Austria, case-based LKF-system (cont.)
 LDF-points, 133
 macro-perspective studies, 140
 micro-perspective studies
 and Canadian global budget-based payment system, 143–144
 federal states, treatment patterns, 148
 hospitals, competition of, 146–147
 LOS, inpatients, 144–145
 regional inpatient allocation, 145–146
 performance optimization strategies, 139–140
 quantity optimization strategies, 140
 social security system, 132
Average Flow Model (AFM), 63–66

B
Bioterrorism
 anthrax attacks, 28
 disease model, 30
 local inventory and dispensing capacity expansion, 32
 oral antibiotics, 31
 prodromal infection, 30
 prophylaxis, 31
 Push Packs, 29
 US Strategic National Stockpile, 29
VMI, 29
Bird flu, 226
Bonferroni correction, 263
Bortezomib, 298
Brownian motion approximation, 262

C
Canadian blood services
 air vs. ground deliveries
 air delivery cancellations, 377–379
 budget, 366
 delivery timeliness, 375, 376
 transit time, 373–374
 transit time variance, 375, 377
 blood supply chain, 370
 consolidation plan, 366
 ground services, Saint John
 baseline model, 381
 confirmatory simulation model, 382–383, 391–394
 demand arrival, 388, 389
 demand modelling, 385–387
 preliminary network design, 381–382
 product arrival, 385
 road closures, 383
 transit times, 383
 verification and validation, 388–390
 weekends and statutory holidays, 383–384
 integer programming model, 371
 New Brunswick (see also New Brunswick, blood services)
 census areas in, 367
 current distribution network for, 368
 stock-holding unit, 369
 as soon as possible (ASAP) orders, 368
 Canadian Institute for Health Information (CIHI), 73, 343–344
 Cancer Care Ontario (CCO)
 NDFP, 405
 pharmacoeconomics research unit
cancer drug funding submission, 408–409
 description, 407
 language, 410–411
 limited training, 410
 model busting, 409
 PSA, 411–412
 type III error, 410
 Cardiopulmonary resuscitation (CPR), 115
 Case series cumulative sum charts (CUSUM), 262–263
 Centers for Disease Control and Prevention (CDC)
 adult immunization scheduler
 ACIP, 4
 Catch-up Immunization Scheduler for Children, 5
dynamic programming algorithm, 6
description of, 7
 pertussis infection, 5
 user interface, 6
 vaccine library, 5
 Mass Vaccination Model, H1N1 pandemic
 arrival intensity, 10
cash clients, 8
decision-makers, 11
 DES model, 8
 flow diagram, 9
 HCDPH, 8
 Medicare Special clients, 8
 optimal and original model, 10
 staff placement, 9
 vaccination cost, 11
Cost-utility analysis (CUA) (cont.)
HIV-positive individuals
 counseling, 163
 HIV transmission chain, 165
 individual and small group interventions, 163
 injection drug users, 165
 program cost calculations, 164
 risky behaviors, 164
 lifetime HIV treatment costs, 172
 new HIV infections, 171
 policy implications, 174–175
 program cost threshold analysis, 169–170
 PSA, 168–169
 risk behaviors, 158
 risk-reduction behavior, 170
 secondary infection model
 degree of adoption, 166
 new infections, 166
 primary transmission, 165
 scenarios, 166–167
 secondary transmission, 165
 susceptible partners, 168
 sensitivity analyses, 174
 sexual behavior data, 173
 uncertainty, 172
Critical Path Method (CPM), 97

D
Data Envelopment Analysis (DEA), 140
Decision analytic model
 early-stage breast cancer, 348, 349
 Ontario framework
 drugs for rare diseases, 283–284
 Hunter disease (see Hunter disease)
Discrete event simulation (DES) model, 8, 46–47, 230–231
Disease registries, in canada, 346
Division of HIV/AIDS Prevention (DHAP), 12
Dose cap, 297–298
Drug Program Information Network (DPIN), 350
Drugs for rare diseases (DRD) evaluation, 284

E
Electronic medical records (EMRs), 254
Emergency medical services (EMS)
 ambulance allocation, 122–125
 call volumes, 108
 planning purposes, 108
 response and service times, 110
 root-mean-square forecast error, 109
 time intervals, 110
 events and time intervals, 106
OR/MS publications, 107
performance evaluation
 code red, 117
 dispatch probabilities, 119
 Erlang B model, 120
 HQM, 118
 MCLP, 118
 optimization heuristics, 121
 repositioning strategy, 120
 simulation models and analytical models, 117
 stochastic models, 117
 transition diagram, 119
performance measures
 coverage, 114
 CPR, 115
 medical outcomes, 116
 survival and coverage probability, 116
 system-wide response-time statistics, 114
 policy implications, 125
response times
 Calgary data, 111
 chute time, 112
 coverage map, probability of, 112
 dispatch time, 112
 travel time, 111
 station planning, 121–122
 statistics, 106
 workload, 113–114
Enzyme replacement therapy (ERT), 285
Euler-forward method, 162
Expanded Chronic Care Model, 75

F
False discovery rate (FDR), 263–264
Forecast error, 300
Formulary access, 296
Free treatment contract, 297–298

G
Game theory, 235–236
Gantt chart, 97
Global positioning system (GPS), 106
Guillain–Barré syndrome, 273
Harm reduction programs, 26–28
Hauptdiagnose-Gruppen (HDG) groups, 137
Henderson County Department of Public Health (HCDPH), 8
Hepatitis B
China
age and health state transitions, 21
age-structured Markov model, 20
alanine aminotransferase, 21
chronic infection, 21
free catch-up vaccination, 19
healthcare costs, 20
newborn vaccination, 19
USA, 22–23
High-risk heterosexuals (HRH), 12
HIV
IDUs, 24
infection model
consumer price index, 162
Euler-forward method, 162
heterosexual men and women, 163
index case, 160
lifetime HIV treatment costs, 161
ODEs, 160
parameter values, 163
transmission rate, 161
policy model, resource-limited settings
conceptual framework, 317–319
cycle length, 322
external calibration, 332, 334
funding uncertainty, 316–317
internal consistency, 331–332
internal validation and calibration, 332
model inputs, 327–328
model software and usability, 322–325
time horizons, 321–322
positive individuals
counseling, 163
HIV transmission chain, 165
individual and small group interventions, 163
injection drug users, 165
program cost calculations, 164
risky behaviors, 164
prevention technologies, in Sub-Saharan Africa (see Sub-Saharan Africa, HIV prevention technologies)
Russia
ART, 25
dynamic compartmental model, 24
infection transmission, 24
public health planners, 26
untargeted treatment strategy, 26
Ukraine
ART expansion, 28
dynamic compartmental model, 27
heterosexual transmission, 26
methadone substitution therapy, 27
Hospital Discharge Database, 348, 350
Hunter disease
causes, 284
incidence, 284
life expectancy, patients
death age, 289, 290
survival curve, 287, 290
Markov model
disease progression, 285–286
generative state and disease progression state, 287, 288
transition probabilities, 287, 289
types, 285
Hypercube Queueing Model, 112
Hypothetical analysis, Hunter disease, 291–292

ICD-9-CM codes, 254–255
Idursulfase, Hunter disease
description, 285
funding policy, 291–292
potential effectiveness of, 291
Incidence density analysis, 325–326
Incremental cost-effectiveness ratio (ICER), 169, 342, 410–413
Influenza pandemics
historical, 226
non-pharmaceutical responses, 227
operations research tools
agent-based simulation, 231–233
decision analysis, 234–235
discrete event simulation, 230–231
game theory, 235–236
optimization, 234
practices using, 236–238
supply chain analysis, 235–236
system dynamics approach, 228–230
pharmaceutical interventions, 226–227
policy implications, 240–244
targeted antiviral prophylaxis, 239
Injection drug users (IDUs)
in Eastern Europe, 24
module, 209–211
Injection drug users (IDUs) (cont.)
in Russia, 24–26
in Ukraine, 26–28

Inpatient reimbursement systems
Austrian case-based payment system
bureaucratic and time structure
optimization strategies, 139
current case-based LKF-system, 136–138
day-based payment strategy, 133
federal states, 132
initial case-based LKF-system, 134–135
LDF-points, 133
performance optimization strategies, 139–140
quantity optimization strategies, 140
social security system, 132
general incentives of, 131–132
hospital technology management, 148–149
quantitative studies, case-based LKF-system
hospital efficiency, 140
incentives, hospitals, 141–148

Integer programming model, 371
Interim Joint Oncology Drug Review (iJODR), 406–407
Internal consistency, 328–330
Iterative process, HIV treatment, 317

K
Kaplan–Meier estimates
HIV policy model, 332, 333
long-term care capacity planning, 52, 53
premenopausal and postmenopausal women, 352
Kefauver–Harris amendment, 251
Krever Commission, 366

L
Leistungsorientierte Diagnosefallgruppen (LDF), 137
Leistungsorientierte Krankenhausfinanzierung (LKF-system), 130
Lenalidomide, 298
Levene’s test, 377
LIFEREG procedure, 50
Long-term care (LTC) capacity planning admission requirements, 43
AFM
capacity levels, 64
Little’s law, 63
mean and standard deviation, 66
planning horizon, 65
sensitivity analyses, 65
simulation approach, 63
ALC patients, 40
Bonferroni approach, 45
case study
CCIMS database, 51
implementation and recommendations, 55–56
Kaplan–Meier survival curves, 52, 53
LHA, 51
LOS distributions, 52
results and analysis, 53–55
sensitivity analysis, 56–57
VIHA, 51
Weibull distributions, 53
discrete event simulation, 46–47
implementation, 50–51
LOS, 46
optimal capacity allocation, 41
optimization, 49–50
Poisson process, 44
policy implications, 66–67
population aging, 40
queuing theory, 42
ratio approach
age-specific utilization rates, 58
Current Ratio, 57
linear regression model, 58
shortcomings of, 57–58
simulation approach, 59
valid ratio policy, 59
service level criterion, 45
simulation inputs
arrival analysis, 47
LOS analysis, 47–48
simulation initialization, 48–49
SIPP approach and modifications
capacity levels, 61
Kaplan–Meier curve, 61
M/M/s queueing system, 60
MOL approach, 62
service time, 63
simulation-optimization approach, 60
stationary systems, 62
square-root rule, 42
staffing levels, 43
waitlist, 44

M
Male circumcision (MC)
behavior change, 183
force of infection, 182
implementation characteristics, 183
mathematical models, 181
neonatal circumcision, 182
policy makers, 181
randomized controlled trials, 181
Manitoba cancer registry (MCR), 348, 350
Mann–Whitney test, 373
Markov Decision Process (MDP), 82
Markov model
 age-structured, in hepatitis B, 20
 community-based care, 85
 early-stage breast cancer, 349
Hunter disease
 disease progression, 285–286
 generative state and disease progression state, 287, 288
 transition probabilities, 287, 289
Maximal covering location problem (MCLP), 118, 121–122
Maximum expected covering location model (MEXCLP), 118
MaxSPRT, 262
MCR. See Manitoba cancer registry (MCR)
Medizinische Einzelbelegungen (MEL), 137
Men who have sex with men (MSM), 12, 13
Methadone, 27
Model busting, 409
Model verification process
 description, 328
 external validation and calibration, 331
 internal consistency, 328–330
 internal validation and calibration, 330
Modified offered load (MOL), 42, 62
Mucopolysaccharidosis type II disease. See Hunter disease
Multi-cohort approach, 319
Musculoskeletal (MSK) syndrome, 285–286

N
National Administrative Health Databases, 343–344
National Health Institutes of Scotland, 93
National Institute for Health and Clinical Excellence (NICE), 168
Needle and syringe programs (NSP), 206
New Brunswick, blood services
 ABO/Rh status, 368
 baseline model, 381
 census areas in, 367
 current distribution network for, 368
 ground relay schedule, 384
 road closure, 383
routine and ASAP demand, 386–387
STAT orders, 386
stock-holding unit, 369
transit times for ground deliveries, 383
time distances for select points, 396
New Drug Funding Program (NDFP), 405
O
Ontario Health Insurance Plan (OHIP), 344
Operations research (OR), public health bioterrorism (see Bioterrorism)
 hepatitis B control
 China, 19–22
 USA, 22–23
 HIV control
 Russia, 24–26
 Ukraine, 26–28
 public health planners, 18
 randomized clinical trial, 18
 Opiate substitution therapy (OST), 208–210
P
Pan-Canadian Oncology Drug Review (pCODR), 406–407
Pandemic influenza. See Influenza pandemics
Pareto’s rule, 95
Patient access schemes, 296. See also Risk sharing agreements (RSA)
pCODR. See Pan-Canadian Oncology Drug Review (pCODR)
Pfizer, 297
Physician Claims Database, 350, 351
Poisson process, 44
Population Extrapolation for Organization Planning with Less Error (PEOPLE), 51
Post-exposure prophylaxis (PEP), 185
Pre-exposure prophylaxis (PrEP), 180
 ART, 188
 condom-substitution analysis, 188
 drug resistance, 189
effectiveness trials, 185
 intervention, 184–185
 modeling impact, 185–187
 policy makers, 189
 prioritizing strategies, 187
 programmatic assumptions, 187
Preparedness Modeling Unit (PMU), 4
Price-volume agreements, 298–301
Primary-care provider (PCP), 86
Principal-agent model, 304
Probabilistic sensitivity analysis (PSA), 168–169, 357
Program Evaluation and Review Technique (PERT), 97
Propensity score, 259
Provincial administrative health databases, in canada
description, 344–345
prognostic test, early-stage breast cancer base case, 355
costs, 354–356
cross-validation, 351
Manitoba administrative databases and linking strategy, 348, 350–351
model description, 348, 349
recurrence score, 347
sensitivity analysis, 355, 357
transition probabilities, 351–354
Push Packs, 29

Q
Quality-adjusted life years (QALYs), 20–23, 161–163
Quebec Department of Social Insurance (RAMQ) database, 86

R
Refined Diagnostic Related Groups (RDRGs), 354
Resource Allocation for Control of HIV (REACH)
example analyses
Saint Petersburg, Russia, 217–218
Uganda, 213–215
Ukraine, 215–217
Futures Group International’s Goals Model, 204
interventions, 203
methadone and HIV treatment programs, 204
OR-based resource allocation tool
behavioral parameters, 207
biological parameters, 209
demographic data, 206–207
dynamic compartmental model, 209–211
health care costs, 208
HIV epidemic data, 207
intervention status, 207–208
key populations, 207
model outputs, 212
optimal allocation, 211–212
QALY, 205
resources, 209
scale up costs, 208
schematic of, 206
setting, 206
policy implications, 220–222
refinement and implementation, 218–220
UNAIDS guidelines, 203
Risk sharing agreements (RSA)
clinical indicators, 298
cost-effectiveness, 298
design, 304–306
free treatment contract, 297–298
optimal manufacturer decision making, 299–302
price reduction, 297
price-volume agreements, 298
social welfare agreements, 298
types of, 308
Robust Rank Order test, 373
Rofecoxib, 252

S
Saint John, blood management
aggregate daily demand, 369
end-labelling, 368
ground services
baseline model, 381
confirmatory simulation model, 382–383, 391–394
demand arrival, 388, 389
demand modelling, 385–387
preliminary network design, 381–382
product arrival, 385
road closures, 383
transit times, 383
verification and validation, 388–390
weekends and statutory holidays, 383–384
SHU, 369
Saint Petersburg, Russia, 217–218
Sequential probability ratio test (SPRT), 261
Sequential testing and interim analysis, drug surveillance
Brownian motion approximation, 262
MaxSPRT, 262
SPRT, 261–262
Šidák correction, 263
Social welfare impact, RSA, 302–304
Stationary, independent, period by period (SIPP), 41
Stock-holding unit (SHU)
 description, 369
 Saint John, 385–387
Sub-Saharan Africa, HIV prevention technologies
 male circumcision
 behavior change, 183
 force of infection, 182
 implementation characteristics, 183
 mathematical models, 181
 neonatal circumcision, 182
 policy makers, 181
 randomized controlled trials, 181
pre-exposure prophylaxis
 ART, 188
 condom-substitution analysis, 188
 drug resistance, 189
 effectiveness trials, 185
 intervention, 184–185
 modeling impact, 185–187
 policy makers, 189
 prioritizing strategies, 187
 programmatic assumptions, 187
vaccines
 baseline prevention scenario, 195
 effectiveness trials, 190–191
 efficacy levels, 196
 intervention, 189–190
 overview, 191–192
 population vaccination coverage, 193
 prevention programs, 193
 RV144 trial data, 192
 scaled-up prevention scenario, 195
 South Africa, 194
Sunitinib, 297
Supply chain analysis, 235–236
System dynamics, influenza
 age-structured system, 230
 compartmental model, 228–229
 higher-level policy planning, 230
 simple system dynamics model, 229
T
 Targeted antiviral prophylaxis, 239
 Tenofovir disopoxyl fumarate (TDF), 185
 Thyroidectomy
 CPM methodology, 98
 deterministic time, 102
 flowchart of, 96
 hemorrhage, 95
 hypoparathyroidism, 95
 laryngeal nerve damage, 95
 probabilistic time, 100
 tasks and activity relationships, 99
Tissue of origin test, 357–358
Tolerance approach, 268–269
Transition probabilities
 Canadian life tables, 353
 21-gene assay, 352–353
 MCR, 351–352
 2-Type model, 305
U
 Uganda, 213–215
 Ukraine, 215–217
 Universal Test and Treat (UTT), 187
 US National Fire Protection Association, 114
V
 Vaccine Adverse Event Reporting System (VAERS), 252
 Vaccines
 baseline prevention scenario, 195
 effectiveness trials, 190–191
 efficacy levels, 196
 intervention, 189–190
 overview, 191–192
 population vaccination coverage, 193
 prevention programs, 193
 RV144 trial data, 192
 scaled-up prevention scenario, 195
 South Africa, 194
 Vaccine Safety Datalink (VSD), 253
 Value-of-information analysis, 357
 Vancouver Island Health Authority (VIHA), 51
 Vehicle routing models, 370
 Vendor-Managed Inventories (VMI), 29
W
 Weibull regression model, 48
 World Health Organization (WHO), 21, 213, 219