 176–179
Electronic health records (EHR) (cont.)
 Delphi study, 179, 180
 Drs perception, 180, 181
 implementation failure, 169
 Iranian hospital system, 170
 methodology
 Delphi method, 171
 I-CVI, 175
 importance and confidence sections, 175
 Iranian perception, 171
 participants, 175
 physicians vs. nonphysicians, 174–175
 mobile health data integration, 327
 physician’s perception, 170
 user-centred approach, 170

Electronic medical records (EMRs), 66

Emergency departments (EDs), 554–555
 centralized emergency department, 552, 553
 change management in, 630
 data analysis
 Chinese hospitals, 106
 ED professionals, 106, 107
 IQ dimensions, 108, 109
 value-added activity, 109
 diagnosis and medical treatment, 99, 100
 errors and disruptions, 99
 Esslingen clinical center (see Esslingen clinical center)
 Flinders Medical Center, 50
 healthcare setting, 98
 information flow, 100–101
 information quality
 dimensions of, 102
 Juran definition, 102
 measurement, 101
 user-based quality, 101
 interdisciplinary emergency departments, 552–553
 IT integration, 630

Katharinenhospital
 (see Katharinenhospital, Stuttgart)
 lean strategy, 98
 manufacturing system, 99
 map of, 555

Marienhospital (see Marienhospital)
 overcrowding in, 553–554
 methodology
 activity description, 103, 104
 credibility and limitations, 105–106
 ED professionals, 105
 introduction stage, 103
 mapping and training stage, 103
 observation sheet, 103
 trial meetings, 105

Robert-Bosch-Hospital, business processes in (see Robert-Bosch-Hospital, Stuttgart)
 simulation, validation, and comparison, 629
 Toyota Production System, 100
 US hospitals, 605

Emergency Severity Index (ESI)
 categories of, 559, 560
 triage, 567

Emotion-orientated coping mechanism, 276

Epworth HealthCare e-Health strategy
 analysis approach
 assumptions and premises, 438–439
 external analysis, 438
 internal analysis, 436–437
 process, 434, 435
 SWOT analysis, 438
 analysis findings (see Analysis findings, Epworth HealthCare)
 challenges, 433
 establishment, 433
 implementation, 453
 key informants
 interview question protocol, 434, 457–458
 organisational structure, 434, 456
 leadership, 433
 objectives, 432, 447
 options, 449, 450
 principles, 450
 recommendations
 competitive advantage, 450–451
 competitive necessity, 451
 people, 452
 processes, 451
 technologies, 452
 road map, 453, 454
 strategic planning process, 434, 435
 TOWS analysis
 Maxi-Maxi strategy, 447
 Maxi-Mini strategy, 448–449
 Mini-Maxi strategy, 447, 448
 Mini-Mini strategy, 449

ESI. See Emergency Severity Index (ESI)

Esslingen clinical center
 barriers and facilitators, 549
 current process flow maps
 admission, 530
 bed occupancy, 533
 communicative devices, 533
 diagnosis, 531
 location and updating data, 531, 532
 residential treatment, 533, 534
triage, 530
waiting areas, 531
walk-in patients/ambulance, 530
X-ray, 531
process inefficiency
admission step-by-step, 534–535
as inpatient, 535
mixed waiting room, 533–534
patient’s location, 533
recommendation
Kiosk check-in-system, 536–538
RFID technology, 535–536
split up waiting areas, 536, 537
step elimination, 537–538
results, 547–548
simulation method
alternative model, 544–546
distribution function, 546
entities and processing, 542–543
Entity Spot serves, 541
floor plan, 540
locations, 539–540
resources, 543–544
routing, 541–542
SEND command, 547
Event-driven process chains (EPCs)
Katharinenhospital, Stuttgart
(see Katharinenhospital, Stuttgart)
Robert-Bosch-Hospital (see Robert-Bosch-Hospital, Stuttgart)
Evolutionary algorithms (EAs), 30
Exploratory factor analysis (EFA), 272, 273

F
Facebook application, 371
data collection process, 366
emotional support, 370–371
findings and implications for, 369–371
health-related behaviors, 371
informational support, 371
interviewees’ personal motivation, 370–371
isolation/lack of friends, 369–370
Federal Republic of Germany (FRG), 552
Fornell-Larcker criterion, 274
Fourth generation evaluation (FGE), 148

G
Gamification, 391–392, 395, 397, 398
German Hospital Federation for Emergencies, 554

H
Healthcare
Australia’s health insurance, 604
constraints management, 7–10
ideal state of, 471
IT, business value of (see Information technology)
Kaizen techniques
elements, 4, 5, 7
5S framework, 5
tools, 5, 8
lean approach (see Lean approach)
PCEHR (see Personally controlled electronic health records (PCEHR))
preventive healthcare, persuasive services in (see Persuasive services)
six sigma
DMAIC methodology, 7
manufacturing and service processes, 5, 6
principles of, 7, 9
TQM
definitions, 4
hard aspects, 4, 6
soft aspects, 4, 5
twenty-first century, 45–46, 63
Healthcare disparities. See Limited English proficiency (LEP) patients
Healthcare system of systems (HSoS)
American Indians and Alaska Natives (AI/AN) population
cancer diagnosis, 311–312
collaborative technologies, 308–309
cultural awareness lack, 310
federal funding, 310
funding agencies, 310
funds disparity, 310
health delivery summary, 300, 301
IHS, 300, 301, 310
intelligence continuum model
(see Intelligence continuum model)
Native Americans misclassification, 310
quality healthcare barriers, 310
HIG
definition, 293
ICT architecture/infrastructure, 294–295
schematic diagram, 293, 294
security and trust, 295
zero-sum competition, 295
key definitions, 289
key properties, 290, 292
network-centric healthcare
Healthcare system of systems (HSoS) (cont.)

feature, 292
legislative regulations, 293
people-centric perspective, 291–292
physical, cognitive, and informational domains, 290, 292
technology-centric perspective, 291–292
patient-centric perspective, 288
in United States
clinics, 306
emergent behavior, 306
evolutionary development, 306
geographical distribution, 306
governmental agencies, 306
healthcare context, 290, 291
healthcare expenditures, 307–308
hospitals, 305
managed care companies, 305
operational and managerial independence, 306
physicians, 305
Web of healthcare players, 288, 290

Health information grid (HIG)
definition, 293
ICT architecture/infrastructure, 294–295
schematic diagram, 293, 294
security and trust, 295
zero-sum competition, 295

Health Insurance Portability and Accountability Act (HIPAA), 293

Health service quality, 347–349
Health tourism, 226
Hierarchical Bayes (HB) analysis, 276
HIG. See Health information grid (HIG)
Home and Community Care (HACC), 144

Hospital quality
Best–Worst scaling, 270–272
CFA
coping mechanism, 276
Fornell-Larcker criterion, 274
goodness of fit statistics, 273
information involvement distribution, 274
psychometric properties, 274, 275
concept of value, 267
consumer health informatics, 267
data collection, 269
exploratory factor analysis (EFA), 273
information preferences
count analysis, 276
data clustering, 281–282
HB analysis, 276
hospital patients and potential patients, 278, 280
on outcome quality, 278, 280
on process quality, 278, 279
on structure quality, 278, 279
subjective priority scores, 276–278
utility score, 276, 278
involvement scale, 269
lean principles, 266
multidimensional approach, 268
participants selection, 269
participation rate, 273
root cause analysis, 267, 268
statistical analysis, 272
5-Whys exercise, 267–268

HSoS. See Healthcare system of systems (HSoS)

I
Indian Health Service (IHS), 300, 301, 310, 316–317
INET web-based model, 321
Information communication technology (ICT)
aritage/infrastructure, 294–295
Information quality (IQ)
dimensions of, 102
Juran definition, 102
measurement, 101
user-based quality, 101
Information technology
conceptual model
clinical practices, 73–74
delivery operations, 73
healthcare ecosystem, 73
IT formulations, 72
predominant approach, 72
sociotechnical aspect, 73
system structure, 73
distillation, 64–65
economy of
expenditure per capita, 56, 57
GDP, 56, 57
healthcare systems, 57–60
OECD, 56
healthcare delivery
AHP, 64
benefits, 60–61
enterprise of, 60, 61
medicare, 61, 62
operating system, 62
poor quality, 62
statistics, 62
telemedicine, 63, 64
twenty-first century, 63
healthcare firms
EMRs, 66
hospital capital components, 69
investment, 66, 70
labor components, 69
marginal revenue, 69
performance measurement, 70
quality of patient care, 66
stochastic frontier approach, 69
strategy, 70–72

lean principles
benefits of, 74
camp adopts, 75
healthcare, 76–77
lean six sigma, 77
manufacturing, 76
value creation, 74–75
portfolio, 65–66, 68

Infrastructure as a service (IaaS), 499
Innovative care for chronic conditions framework (ICCC), 327, 328
Intelligence continuum (IC) model, 322–323
business intelligence/analytics, 304
components, 303
data mining, 303
definition, 300
generic healthcare information system, 300, 302–303
healthcare challenges, 303
knowledge management, 304–305
Intelligent operational planning support tool (IOPST) solution
before vs. after nursing process, 420–428
before vs. after patient journey, 412–418
built-in intelligence, 411
customer’s perspective, 412
design, 411
flows, 411
hard/soft side, 406
healthcare waste, 410
implementation, 412
lean design, 406
nursing care
complex and chaotic, 406
computerised decision support systems, 407
macro level, 406
micro level, 406–407
nursing information systems, 407
potential benefit, 407
organisation-wide system, 419–420
patient’s bedside, 411
point of care, 411
Toyota Production System, 408, 410
value
definition, 407
evolution, 408, 409
principles, 408
wastes, 407–408
Womack and Jones’s model, 408, 410

Interdisciplinary emergency departments, 552–553
IOPST solution. See Intelligent operational planning support tool (IOPST) solution
IQ. See Information quality (IQ)

K
Kaizen techniques
elements, 4, 5, 7
SS framework, 5
tools, 5, 8

Kano model
basic services, 398, 399
categories, 398, 399
excitement services, 400
healthcare applications, 400
performance services, 399

Katharinenhospital, Stuttgart
ambulance, 558, 583
arrangements, 564, 580
bed management, 565, 581
bed, search for, 566, 593
blood test, 564, 582
computer tomography, 563, 584
council, 564, 585
different hospital, 565, 586
examinations, 564, 591
first contact
with doctor, 563, 587
with nurse, 562–563, 588
improvements, 572–574, 578–579
methodology, 555–556
new process bed management 3,
568, 570–571, 589
case manager, 575, 576
special computer system, 575–577
transporter team, 575, 577
new process bed management 4, 571–573,
577–578, 590
organigram of, 554, 555
patients’ arrival, 557, 592
sonography, 563, 594
treatment, 565, 595
triage, 566–568, 574–575, 596–598
administrative process, 562
definition, 558
ESI rules, 567
length of, 560, 561
subprocess of, 560, 569
triage room, 562
waiting times, 559–562, 567
"walk-in" process, 558, 599
X-ray, 563, 600
Kiosk check-in-systems, 536–538
Knowledge management (KM), 432
information-rich industry, 226
MARY hospital case study
healthcare quality, 230
knowledge and strategy gap, 227, 229
knowledge levels comparison, 227, 229
organization chart, 227, 228
patient waiting times, 230
SWOT analysis, 227, 230
Zack’s approach, 227
Nonaka SECI model, 235–236
Knowledge transference, 236

L
Lean approach
benefits, 52
bursts, 50
history of, 44–45
hospital-based rounding, 50
organizations, 49–50
practitioner, 51
principles of
customers, 46
e-prescribing, 49
goal of, 46
manufacturing, 47, 48
pursue perfection, 49
upstream and downstream, 47
value stream and remove, 46–47
VSM, 47
process flow map, 50
SOA
business system, 89
perfection, 88, 89
principles, 89
8Ps approach, 90
tools, 90, 91
wastes and value creation, 90, 92
Lean enterprise management
administration and accounting, 251
disadvantages, 261–262
flow creation, 255–256
patients, dissatisfaction, 252
perfection, 259–260
policy deployment, 262
pull system creation
advantages, 259
collaborative mechanisms, 258–259
definition, 256
just-in-time inventory, 256
local and main pharmacy, 257
for medical supplies, 256–257
out-of-stock medication, 257
3-step pull system, 258
supply chain, 257, 258
specifying value, 244–246
time spent by patients, 250, 251
value stream identification, 246–247,
249–250
waste
defects, 248
definition, 247–248
human motion, 248, 252–253
inventories, 248, 252
overprocessing, 248, 252
overproduction, 248, 252
transportation, 249
type I, 249
type II, 249
waiting, 249, 253
Lean healthcare
confusion, 464, 465
defects, 465
inventory, 465
motion/conveyance, 465
overprocessing, 465
overproduction, 465
VSMs (see Value stream maps (VSMs))
waiting, 465
Limited English proficiency (LEP) patients
Civil Rights Act 1964, 496
communication barriers impact:, 506
delay/denial of services, 496
key issues, 497
problem statement, 497
technology solution
before vs. after scenarios, 501, 503–504
barriers and facilitators, 505
cloud computing, 498–499
communication and coordination, 505
cost of service objectives, 505
electronic health records, 501
goodness of service, 499, 500
healthcare encounter, 499, 500
healthcare value proposition, 505
key benefits, 501–502
key findings, 506–508
key technology function areas, 499,
500
language-assisted intake and workflow
solution, 500–501
with/without intake assist, 506, 509
Title VI, 496
understanding patient symptoms, 496
M
Malaysian healthcare system
health tourism, 226
KM principles (see Knowledge management (KM))
patient flow scenarios, 232–234
private and public health sector, 230, 231
self patient referral, 230, 231
two-tier system, 226
Manchester Triage System (MTS), 611–613, 616, 622
Marienhospital
actual simulation
entity, 523
layout, 522
locations, 522, 523
processes, 523
barriers and facilitators, 525–526
current process flow map
admission log, 516
ambulance, 515
classification and waiting time, 516
data collection, 515, 516
Notfallpraxis, 516
ORBIS system, 515, 516, 518
patient’s admission, 518
patient’s illness/injury, 517
vital signs and ECG, 517
working day vs. weekend, 518
X-ray/CT examination, 515, 517
event-driven process chains, 515
process inefficiency
button/touch panel, 519
CT scan, 520
flow process, 520, 521
ORBIS, 519
recommendation, 524
simulation method and software, 520, 522
survey, 513–514
triage system, 526–527
Maxi-Maxi strategy, 447
Maxi-Mini strategy, 448–449
Medical coding and billing (MCB)
chargeable patient encounter, 472
current state VSM for, 473
definition, 472
diagnostic and service code, 473, 474
future state VSM, 474, 475
physician records data, 472
procedures, 472
reimbursement, 472
Medicare, 61, 62, 226
MedModel software, 522, 539, 540, 545
Mini-Maxi strategy, 447, 448
Mini-Mini strategy, 449
Mobile applications
characterization of, 387–392
education, 387, 390
feature description, 388–389
feedback
coaching, 391
goal setting, 391
prompting, 391
tracking and analysis, 391
gamification, 391–392
persuasive technologies, 390
services in, 397
smartphones, 389
social interaction, 392
user rating
characteristic categories, 395
individual characteristics, 393–396
linear regression analysis, 394
multivariate results, 394
MTS. See Manchester Triage System (MTS)
Multilayer perceptron (MLP), 15, 23

N
Network-centric healthcare operations (NCHO), 209–210, 215
feature, 292
legislative regulations, 293
people-centric perspective, 291–292
physical, cognitive, and informational domains, 290, 292
technology-centric perspective, 291–292
Nonaka SECI model, 235–236
Non-value-adding (NVA), 485, 486

O
Obesity, 362
causes of, 363
in social networks
confounding, 364
homophily, 364
induction, 364
Object-oriented approach (OOA), 124, 125
Online social networks
Calorie Cruncher application, 371
BMI measures, 372
calorie consumption, statistics on, 372, 373
data collection, 372, 373
user registration for, 371, 372
Online social networks (cont.)
egocentric network, 376
Facebook application, 377
data collection process, 366
emotional support, 370–371
findings and implications for, 369–371
health-related behaviors, 371
informational support, 371
interviewees’ personal motivation, 370–371
isolation/lack of friends, 369–370
NVivo, 368
vs. offline, 364
preliminary social network analysis, 374–377
qualitative study
data analysis, 368–369
data collection, 367, 368
sampling approach, 367, 368
research design, 365–367
social infection, 365
social network sites, 365
strong ties, 364
UCInet, 375
weak ties, 364
Organization for Economic Co-operation and Development (OECD), 38, 56
Outpatient department (OD), 116

P
Patient-administration communication, 506
Patient-physician communication, 506
PCEHR. See Personally controlled electronic health records (PCEHR)
Performance measurement systems (PMS), 114, 123, 124, 128, 139
Personally controlled electronic health records (PCEHR)
Australian healthcare system, 188, 189
benefits, 188
conceptual model
adoption and implementation, 197
analytical lens, 199
ANT, 198–199
development, 197, 198
hardware and software, 198
issues, 198, 199
STS perspective, 198
e-health solution spectrum, 191
features, 191
healthcare flow, 193

Persuasive services
behavior change
behavior-oriented prevention, 383, 384
condition-oriented prevention, 383–384
economic incentive/punishment systems, 384
educational techniques, 384
environmental factors, 384
internal factors, 384
logistical factors, 384
modern technology, advantages of, 385
normative-regulatory techniques, 384
persuasive technology, 385
smartphones, 386
social factors, 384
customer satisfaction of, Kano model
(see Kano model)
mobile applications, market analysis of
characterization of, 381–392
education, 387, 390
feature description, 388–389
feedback, 390–391
gamification, 391–392
persuasive technologies, 384
social interaction, 392
user acceptance, 392–396

Persuasive technology
consolidated services of, 390
definition, 385
services of, 390
Pharmaceutical benefits scheme, 226
Plan–Do–Check–Act (PDCA), 472
Plan-Do-Study-Act (PDSA) cycle, 45
Platform as a service (PaaS), 499
PMS. See Performance measurement systems (PMS)
Problem-orientated coping mechanism, 276
Public healthcare system, 210
Pull system creation
 advantages, 259
 collaborative mechanisms, 258–259
 definition, 256
 just-in-time inventory, 256
 local and main pharmacy, 257
 for medical supplies, 256–257
 out-of-stock medication, 257
 3-step pull system, 258
 supply chain, 257, 258

Q
 QMSQS. See Quantitative model for service innovation strategy (QMSQS)
 QOL. See Quality of life (QOL)
 Quality in Australian Health Care Study (QAHCS), 39
 Quality of life (QOL)
 assessment criteria, 15
 healthcare contexts, 16–19
 leave-one-out cross-validation, 22, 24
 MLP, 23
 patients, 20
 pharmacists and nurses, 20–22
 prediction performance, 22, 23
 scores, 24
 three-layered ANN architecture, 21, 22
 Quality of service, 134, 139
 Quantitative model for service innovation strategy (QMSQS)
 business model, 124, 125
 flow class, 126–127
 function class, 126
 information class, 126
 organisational class, 125–126
 control model, 127–128
 evaluation model, 128–129
 methodology
 control model development, 123–124
 data model, 123
 establishing strategic perspectives, 121
 factors identification, 123
 service processes, 122–123
 strategic performance, 121–122
 OOA, 124
 result model, 128–129

R
 Robert-Bosch-Hospital, Stuttgart, 603–604, 627–629
 administration, 610–611, 621
 ambulance arrival, 609–610
 bed management, 618–619, 626
 methodology, 606–608
 nursing care, 616–617
 blood analysis process, 624–625
 human resources management system, 625
 ID codes, 624
 migrants and foreigners, 625
 physician care, 617–618
 blood analysis process, 624–625
 human resources management system, 625
 ID codes, 624
 migrants and foreigners, 625
 transport process, 619–620, 626–627
 triage, 621–624
 administration process, 611, 613, 616
 triage nurse, 611–616
 triage room, 628
 waiting times, 612–615
 "walk-in" process, 609

Rosa Medical Center
 enterprise management (see Lean enterprise management)
 first-come-first-served basis, 242
 lean thinking, 243–244
 multi-provider polyclinic, 242
 quality improvement programs, 240–241

S
 Service-oriented architecture (SOA)
 conceptualization, 91–92
 definition, 84
 healthcare context, 86, 89
 impact of, 84, 85
 infrastructures, 84
 lean approach
 business system, 89
 perfection, 88, 89
 principles, 89
 8Ps approach, 90
 tools, 90, 91
 wastes and value creation, 90, 92
 levels of maturity, 84, 85
 program management methodology, 84, 86
 strategies and techniques, 84, 87–88
 Service-oriented enterprise (SOE), 84
 SERVQUAL instrument, 349
 Six sigma approach, 217, 432
 DMAIC methodology, 7
 manufacturing and service processes, 5, 6
 principles, 7, 9
SOA. See Service-oriented architecture (SOA)
Sociotechnical system (STS), 190–191, 198
Software as a service (SaaS), 498
Streamline healthcare processes.
See Intelligent operational planning support tool (IOPST) solution
Strength opportunities (SO) quadrant, 447
Strengths and threats (ST) quadrant, 448, 449
Strengths, weaknesses, opportunities and threats (SWOT) analysis
Australia’s and Germany’s e-health, 215, 216
Epworth HealthCare, 438, 446
MARY hospital case study, 227, 230
QMSQS (see Quantitative model for service innovation strategy (QMSQS))
Toyota Production System, 116
Traditional Chinese Medicine (TCM)
alternative service innovation strategy, 134–136
cause-and-effect relationships, 131, 133
creating service processes
online services process, 130, 132
organisational object, 130
patient satisfaction, 130
patients’ perspective, 130, 132
person-type objects, 130
establishing strategic perspectives, 129–131
indigenous management models, 124
IT systems, 133–134
system dynamics analysis
macro level, 136–137
micro level, 136–137
performance measures, 136, 138
sensitivity analysis, 138
Triage, 525–527
ESI, 567
Esslingen clinical center, 530
in Katharinenhospital, 566–568, 574–575, 596–598
administrative process, 562
ESI rules, 567
length of, 560, 561
subprocess of, 560, 569
triage room, 562
waiting times, 559–562, 567
in Marienhospital, 526–527
in Robert-Bosch-Hospital, 621–624
administration process, 611, 613, 616
triage nurse, 611–616
triage room, 628
waiting times, 612–615
U
Urology department
 kinds of patients, 481
 outpatient, 480
 variability, 480, 481
 workflow
 appointment, 482
 medical assistant (MA), 483
 MEDICARE/MEDICAID, 483
 new patient, 481, 482
 prescription, 483
 receptionist, 482–483
V
Value stream identification, 246–247, 249–250
Value stream maps (VSMs), 465–466, 476
check-in process, 489
current state, 470, 473, 474
EMR, 484, 489
eVSM, 467, 469, 473
flows and waiting, 468
future state, 470–471, 474–475
healthcare industry, 486
inflexible scheduling, 484
lean approach (see Lean approach)
lean healthcare process improvement methodology, 469–470
lean manufacturing technique, 485
in MCB, 472–475
NVA activities, 486
objective, 486
patient’s visit, 484
people and request symbols, 466–467
plan implementation, 471
preparations, 481
process symbol, 468
production/delivery process, 485–486
results, 471–472
system’s features, 484–485
urology department
kinds of patients, 481
outpatient, 480
variability, 480, 481
workflow, 481–483
wait time duration in, 468, 469
Web-enabled system, 489
work processes, 467
X-ray image and CT analysis, 484

W
Waiting times
category urgent, 612, 614
for computer tomography, 563
emergent category, 559, 560, 612, 614
immediate, 559, 560, 612, 614
nonurgent category, 559, 560, 613, 614
semiurgent category, 559–561, 613, 614
urgent category, 559, 560
Weaknesses and threats (WT) quadrant, 449
Wireless healthcare program, 322
Womack and Jones’s model, 408, 410

Z
Zack’s approach, 227