A
AAV. See Adeno-associated virus (AAV)
Abatacept, 397, 398
Absorption process, protein drugs
enteral administration, 102
parenteral administration, 102–104
Acellular pertussis vaccines, 448
ACER. See Average cost-effectiveness ratio (ACER)
Acute myelogenous leukemia (AML), 90, 153, 341,
342, 369
ADA formation. See Anti-drug antibodies (ADA) formation
Adalimumab
CDAI, 405
clinical response and remission, 405
description, 394
efficacy and safety, 398–399
pediatric patients, 399
Adaptive immune system
antibodies, mechanisms, 444
APCs, 444
humoral and cellular responses, 442–444
MHC class I molecules process, 445
plasma cells and cytotoxic cells, 444
ADCC. See Antibody-dependent cellular cytotoxicity (ADCC)
ADCs. See Antibody drug conjugates (ADCs)
Adeno-associated virus (AAV)
biology, 487
clinical use, 488
suitability, gene transfer, 488
Adenoviruses
cellular response, 486
characteristics, 486
clinical use, 487
E1 and E3 regions, 486
immunogenicity, 486
infection, 485–486
RCA, 486
serotypes, 484–485
“stealth”, 486
Administration, pharmaceuticals
dosage calculations, 230
filtration, 230–231
flushing solutions, 231
osteoporosis treatment, 230
prophylaxis to prevent infusion reactions, 231
routes, 230
Adult stem cells
bone marrow transplantation, 510–511, 513
description, 509, 511
HSCs, 509–510, 512
mechanisms, 510
MSCs, 511
“stem cell niche”, 509
“transit amplifying” cells, 510
Age-related macular degeneration (AMD), 243
AHFS. See American Hospital Formulary Service (AHFS)
Alefacpet, 394, 402
Alemtuzumab
antibody accumulation, 338
autoimmune
diseases, 383
hyperthyroidism, 384
B-cell chronic lymphocytic leukemia, 382
biological activity, 382
black box warnings, 339
Campath®, 339
Campath-1M, 1H and 1G, 382
cardiac toxicity, 340
CD52, 337, 382
CDCC and ADCC, 337, 338
clinical trial selection, 339, 340
CLL and PLL, 339
combination therapy, 339
and corticosteroids, 382
cytokine, 383
dosage modifications, 340
dose-escalation schedule, 340–341
heart transplantation, 383
indications and clinical efficacy, 339, 340
induction, 382–383
infusion, 383
liver transplant, 383
low-dose calcineurin inhibitors, 383
lung transplant recipients, 383
lymphocytes, 382, 383
myelosuppression, 340
phase I dose-escalation trial, 337
plasma and memory type cells, 382
premedication, antihistamines, 339
steady-state volume, distribution, 338–339
subcutaneous administration, 339
T-cell depletion, 340
thyroid function, 384
Allergic asthma
omalizumab, 406–407
SABAs and LABAs, 406
symptoms, 406
Allometric scaling
allometric plots, 115
description, 114–115
D.J.A. Crommelin, R.D. Sindelar, and B. Meibohm (eds.), Pharmaceutical Biotechnology,
Allometric scaling (cont.)
dose prediction, 116
hepatic metabolism, 115
pharmacokinetic parameters, 115
target-mediated drug disposition, 115–116
AMD. See Age-related macular degeneration (AMD)
American Hospital Formulary Service (AHFS), 225
AMR. See Antibody-mediated rejection (AMR)
Angiogenesis, 355, 356
Antibody clearance, MABs
elimination, 160–161
FcRn receptors, 159
humanized MAB, 159–160
IgGs, 158–159
peptide fragments and amino acids, 158
Antibody-dependent cellular cytotoxicity
(ADCC), 151–152, 154
Antibody drug conjugates (ADCs),
152–153, 161, 345
Antibody-mediated rejection (AMR), 385–386
Anti-drug antibodies (ADA) formation
clearing/sustaining effects, 114
glomerulonephritis, 113–114
immune complex, 114
interleukin-6 (IL-6), 114
Antigen-presenting cells (APCs)
class II molecules process, 444
lymphocytes, 442
phagocytic cells, 442
T-cell epitopes, 451
T-helper cells (Th-cells), 443, 444
Antihuman CTLA-4
CD152, 353
ipilimumab, 353–354
lymphoproliferative disorders, 353
APCs. See Antigen-presenting cells (APCs)
Aptamers, 461–462
ART. See Assisted reproductive technologies (ART)
Arthritides
abatacept, 398
adalimumab, 398–399
adverse effects, 398
belimumab, 401
certolizumab pegol, 399
clinical diseases, 397
corticosteroids and DMARDs, 397
development, anti-TNFα agents, 397–398
etanercept, 399
golimumab, 399
infliximab, 399–400
rituximab, 400
signs and symptoms, 397
SLE, 400–401
tocilizumab, 400
Assisted reproductive technologies (ART), 277, 281, 283
Average cost-effectiveness ratio
(ACER), 242–243
Bacteria soluble proteins, 65
Basiliximab
alemtuzumab, 382–384
anti-idiotypic IgE anaphylactic reaction, 381–382
belatacept, 386–387
blood concentrations, 381
CD25 receptor inhibition, 381
clinical efficacy, 381
cyclosporine and corticosteroids, 381
dose escalation in adult patients, 381
eculizumab, 385–386
IL-2 receptor antagonists
advantage, 381
anti-IL-2, 380
immunosuppressive agents, 381
infusions, 381
murine/human (chimeric) MAB, 381
rejections, 381
rituximab, 384–385
Belatacept
BENEFIT trial, 386
CTLA-4, 386
EBV, 387
graft survival, 386
“immunotolerant” state posttransplant, 386
kidney transplant recipients, 386
Belimumab, 394, 401
BeneFIX®, 307–309
Bevacizumab
angiogenesis inhibitor, 355, 356
breast cancer treatment, 347
FOLFOX and FOLFIRI, 347
GBMs, 349
malignant gliomas account, 348
metastatic colorectal cancer, 347
NSCLC, 347–348
pharmacology and pharmacokinetics, 347
safety, 349
Bioassays
bioactivity, 42
in vitro bioassays, 43
thymidine incorporation, dose-response curve, 42, 43
Biodegradable microspheres
dextran-based microsphere technology, SC/IM administration, 84, 85
PLGA-based delivery systems, 84
PolyActive™, 84
success factors, 84
Bioinformatics
data mining, 183–184
description, 183
DNA sequence, 184
eBiology, 184
information challenges, systems biology, 184
“pharmacy informatics”, 184
utilization, 184
Biologics Price Competition and Innovation Act of 2009 (BPCI Act), 250
Biomarkers
description, 187
discovery and diagnostic development, 187
personalized medicine, 191
proteomic research, 185
SNPs, 189
“theranostic”, 187
Biophysical and biochemical analysis, recombinant proteins
analytical techniques
bioassays, 42–43
blotting techniques, 34–36, 44, 45
chromatography, 40–42
electrophoresis, 38–40
immunoassays, 36–38
mass spectrometry, 43–44
folding (see Folding, recombinant proteins)
forces
electrostatic interactions, 29
hydrogen bond, 29
hydrophobic interactions, 29
repulsive interactions, 29
van der Waals interactions, 29
hydration, 29–30
primary structure
amino acids, 19, 21–22
composition, amino acid, 20, 23
condensation, 19
condensation, 19
frequency, occurrence, 20–21, 24
granulocyte colony-stimulating factor
(G-CSF), 20, 22, 23
hydrophobic characteristics, 21, 23
L-amino acids, 19, 20
nonpolar amino acids, 21
peptide bond, 20
polar amino acids, 19–20
polypeptide sequence, 19
primary sequence, 19
secondary structure
α-helix, 24–26
loops and turns, 26–27
β-sheet, 26
stability, 33–34
tertiary structure, 27–28
Bioreactors
single-use, 51
stainless steel, 52
transgenic animals and plants, 204
types, 49, 66
Biosensor-pump combinations
closed-loop systems, 84, 86
continuous glucose monitoring (CGM), 85–86
PK/PD relationships, 85
plasma level and therapeutic effect, 84–85
Biotechnology. See also Medical biotechnology
and drug discovery
cellular genomics, 212–213
combinatorial chemistry, 211–212
HTS, 210–211
modern drug discovery, 210
opportunity/technique available, 209
recombinant DNA and hybridoma technology, 210
hybridoma techniques, 179
“omic” (see “Omic” technologies)
recombinant DNA technology, 179
site-directed mutagenesis, 208–209
synthetic biology, 209
transgenic animals and plants in drugs
Blood hemostasis models, 299
Blotting techniques
biomolecules, 35
detection systems, 35–36
dot blots/slot blots, 35
protein transfer, 35
Southern blotting, 35
Brentuximab vedotin
ADC, 345
AEs, 346–347
ALCL, 346
ASCT, 346
doses, 346
FDA, 347
Hodgkin’s lymphoma, 346
MMAE, 345–347
MTD, 346
PML, 347
QTc interval, 346
Cancer
antihuman CTLA-4, 353–354
CD antigens (see CD antigens)
description, 337
EGFR inhibitors (see Endothelial growth factor receptor (EGFR) inhibitors)
FDA-approved, 337, 338
gene therapy
benefits, 494
correction, genetic mutations, 495–496
gene-directed enzyme-prodrug therapy, 498–502
immunotherapy, 495
nonviral gene therapy, 498
oncolytic viruses, 497
strategies, 494, 499
tumors sensitization, 495
RANKL, 354–355
stem cells, 520–521
tositumomab, 355
VEGF inhibitors (see Vascular endothelial growth factor (VEGF) inhibitors)
CAPS. See Cryopyrin-associated periodic syndrome (CAPS)
Carboxy-terminal peptide (CTP), 279, 282, 283
Cardiovascular diseases, 494, 499–500
Cascade model, 299, 300
CBA. See Cost-benefit analysis (CBA)
CDAI. See Crohn’s Disease Activity Index (CDAI)
CD antigens
alemtuzumab, 337–341
brentuximab vedotin, 345–347
gemtuzumab, 341–342
rituximab, 342–345
CDC. See Complement-dependent cytotoxicity (CDC)
CEA. See Cost-effectiveness analysis (CEA)
Cell-based model, 299, 300
Cell therapy, stem cells
allogeneic and xenogenic therapies, 514
ES cells, 515
FDA and EMA, 514
production and clinical use, SCNT, 515, 516
“regenerative medicine”, 514
reproductive cloning, “Dolly”, 515, 517
treatments, 515
use of products, 518–519
white blood cells, 514
Cellular uptake, oligonucleotides
CPPs, 470
delivery systems, 470–471
Cellular uptake, oligonucleotides (cont.)
electroporation, tissue, 470
exosomes and microvesicles, 471
formulations, siRNA, 471
grafting, 470
lipid modification, siRNA, 470
mechanisms, 470
miRNA, 471
Certolizumab pegol, 395, 399, 405
Cetuximab
chimeric IgG1 MAB, 351
CRYSTAL trial, 352
EGFR-expressing tumor cells, 351
irinotecan-oxaliplatin failure and irinotecan refractory groups, 351
KRAS, 352
pharmacokinetics, 351
safety, 352
SCCHN, 352
CFU. See Colony-forming unit (CFU)
cGMP. See Current good manufacturing practice (cGMP)
Chemical description, insulin
51-amino acid protein, 255
discrete hexameric complexes, 256
human insulin and insulin analog products, 255, 256
net charge, 255–256
phenolic excipients, 256, 257
primary sequence, 255, 256
R-state hexamer, 257, 258
T-state dimer, hexamer and monomer, 257, 258
X-ray crystallographic studies, 257
zinc and phenolic, 256, 257
Chemical genomics, 212–213
Chemical stability, insulin formulations
acidic solution, 267
AsnB3, B-chain, 267
HMWP, 267–268
Lantus® and Levemir®, 268
purity, 267
Chemistry, manufacturing and controls (CMC) section, 247–248
Chromatofocusing, 42, 279
Chromatography
adsorption, 59
affinity, 59
description, 40
expanded beds, 61
gel-permeation, 60–61
HIC, 42
hydrophobic interaction, 60
immunoaffinity, 60
ion-exchange, 42, 59
mixed-mode chromatography, 42
RP-HPLC, 41–42
separation processes, 57
size-exclusion, 40–41, 45
stationary phases, 58–59
Chronic kidney disease (CKD), 293, 362
Chronic lymphocytic leukemia (CLL), 337–339, 368, 384
Chronic renal insufficiency (CRI), 293
CKD. See Chronic kidney disease (CKD)
Classical vaccines
classification, 446, 447
description, 439, 440
live attenuated vaccines, 446–448
nonliving vaccines, 448
Colony-forming unit (CFU), 361
Combinatorial chemistry
approaches, 211
building blocks, 212
combinatorial mix-and-match process, 211, 212
HTS, 211
and multiple parallel synthesis, 211
potential productivity, 211
Commercial-scale manufacturing, recombinant proteins, 65
Comparative genomics
“biobank”, 183
cancer and aid, 183
description, 182
and functional, 182–183
usage, 183
Complement-dependent cytotoxicity (CDC), 151, 153–154
Concentrated U-500 beef regular insulin
description, 266
dosing conversion tables and formulas, 267
HbA1c, 267
hypoglycemia, 267
PK/PD study, 266–267
PK serum, 266
recombinant human, 266
safety, 267
Contaminants
bacteria, 62–63
bacterial and nonbacterial hosts derived, 62
cellular DNA, 63
protein contaminants and product variants, 63–65
viruses, 62
Continuous subcutaneous insulin infusion (CSII), 269
Cost-benefit analysis (CBA), 242
Cost-effectiveness analysis (CEA)
and ACER, 242–243
and AMD, 243
and ICER, 243
management decisions, 242
outcome unit, 242
ranibizumab and bevacizumab, 243
treatment alternatives/programs, 242
Cost-minimization analysis, 242
Cost of illness analysis, 241–242
Cost-utility analysis (CUA)
basis case results, 244
bevacizumab, 243–244
and EPO, 244
and ICUR, 244
lack of economic savings, 244
payers, 244
pharmaceutical marketing environment, 244–245
and QALY, 243
quality differences, 244
CRI. See Chronic renal insufficiency (CRI)
Crohn’s Disease Activity Index (CDAI), 405, 406
Cryopyrin-associated periodic syndrome (CAPS)
- canakinumab, 408
- description, 394, 396
- NLRP3 mutations, 408
- rilonacept, 408–409
- treatment, 408
Crystal X-ray diffraction, 251
CSII. See Continuous subcutaneous insulin infusion (CSII)
CTLA-4. See Cytotoxic T-lymphocyte antigen-4 (CTLA-4)
CTP. See Carboxy-terminal peptide (CTP)
CUA. See Cost-utility analysis (CUA)
Cultivation systems
- bioreactor systems, 49–51
- fermentation protocols, 52–53
- liquid growth medium, 49
- single-use systems, 49, 51–52
Current good manufacturing practice (cGMP), 248
Cutaneous T-cell lymphoma, 355, 356
Cystic fibrosis (CF)
- aerosolized tobramycin, 330
- clinical trials, 329, 330
- concomitant therapy, 330
- ESCF data, 330
- mean FEV1, 329
- potential anti-inflammatory effect, 330
- safety and deposition, 329–330
Cytokines
- chemokines, 413–414
- chronic viral diseases, 430–431
- description, 413
- diagnostic and pharmacological applications, 431
- growth factors, 413
- IFNs (see Interferons (IFNs))
- ILs (see Interleukins (ILs))
- magnitude, 431
- release syndrome, 387–389
- signaling, 414
- toxicities, 432
Cytotoxic T-lymphocyte antigen-4 (CTLA-4), 386

D
Daclizumab
- dosing, 387, 389
- structure activity relationship, 387, 389
Denosumab
- bisphosphonate therapy, 354
- bone metastases cause, 354
- breast and prostate cancer, 354
- IgG2, 354
- indications and clinical efficacy, 354–355
- pharmacology and pharmacokinetics, 354
- RANK, 354
- safety, 355
- SREs, 354
Development process, MABs
- from-bench-to-bedside process, 155
- nonclinical activities, 155
- pharmacokinetics, 156–157
- preclinical safety assessment, 155–156
Diagnostic applications, oligonucleotides, 471–472
Diffuse large B-cell (DLBCL), 75
Diffuse large B-cell lymphoma, 342
Diphtheria and tetanus toxoids, 448
Direct costs, 240–241
Dispensing biotechnology products
- administration, 230–231
- biosimilars, 231
- educational materials, 232–234
- handling, 229
- medical information services provided, 234–235
- outpatient/home care issues monitoring, 232
- patient assessment and education, 231–232
Drug delivery, rhDNase I, 328–329
Drug-targeting process, protein
- carrier-mediated transport, 89
- causes of failure, 88
- classes, blood capillaries, 89
- description, 88
- developmental stages, 88
- homing device and “active” parts, 88
- immunotoxins and immunoliposomes, 96
- nanoparticles
- carrier systems, 92
- EPR effect, 94
- immunoliposomes, 94–96
- IV injection, 92–93
- 99mTc-labelled liposomes, 94, 95
- parameters, particulate carriers, 93
Drug-targeting process, protein (cont.)
“standard” liposomes, 93–94
structures, liposomes, 93
passive and active targeting, 89
potential and limitations, 88
soluble carrier systems
bispecific antibodies, 90
immunoconjugates, 90–91
MAB, 89–90
tumor targeting
antigen shedding and modulation, 92
“bystander” effects, 92
factors, 91
MAB, 91, 92
surface “makeup”, 91–92

E
Eculizumab, 385–386
Educational materials
health professionals, 232–233
internet and biotech information, 233, 234
patients, 233
periodical sources, practical information, 232, 233
Efalizumab
ADME program, 164
CD11a expression, 164
determination, SC doses, 166
disposition, 165
IV administration, 166
MOA and PD biomarkers, 163
SC administration, 167–168
structure, 149, 151
surrogates, 164
Electronic biology (eBiology), 184
Electrophoresis
capillary electrophoresis, 39–40
2-D gel electrophoresis, 39, 44, 45
IEF, 39
PAGE, 38–39
protein detection, polyacrylamide gel, 39
Electrostatic interactions, protein, 29
Elimination pathways, protein drugs
disposition modulation, FcRn receptor, 112–113
gastrointestinal protein metabolism, 107
hepatic protein metabolism, 109–111
proteolysis, 107
renal/biliary excretion, 107
renal protein metabolism, 108–109
target-mediated protein metabolism, 111–112
EMA regulatory framework
guidance documents, 252
guidelines define, 252
immunogenicity, 252
status, 252–253
Embryonic stem cells (ESCs)
extraction, inner cell mass, 512, 513
iPS cells, 518, 519
maintenance and differentiation, culture, 512, 514
pluripotency, 512
SCNT, 515
Endothelial growth factor receptor
(EGFR) inhibitors
cetuximab, 351–352
description, 349
panitumumab, 352–353
pertuzumab, 350–351
pharmacodynamic effect, 355
trastuzumab, 349–350
tyrosine kinase receptors, 349
Enhanced permeability and retention (EPR) effect, 94
Enteral administration, peptide and protein drugs, 102
Enzyme-linked immunosorbent assay (ELISA), 36–38, 44, 45
EPO. See Erythropoietin (EPO)
Epstein-Barr virus (EBV), 384, 387
Erythropoiesis-stimulating agents (ESAs), 362
Erythropoietin (EPO)
cancer patients and adverse events
anemia, 368
darbepoetin alfa s.c. dose, 368
ESAs therapy, 367
hematologic malignancies, 368
intrinsic risk, 369
iron supplementation, 368
MDS, 368
multiple myeloma, 368
seizures and PRCA, 369
serum rHuEPO, 368
TIW and QW, 367–368
treatment with chemotherapy/corticosteroids, 368
and CKD, 362
darbepoetin alfa (Aranesp®), 362
epoetin alfa (EPOGEN®), 362
epoetin zeta and Eprex®, 363
and EPOR, 362
and ESAs, 362
glycosylation, 362
and PEG polymer chain, 362
pharmacodynamics, 366–367
pharmacokinetics, 364–366
and RBC production, 361–362
regulation, 363–364
and rHuEPO (see Recombinant human erythropoietin (rHuEPO))
ESAs. See Erythropoiesis-stimulating agents (ESAs)
ESCs. See Embryonic stem cells (ESCs)
Etanercept
vs. adalimumab and infliximab, 402–403
efficacy and safety, 399
pharmacokinetics, 395
p75 human TNFα receptor, 397
signs and symptoms, pediatric patients, 399
ustekinumab efficacy, 403
Exon-skipping technique, 462–463, 465
Expression systems, proteins
features, biological origin proteins, 48
genetically engineered organisms, 47
human-derived proteins, 47
plants, 48–49
transgenic animals, 48
yeast cells, 47

F
Fluorescence in situ hybridization (FISH), 355, 356
Focal segmental glomerulosclerosis (FSGS), 385
Folding, recombinant proteins
characterization
analytical ultracentrifuge, 32
CD, 31
dynamic light scattering (DLS), 32
hydrodynamic properties, 32
oligomeric proteins, 32
sedimentation coefficient, 33
sedimentation equilibrium, 33
site-specific chemical modification and proteolytic digestion, 33
static light scattering, 32
subvisible and visible particles, 32–33
temperature dependence, 32
cosolvents, 31
dialysis/diafiltration, 30
disulfide bonds, 30–31
glycoproteins, 31
insoluble proteins, 30
ribonuclease, 31
unfolded states, 30

Follicle-stimulating hormone (FSH)
and ART, 277
CHO cell line, 277
drug products, 277
estrogens and LH, 277
glycoprotein hormone, 277–279
IVF/ICSI, 277
preparations, 277
receptor, 277
recombinant (see Recombinant FSH)
Formulations, protein. See Protein formulations
Freeze-drying, protein formulations
 crystallizing water, 73
 excipients, 73
 stability requirements, 72
 stages, 73
FSH. See Follicle-stimulating hormone (FSH)

Functional genomics
 “biobank”, 183
cancer and aid, 183
and comparative genomics, 182–183
description, 182
microarray analysis, 187
and proteomics, 185
therapeutic clinical outcomes, 182
Fusion tags, 478, 480

G
Gastrointestinal protein metabolism, 107
G-CSF. See Granulocyte colony-stimulating factor (G-CSF)
Gemtuzumab
 GO, 341
 Mylotarg®, 341
 post approval clinical trial, 341–342
 SOS, 342
Gemtuzumab ozogamicin (GO), 341–342
Gene expression, oligonucleotides
 antisense molecules
 alicaforsen, 466–467
 clinical trials, 467, 468
 fomiviren, 466
 medical applications, 464–465
 mRNA-blocking, 465
 mRNA-cleaving, 465–466
 RNase H, 466
 ribozymes and DNAzymes, 466, 467
 RNase P, 467
 siRNA/miRNA
 ALN-RSV01, 469
 PCSK9, 469
 rapid progress, 467–468
 REDD1, 468–469
 RNA interference, 466, 467
 stem-loop structures, 467
 transcription factor decoys, 464, 466
 triple helix formation, 464
Gene repair and chromosomal change, oligonucleotides
 eukaryotes, 462
 exon-skipping technique, 462–463, 465
 ribonucleoprotein inhibition, 463–464
 transcription and translation, 462, 463
 triple helix formation, 462–464
Gene therapy
cancer (see Cancer, gene therapy)
cardiovascular diseases, 494, 499–500
genent transfer systems, 477–480
gengographical distribution, clinical trials, 494, 495
infectious diseases, 494, 500
methods, administration, 477, 478
monogenetic diseases, 499
neurological diseases, 494–496, 500
nonviral vectors, 488–492
potential use, nucleic acids, 477
products, regulatory issues, 500–501
SCID, 477
small molecule drugs, 477
stem cells (see Stem-cell-based gene therapy)
viral vectors, 480–488
Gene transfer systems, plasmid components
 bacterial elements, 478
description, 477–478
 fusion tag, 480
 introns, 480
 MCS and UTR, 480
 polyanadenylation (polyA) sequence, 480
 TRE, 478–479
Genome-wide association studies (GWAS)
description, 189
genetic variants, 195
personalized medicine, 189–190
SNPs and drug response/major disease, 189
Genomics
 comparative, 182–183
description, 180
drug targets, 180–181
functional (see Functional genomics)
HGP (see Human Genome Project (HGP))
NGS, 182
structural (see Structural genomics)
GHD. See Growth hormone deficiency (GHD)
GHRH. See Growth hormone releasing hormone (GHRH)
Glycomics/glycobiology
 application, 197
glycoforms, 198
glycosylation, 198
medicine, 198
protein-based medicinal agents, 197
saccharides/sugars and derivatives, 197–198
Glycoprotein hormone
 and assembly, 278
 bisecting GlcNAc residues, 278
 CTP, 279
description, 277
 FSH three-dimensional model, 278
 hCG, 278–279
 heterodimeric protein, 277–278
Glycoprotein hormone (cont.)
 N-linked carbohydrates, 278
 oligosaccharides, 278
 polypeptide backbones, 278
Glycosylated single-chain polypeptides, 361
Glycosylation
 antigenicity, 135
 asparagine, 5
 carbohydrate heterogeneity, 64
darbepoetin, 64
 definition, 5
 and medicine, 198
 protein, 66, 197
 therapeutic proteins, 135
GM-CSF. See Granulocyte macrophage colony-stimulating factor (GM-CSF)
Granulocyte colony-stimulating factor (G-CSF)
 characteristics, 369
 chemotherapy-induced neutropenia, 370
 filgrastim, 369
 and GM-CSF, 369
 lenograstim, 369
 pegfilgrastim, 369–370
 polypeptide, 369
Granulocyte macrophage colony-stimulating factor (GM-CSF), 228, 370
Growth hormone deficiency (GHD), 288, 292, 294
Growth hormone releasing hormone (GHRH), 286, 287
GWAS. See Genome-wide association studies (GWAS)

H
HACA. See Human anti-chimeric antibodies (HACA)
HAHA. See Human antihuman antibody (HAHA)
HAMA. See Human anti-mouse antibodies (HAMA)
Handling
 mixing and shaking, 229
 travel requirements, 229
hCG. See Human chorionic gonadotropin (hCG)
α-Helix structure, protein, 24–27
Hematopoiesis, 361
Hematopoietic growth factors (HGF)
 and activities, 361, 362
 blood cells, 361
 carbohydrate, 361
 and CFU, 361
 description, 361
 different mature blood cells, 361
 and EPO (see Erythropoietin (EPO))
glycoproteins, 371
glycosylated single-chain polypeptides, 361
myeloid (see Myeloid HGF)
 rhEPO, 371–372
 rhG-CSF, 371
 rhGM-CSF, 371
 rhSCF, 371, 372
Hematopoietic stem cells (HSCs), 509, 510, 512
Hematopoietins
 IL-11, 422–423
 IL-13, 423
 IL-34, 423–424
 IL-8 and IL-16, 423
 IL-31 and IL-32, 423
 IL-3, IL-5 and IL-6, 422
Hepatic protein metabolism
 as cholecystokinin-8 (CCK-8), 109
direct shuttle/transcytotic pathway, 111
glycoproteins, 110–111
lipoprotein receptor-related protein (LRP), 111
mechanisms, 109, 110
proteolysis, 109
receptor-mediated endocytosis, 110
uptake, 110
HGF. See Hematopoietic growth factors (HGF)
hGH. See Human growth hormone (hGH)
hGH receptor (GHR), 287
High molecular weight protein (HMWP), 267–268
High-throughput screening (HTS)
 description, 211
 enzyme inhibition and radioligand binding assays, 211
 in vitro screening, 210–211
 recombinant DNA technology, 210
 synthetic compounds, 211
HLA. See Human leukocyte antigens (HLA)
HMWP. See High molecular weight protein (HMWP)
HSA. See Human serum albumin (HSA)
HSCs. See Hematopoietic stem cells (HSCs)
HTS. See High-throughput screening (HTS)
Human anti-chimeric antibodies (HACA), 149
Human antihuman antibody (HAHA), 149–150
Human anti-mouse antibodies (HAMA), 89, 149, 379
Human chorionic gonadotropin (hCG), 278, 279
Human deoxyribonuclease I (DNase I)
 description, 321
 rhDNase I (see Recombinant human DNase I (rhDNase I))
synthesis, 321
Human Genome Project (HGP)
 DNA sequencing approaches, 181
 genetic resolution, 181
 goal of, 181
 sequencing efficiency, 182
 and structural genomics, 181–182
Human growth hormone (hGH)
 clinical usage
 cardiovascular recovery and function, 294
 CKD, 293
 CRI, 293
 deficient adults populations, 294
 effects in burns, 294
 GHD, 292
 ISS, 292–293
 levels and IGF decline, 294
 malnutrition and wasting syndromes, 294
 Noonan syndrome, 293
 PWS, 293
 safety, 295
 SGA, 293
 SHOX gene, 293–294
 TS, 293
description, 285
 3-D structure, antiparallel alpha-helical regions, 285, 286
 endogenous growth hormone, 285
 hGH-N gene and hGH-V gene, 285
 IGF-1 production, 296
 liver disease, 295–296
 metabolism, 285
 pharmacology (see Pharmacology, hGH)
 pit-hGH, 285
 primary structure, rhGH, 285, 286
protein
commercially available hGH preparations, 289–291
liquid formulations, rhGH, 292
lyophilized formulations, 292
rhGH products, 289, 292
Serostim®, Saizen®, Zorbtive®, 289
sequential dimerization, 295
Human leukocyte antigens (HLA), 377
Human serum albumin (HSA), 228
Hydration, recombinant proteins, 29–30
Hydrogen bonds, protein, 29
Hydrophobic interactions, protein, 29

Incremental cost-effectiveness ratio (ICER), 243
Incremental cost-utility ratio (ICUR), 244
Indirect costs, 241
Induced pluripotent stem (IPS) cell technology
chromosomal defects, 518
 discovery, regenerative medicine, 516
mouse skin fibroblasts, 515
Parkinson’s disease, 519, 520
sickle cell anemia, mice, 516, 518
Infectious diseases, 494, 500
Inflammatory bowel disease (IBD), 403–405
Inflammatory diseases
allergic asthma, 406–407
arthritis (see Arthritides)
CAPS, 408–409
c conventional drugs, 393
glycoproteins, 393
multiple sclerosis (MS), 407–408
pharmacokinetic and mechanistic properties, 393–397
psoriasis, 401–406
Infliximab
biologic activity, TNFα, 399
Crohn’s disease, 405–406
description, 397–398
efficacy and safety, 399–400
pharmacokinetics, 395, 396, 405
signs and symptoms, 400
INN. See International Nonproprietary Names (INN)
Insulin
administration, 76
albumin, 71
as anti-aggregation agents, 71
chemical description, 255–257
chemical stability, 267–268
concentrated formulations, 266–267
CSII, 269
dosing, 271
extemporaneous mixing, 271
fraction, 78–79
and glucose profiles, 257, 259
injection devices, 269
intermediate-acting insulin preparations, 264–265
long-acting formulations
absorption rate, 265
adequate basal insulin levels, 265
degludec, 266
detemir (Levemir®), 265–266
glargin (Lantus®), 265
hexamers, 266
hypoglycemia, 266
LY2605541 and LY2963016, 266
PK profile, “mealtime” insulin formulation, 265
tetradecanoyl-acylated insulin to albumin, 266
nondiabetic person falls, 257
noninvasive delivery, 270
pancreatic response, 257
phospholipids and surfactants, 71
physical stability, 268–269
purification, 255
rate-controlled delivery, 82
rDNA technology, 255
regular and rapid-acting soluble preparations
Apidra® and Humalog®, 263
AsnX, 257
design strategy, AspX human, 263
dissociation after subcutaneous administration, 259, 261
Insulin (cont.)
- glutamic acid substitution, 263
- human-based U-100 insulin analog formulations, 259, 261–262
- infusion tubing, 263
- insulin lispro, 259, 263
- neutral U-100 insulin formulations, 257, 260
- pharmacodynamic profile, soluble formulation (type R), 257
- pump systems, 263
- rapid action, 263
- T1DM/T2DM, 263
- zinc and phenolic preservatives, 257
- resuspension, 270–271
- storage, 270
- ultrarapid initiatives, 263–264
- vial presentations, 269
- Insulin lispro protamine suspension (ILPS), 264, 269
- Intangible costs, 241
- Interferons (IFNs)
 - description, 413
 - helical cytokine, 414
 - human, HGNC, 415, 416
- IFN-α therapeutics
 - alfa-2a, 424
 - “influenza-like symptoms”, 425
 - Intron A® and Infergen®, 425
 - recombinant, 424
 - Roferon® A, 425
- IFN-β products, 425–426
- IFN-g, Actimmune®, 426
- JAK-STAT signaling pathway, 414–415
- PEGylated
 - biopharmaceuticals, 430, 431
 - intraprotein bridges, 429
 - linear structures, 429
 - proteins, 428–429
 - rhIFN-α and IFN alfa-2a, 429–430
- type I and II, 415
- Interleukins (ILs)
 - databases, 418
 - description, 413
 - hematopoietins, 422–423
 - IL-17 and IL-25, 422
 - IL-1 family
 - IL-36 A, B and G, 418–419
 - IL-18 and IL-33, 418
 - IL-37 and IL-38, 419
 - IL-1 and IL-1Ra, 418
 - IL-36RN, 419
 - IL-2 family
 - IL-9, 419–420
 - IL-15 and IL-21, 420
 - IL-2, IL-4 and IL-7, 419
 - IL-10 family
 - helical cytokines, 414, 420
 - IL-22, 420–421
 - IL-28A, IL-28B and IL-29, 421
 - IL-24 and IL-26, 421
 - IL-10, IL-19 and IL-20, 420
 - IL-12 family
 - IL-35, 421–422
 - IL-12, IL-23 and IL-27, 421
 - inflammatory response, 415
 - Kinerefi® (anakinra), 428
- names and symbols, HGNC, 415–417
- Neumega® (oprelvekin), 427–428
- pathogenic agents, 415
- Proleukin® (aldesleukin), 427
- International Nonproprietary Names (INN), 277, 282
- Intracytoplasmic sperm injection (ICSI), 277, 281
- Introns, 478, 480
- In vitro activity, CF sputum
 - action mechanism, 326
 - depolymerization, filamentous actin (F-actin), 325–326
 - magnesium ions, 325
 - mucus transport properties, 325
 - nacystelyn, 325
 - pourability assay, 325
 - reduction in size, 325, 326
 - viscoelastic properties, 325
 - viscosity reduction, 325
- In vivo activity, CF sputum
 - direct characterization, apparent DNA size, 326, 327
 - immunoreactive concentrations and enzymatic activity, 326, 328
 - viscoelasticity, 326
 - Iodine-131 (131I) tositumomab, 342–345
- Ipilimumab
 - indications and clinical efficacy, 353
 - pharmacology and pharmacokinetics, 353
 - safety, 353–354
- IPS cell technology. See Induced pluripotent stem (IPS) cell technology
- ISS. See Idiopathic short stature (ISS)
- ITP. See Immune thrombocytopenia purpura (ITP)
- IVF. See In vitro fertilization (IVF)
- K
 - Knockout mice
 - animal disease models, 207
 - apoprotein E, 207
 - four-step process, 206–207
 - gene-targeted knockout mouse, 206
 - genetic engineering, 208
 - “humanized mice”, 207
 - null allele, 206
 - programs, 207
- L
 - Lactate dehydrogenase (LDH), 353
 - Lanoteplase, 316
 - Lantus®, 265, 268
 - Lentiviruses, 484
 - Levemir®, 265–266, 268
 - LH-RH. See Luteinizing hormone-releasing hormone (LH-RH)
 - Lipidomics, 198
 - Lipoprotein receptor-related protein (LRP), 311, 315
 - Live attenuated vaccines, 446–448
 - Live vectored vaccines
 - adenoviruses, 449
 - bacteria and viruses, 449
 - description, 448–449
 - prevalence, preexisting immunity, 450
 - vaccinia virus, 449, 450
 - LRP. See Lipoprotein receptor-related protein (LRP)
Luteinizing hormone-releasing hormone (LH-RH)
cetrorelix, 123
complex modeling approach, 123
glomerular filtration, 108
IV administration, 103

M
MAB. See Monoclonal antibodies (MABs)
MAB-drug interactions
ado-trastuzumab emtansine (T-DM1) and
pertuzumab, 161
cytosin A (CsA), 161
cytochrome P450 (CYP) enzymes, 161
methotrexate (MTX), 161
PK/PD, 162–163
small molecule drugs, 161
MABs. See Monoclonal antibodies (MABs)
Macrophage colony-stimulating factor (M-CSF)
kidneys, target-mediated drug disposition, 108
linear pharmacokinetics, 111, 113
Major histocompatibility complexes (MHC), 377
MALDI. See Matrix-assisted laser desorption (MALDI)
Mass median aerodynamic diameter (MMAD), 329
Mass spectrometry
MALDI, 44
peptide map, pepsin digest, 43
post-translational modifications, 43
“protein fingerprint”, 44
Master cell bank (MCB), 279
Matrix-assisted laser desorption (MALDI), 44
MCB. See Master cell bank (MCB)
MCS. See Multiple cloning sites (MCS)
Mechanical pumps
characteristics, ideal pump, 82, 83
controlled administration, 83
failures, 82–83
Medical biotechnology
Activase®, 238
analysis, pharmaceutical market, 238
clinical research protocol, 239
costs association, 239
documenting and understanding, 238
evaluation, product, 237
generalized model, value, 239
health care finance, 237
licensing, new agents, 237
marketing focus, 237–238
Neupogen®, 238
pharmaceutical technologies, 238
pharmacoeconomics (see Pharmacoeconomics)
treatment, disorders, 239
value, 238, 239

Megakaryocytopoiesis
Peg-MGDF, 370
romiplostim (Nplate®), 370–371
TPO, 370

Mesenchymal stem cells (MSCs), 492–493

Metabolomics
description, 188
high-performance liquid chromatography, 187–188
metabolites, 187

Metabonomics, 188

MHC. See Major histocompatibility complexes (MHC)
Monoclonal antibodies (MABs) (cont.)
and HAMA, 89
HAMA and HACA, 149
homing ability, 89
humanization, 89–90
humanized antibodies, 15, 16
humanized V\textsubscript{L} and V\textsubscript{H} region, 15, 16
hybridoma technology, 143
ibritumomab tiuxetan and tositumomab, 153
IgG1 structure, 89, 90, 149, 151
immunization process, 14, 15
immunoconjugates, 90, 91, 171
immunogenicity, 138
immunogenicity problem, 89
MAB-drug interactions, 161–163
metabolism, 172
MOA and PD biomarkers, 163
PCR sewing, 15
pharmacological properties, 143–148
properties, 172
solid organ transplantation (see Solid organ transplantation)
structural components, 151
surrogate molecules, 164
technological evolutions, 143
transgenic mice, 90
translational medicine/development process (see Development process, MABs)
trastuzumab, 149–150
in tumor targeting, 91, 92
Monogenetic diseases, 494, 495, 499
Monomethyl auristatin E (MMAE), 345
MS. See Multiple sclerosis (MS)
MSCs. See Mesenchymal stem cells (MSCs)
Multiple cloning sites (MCS), 478, 480
Multiple sclerosis (MS), 396, 407–408
Muromonab
acute and chronic adverse effects, 379
cD3 receptor, 378
cytokine release syndrome, 379
description, 378
Epstein-Barr viral B-cell malignant transformation, 379
HAMA, 379
induction agent, 378
kidney transplant recipients, 378
liver recipients, 378
murine monoclonal antibody, 378
polyclonal antibody-resistant rejections, 379
posttransplant lymphoproliferative disease, 379
renal function, 378
viral infections, 379
Muromonab-CD3 (OKT3), 375
Myeloid HGF
and G-CSF, 369–370
GM-CSF, 370
megakaryocytogenesis, 370–371
pathway, 371
and SCF, 370

N
Natalizumab
annualized relapse rate (ARR), 407
clinical response and remission, 406
efficacy and safety, 406
IBD, 404

O
Oligonucleotides
cellular uptake, 470–471
characteristics, 459
chemical modifications, 472–473
description, 459
diagnostic applications, 471–472
gene expression, 464–469
gene repair and chromosomal change, 462–464
modifications, 459, 460
non-nucleic acids
aptamers/riboswitches, 461–462
description, 459–460
dsRNA, 462
prokaryotic DNA, 462
pharmacokinetics, 469
stability, 469–470
therapeutic effects, 459
Vitravene® and Macugen®, 472

P
pharmacokinetics, 396
PML, 407–408
Nebulizers, 329
Neurological diseases, 494–496, 500
Neutral protamine Hagedorn (NPH)
activity duration, 264
clinical data, 265
crystalline suspension, 264
immunogenicity issues, 265
NPL and ILPS, 264
protamine, 264
rapid-acting insulin analog, 264
suspension, insulin lispro, 264
T2DM patients, 264
Neutral protamine lispro (NPL), 264
Next-generation genome sequencing (NGS)
comparative genomics, 183
and $1,000 genome, 182
genotyping, 182
toxicogenomics, 197
NGS. See Next-generation genome sequencing (NGS)
Non-cystic fibrosis respiratory disease, 330–331
Non-Hodgkin’s lymphoma, 342
Nonliving vaccines, 447, 448
Non-small-cell lung cancer (NSCLC), 243–244, 347–348
Nonviral gene therapy
barriers, 488, 489
cationic lipids, 491
clinical use, 492
description, 488
peptides, 491
physical methods
description, 489–490
electroporation, 489
microinjection, 488
particle bombardment, 488–489
polymers, 491–492
Noonan syndrome, 293
NPH. See Neutral protamine Hagedorn (NPH)
NPL. See Neutral protamine lispro (NPL)
NSCLC. See Non-small-cell lung cancer (NSCLC)
Nuclear factor kappa B (NF-κB) pathway, 370
Nucleic acid vaccines, 451, 452, 456
Nutrigenomics, 198–199
Pharmacoeconomics

assessment, 240
biotechnology industry, 240
CBA, 242
CEA, 242–243
clinical studies assess, 239–240
cost-minimization analysis, 242
cost of illness analysis, 241–242
CUA, 243–245
definition, 239
direct costs, 240–241
disease management, 240
economic analysis, 240
economic evaluation methodologies, 241
health economists, 240
indirect costs, 241
intangible costs, 241
opportunity costs, 241
orphan drugs, 240
pharmaceutical and biotechnology products, 239

Pharmacodynamics

EPO
CFU-E cells, 366
darbepoetin alfa, 366–367
erthyroid progenitor cells, 367
iron deficiency, 367
mechanisms, 367
oxygen feedback mechanism, 367
PK/PD relationships, 367
RBC life span, 366
protein therapeutics
characterization, 101
description, 101
dose-concentration-effect relationship, 101, 102
PK/PD modeling (see Pharmacokinetic-pharmacodynamic modeling (PK/PD modeling))

Pharmacodynamics

Pathogen-associated molecular patterns (PAMPs)

PAMPS. See Pathogen-associated molecular patterns (PAMPs)
Panitumumab
mean progression-free survival, 353
PACCE, 353
pharmacology and pharmacokinetics, 352
randomized phase III trial, 352–353
safety, 353
Parenteral administration
definition, 75
peptide and protein drugs
anakinra, etanercept, insulin, and pegfilgrastim, 104
apparent absorption rate constant, 104
bioavailability assessments, 103–104
intramuscular (IM), 103, 104
intravenous (IV), 103
monoclonal antibodies and fusion proteins, 104
routes of, 102–103
subcutaneous (SC), 103, 104
protein delivery, 76
Pathogen-associated molecular patterns (PAMPs), 441, 442
Pattern recognition receptors (PRRs), 441, 442, 445, 454
PBMs. See Pharmacy benefits management companies (PBMs)
PDMDD. See Pharmacodynamic-mediated drug disposition (PDMDD)
Personalized medicine
application, pharmacogenetics, 194
challenges, 194–195
drug pharmacodynamics, genomic variation, 193–194
drug pharmacokinetics, genetic variation, 192–193
epigenetics/epigenomics, 195–196
hopes and realities, 190
individualized optimized pharmacotherapy, 190–191
“omic” technologies, role, 190, 191
pharmaceutical care, 191–192
pharmacogenomics, 190

Pharmacy education curricula, 190
SNPs, 191
targeted therapy, 192
trastuzumab, 194

Pharmaceuticals

biotechnology
biopharmaceuticals, 1
therapeutic proteins, 1, 2
vaccines
adjuvants, immune potentiators and delivery systems, 454
characterization, 455
combination vaccines, 454
production, 453–454
storage, 455

Pharmacists
agents, 223
and biotech drug handling, 225, 227–228
biotechnology drugs, 223
delivery routes, 224
description, 223
expertise in areas, 224
information sources, 225, 226
information types, 224–225
medicare benefit policy manual outlines, 223
novel protein products, 224
pharmaceutical care services to patients, 223
physicians, 224

Pharmacodynamic-mediated drug disposition (PDMDD), 366

Pharmacoeconomics

assessment, 240
biotechnology industry, 240
CBA, 242
CEA, 242–243
clinical studies assess, 239–240
cost-minimization analysis, 242
cost of illness analysis, 241–242
CUA, 243–245
definition, 239
direct costs, 240–241
disease management, 240
economic analysis, 240
economic evaluation methodologies, 241
health economists, 240
indirect costs, 241
intangible costs, 241
opportunity costs, 241
orphan drugs, 240
pharmaceutical and biotechnology products, 239

Index

Omalizumab, 396, 406–407
“Omic” technologies
bioinformatics (see Bioinformatics)
biomarkers (see Biomarkers)
cellomics, 199
DNA structure and function, 180
genomics (see Genomics)
glycomics/glycobiology, 197–198
interactomics, 199
lipidomics, 198
metabolomics and metabolomics, 187–188
microarrays, 185–187
new drug discovery, genomic strategy, 179, 180
novel therapeutics, 180
nutrigenomics, 198–199
personalized medicine (see Personalized medicine)
pharmacogenetics (see Pharmacogenetics)
pharmacogenomics (see Pharmacogenomics)
proteomics (see Proteomics)
systems biology, 199
toxicogenomics, 196–197
transcriptomics, 184–185

Oncolytic viruses, 499
Opportunity costs, 241
Osmotically driven systems
Alzet osmotic mini-pump, 83, 84
protein solution, 83
rate-determinate process, 83

P
PAMPs. See Pathogen-associated molecular patterns (PAMPs)
Panitumumab
mean progression-free survival, 353
PACCE, 353
pharmacology and pharmacokinetics, 352
randomized phase III trial, 352–353
safety, 353
Parenteral administration
definition, 75
peptide and protein drugs
anakinra, etanercept, insulin, and pegfilgrastim, 104
apparent absorption rate constant, 104
bioavailability assessments, 103–104
intramuscular (IM), 103, 104
intravenous (IV), 103
monoclonal antibodies and fusion proteins, 104
routes of, 102–103
subcutaneous (SC), 103, 104
protein delivery, 76
Pathogen-associated molecular patterns (PAMPs), 441, 442
Pattern recognition receptors (PRRs), 441, 442, 445, 454
PBMs. See Pharmacy benefits management companies (PBMs)
PDMDD. See Pharmacodynamic-mediated drug disposition (PDMDD)
Personalized medicine
application, pharmacogenetics, 194
challenges, 194–195
drug pharmacodynamics, genomic variation, 193–194
drug pharmacokinetics, genetic variation, 192–193
epigenetics/epigenomics, 195–196
hopes and realities, 190
individualized optimized pharmacotherapy, 190–191
“omic” technologies, role, 190, 191
pharmaceutical care, 191–192
pharmacogenomics, 190

Pharmacy education curricula, 190
SNPs, 191
targeted therapy, 192
trastuzumab, 194

Pharmaceutics

biotechnology
biopharmaceuticals, 1
therapeutic proteins, 1, 2
vaccines
adjuvants, immune potentiators and delivery systems, 454
characterization, 455
combination vaccines, 454
production, 453–454
storage, 455

Pharmacists
agents, 223
and biotech drug handling, 225, 227–228
biotechnology drugs, 223
delivery routes, 224
description, 223
expertise in areas, 224
information sources, 225, 226
information types, 224–225
medicare benefit policy manual outlines, 223
novel protein products, 224
pharmaceutical care services to patients, 223
physicians, 224

Pharmacodynamic-mediated drug disposition (PDMDD), 366

Pharmacodynamics

EPO
CFU-E cells, 366
darbepoetin alfa, 366–367
erthyroid progenitor cells, 367
iron deficiency, 367
mechanisms, 367
oxygen feedback mechanism, 367
PK/PD relationships, 367
RBC life span, 366
protein therapeutics
characterization, 101
description, 101
dose-concentration-effect relationship, 101, 102
PK/PD modeling (see Pharmacokinetic-pharmacodynamic modeling (PK/PD modeling))

Pharmacoeconomics

assessment, 240
biotechnology industry, 240
CBA, 242
CEA, 242–243
clinical studies assess, 239–240
cost-minimization analysis, 242
cost of illness analysis, 241–242
CUA, 243–245
definition, 239
direct costs, 240–241
disease management, 240
economic analysis, 240
economic evaluation methodologies, 241
health economists, 240
indirect costs, 241
intangible costs, 241
opportunity costs, 241
orphan drugs, 240
pharmaceutical and biotechnology products, 239
Pharmacogenetics

ADRs, 192
analysis of patients, 194
application, 194
drug metabolism and transport, 192
personalized medicine, 188, 190
vs. pharmacogenomics, 189
polymorphisms, 192
SNPs (see Single-nucleotide polymorphisms (SNPs))
toxicogenomics, 196–197

Pharmacogenomics

analysis of patients, 194
demonstration projects, 190
FDA-approved drugs, 191
Genome-wide association studies (GWAS) (see GWAS)
personalized medicine, 188, 190
vs. pharmacogenetics, 189
tests, 190
toxicogenomics, 196
warfarin drug action and ADR, 193

Pharmacokinetic-pharmacodynamic modeling (PK/PD modeling)
application, 118
approaches, 117, 118
cell life span models
description, 121–122
erthropoietin (EPO), 122, 123
process, erythropoiesis, 122, 123
reticulocyte, RBC and Hb, 122, 123
complex response models
application, 124, 125
cetrorelix, 123–125
concentration and ANC time profiles, pegfilgrastim, 126, 127
cytokineti model, 124
granulopoietic effects, pegfilgrastim, 124, 126
LH-RH, 123–124
description, 116–117
direct link models
IgE antibody CGP 51901, 118–119
plasma concentrations, 118
exposure and response, 117–118
indirect link models
concentration-effect relationship, 119
hypothetical effect compartment, 119–120
tissue distribution, 120
trastuzumab exposure, 120
indirect response models
description, 121
elaboration, 121
SB-240563 evaluation, 121, 122
time courses, plasma concentration, 120–121
mechanism-based, 117

Pharmacokinetics

EPO
absorption, 364
bioavailability, 364
distribution, 365
elimination, 365–366
protein therapeutics
absorption, 102–104
characterization, 101
chemical modifications, 116
description, 101
distribution (see Distribution, protein drugs)
dose-concentration-effect relationship, 101, 102
elimination (see Elimination pathways, protein drugs)
and immunogenicity, 113–114
insulin, 102
species specificity and allometric scaling, 114–116
Pharmacokinetics/pharmacodynamics (PK/PD)
clinical development, 162–163
description, 168, 169
efalizumab (see Efalizumab) and efficacy data, 168, 171
human, prediction, 162
population, 169–170
Pharmacology, hGH
biologic actions, 286–287
dosing schedules and routes, 288–289
metabolism, 289
molecular endocrinology and signal transduction, 288
pharmacokinetics, 289
receptor and binding proteins, 287
secretion and regulation, 285–287
Pharmacy benefits management companies (PBMs), 225
Pharmacy informatics, 184, 190
Phosphatidylinositol 3-kinase (PI3K) pathway, 370
Physical stability, insulin formulations, 268–269
PK/PD. See Pharmacokinetics/pharmacodynamics (PK/PD)
PML. See Progressive multifocal leukoencephalopathy (PML)
Polyadenylation (PolyA) sequences, 6, 478, 480
Polyethylene glycol (PEG) polymer chain, 362
Polyactic acid–polyglycolic acid (PLGA)-based delivery systems, 84
Polysaccharide vaccines, 448
Polyvinyl chloride (PVC), 228
Posttransplant lymphoproliferative disorder (PTLD), 384
Prader-Willi syndrome (PWS), 293
PRCA. See Pure red cell aplasia (PRCA)
Preclinical safety assessment, MABs, 155–156
Progressive multifocal leukoencephalopathy (PML), 344, 402, 404, 407–408
Protein contaminants and product variants
conformational changes/chemical modifications, 64
glycosylation, 64
“known”/expected contaminants, 64
N-and C-terminal heterogeneity, 64
proteolytic processing, 64–65
urokinase, 63
Protein formulations
chemical and physical instability, 97
endocrine-, paracrine- and autocrine-acting proteins
dose-response relationship, 81
pathway, 81, 82
site-specific delivery and side effects, 81–82
excipients
anti-adsorption agents, 70–71
anti-aggregation agents, 71
buffer components, 71, 72
osmotic agents, 72
preservatives and antioxidants, 71–72
solubility enhancers, 70, 71
microbiology
pyrogen removal, 69–70
sterility, 69
viral decontamination, 69
rate-controlled delivery (see Rate-controlled delivery, protein)
routes of administration (see Routes of administration, protein)
shelf life (see Stability, protein)
site-specific delivery (see Drug-targeting process, protein)

Proteolysis
by endopeptidases, 111
- gastrointestinal tract, 107
- glomerular filtration, 108
- hepatic metabolism, 109
- metabolic degradation, 107
- molecular rate, 107, 108
- proteases and peptidases, 107

Proteomics
correlation, environmental factor, 192
description, 185
functional, 185
metabolomics, 188
pharmacogenomics, 189
proteins functions, 185
research, 185
structural, 185
technology platforms, 185

PRRs. See Pattern recognition receptors (PRRs)

Psoriasis
adalimumab, 405
alefacept, 402
anti-TNF biologic agents, 402
certolizumab pegol, 405
IBD, 403–404
infliximab, 405–406
natalizumab, 406
PASI, 401
psoralen plus ultraviolet A light therapy, 401
symptoms, 401
TNFα antagonists, 402–403
ustekinumab, 403

PTLD. See Posttransplant lymphoproliferative disorder (PTLD)

Pure red cell aplasia (PRCA), 369

Purification, recombinant proteins
DSP, 13
E. coli, 13
his-tagged proteins, 12, 13
methods, 12

PVC. See Polyvinyl chloride (PVC)
PWS. See Prader-Willi syndrome (PWS)

Q
QALY. See Quality-adjusted life-years (QALY)
Quality-adjusted life-years (QALY), 241, 243, 244
Quality-by-design approach, 251

R
Radioimmunoassay (RIA) agents, 152–153
Radioimmunotherapy, 344–345
Rate-controlled delivery, protein
biosensor-pump combinations, 84–86
controlled release systems, 82, 83
covalent attachment, PEG, 82, 83
insulin, 82
microencapsulated secretory cells, 87–88
open-loop systems
biodegradable microspheres, 84, 85
mechanical pumps, 82–83
osmotically driven systems, 83–84
self-regulating systems, 86–87
RCA. See Replication-competent adenovirus (RCA)
Receptor activator of nuclear factor κβ ligand (RANKL), 354–355
Recombinant coagulation factors
cascade model, 299, 300
cell-based model, 299, 300
dendogenous regulatory mechanisms, 299
factor VIIa (see Recombinant factor VIIa)
factor VIII (see Recombinant factor VIII)
factor IX (see Recombinant factor IX)
factor XIII
multiple-dose study, 309
pharmacokinetics, 309
Saccharomyces cerevisiae, 309
fibrinolytic pathway, 299, 300
hemophilia, 299–301
PEGylation, 316
stroke and pulmonary embolism, 317
tissue factor (TF), 299
Recombinant factor IX-Fc fusion protein (rFIXFc), 309
Recombinant factor VIIa (rFVIIa)
anion-exchange chromatography, 304
baby hamster kidney cells, 304
cell-based concept, 303
Gla domain, 304
Glanzmann’s thrombasthenia, 306
high titers, inhibitors, 303
in vitro characterization, 306
in vivo FVII depletion model, 306
NN1731, 306
NovoSeven® , 304
NovoSeven® RT, 306
PEGylation liposomes, 307
pharmacokinetics and pharmodynamics, 304–306
pharmacology, 304
purification, 304
rFVIIa, 304–307
safety, 306
structure, 303–304
tissue factor/activated platelets, 303
variants with site-directed amino acid substitution, 306
Recombinant factor VIII (rFVII)
administration, 301–302
Advate®, 301
antihemophilic factor, 301
Baxter, Bayer and Pfizer, 301, 302
biological potency, 301
dosage, 302–303
perioperative management in adults and children, 302
pharmacokinetics, 302, 303
pharmacology, 301
plasma protein, 301
rFVII, 301–303
safety, 303
structure, 301
Recombinant factor IX
administration, 307–308
415 amino acid glycoprotein, 307
column chromatography steps, 307
dosage and duration, substitution treatment, 308
in vitro clotting assay, 307
in vivo recovery, 308
iso-osmolality, 307
N9-GP, 308–309
pharmacokinetics, 308
pharmacology, 307
Recombinant factor IX (cont.)
plasma-derived factor IX carries, 307
recombinant, 307–309
rFIXFc, 309
room temperature storage, 307
safety, 308
thrombin, 307
transfected cell line secretes, 307
Recombinant factor XIII
plasma transglutaminase and terminal enzyme, 309
recombinant, 309
Recombinant FSH
ART program, 283
biochemical analysis, 282
corifollitropin alfa, 282–283
Elonva®, 283
female indications, 281
fewer injections, 281
follitropin-β, 281
FTET cycles, 281
GnRH antagonists, 281
isohormones
biological properties, 280
pharmacokinetic behavior, 280
nonclinical evaluation, 282
O-linked glycosylation sites, 282
ovarian hyperstimulation syndrome, 281
pharmaceutical formulations
follitropin-α and β, 280
freeze-dried presentation form, 280–281
lyophilized preparations, 280
pen injectors, 281
Puregon®/Follistim® solution, 281
production, 279
structural characteristics, 279–280
treatment, anovulatory patients, 281
Recombinant human DNase I (rhDNase I)
abnormal CFTR protein, 331–332
active site, enzyme, 324
anti-inflammatory properties, 331, 332
bovine pancreatic, 322–323
CFTR, 321
cystic fibrosis, 329–330
and cystic fibrosis, 321, 322
description, 321
DNA-rich secretions, 322
drug delivery, 328–329
enzymology, 323–324
extracellular DNA, 322
frequency, respiratory exacerbations, 331, 332
human pancreatic cDNA library, 283
hyperactive, 324
in vitro activity in CF sputum, 325–326
in vivo activity in CF sputum, 326–328
indication and clinical dosage, 329
inhibition, G-actin, 324
macromolecules, 322
nasal sinuses, 331
non-cystic fibrosis respiratory disease, 330–331
pharmacokinetics and metabolism, 326–328
primary amino acid sequence, 323
protein chemistry, 323
protein manufacturing and formulation, 328
pulmonary empyema, 331
reduction in viscoelasticity, 323
safety, 331
and SLE, 321
Staphylococcus aureus and Staphylococcus epidermidis, 322
structure, 324
ultrasonic nebulizers generate heat, 331, 332
variants, 324
Recombinant human erythropoietin (rHuEPO)
absorption, 364
bioavailability, 364
biosimilars manufacture, 362–363
clearance, 366
commercial form, 362
dose, 367–368
molecules, 365
pharmacodynamics, 366–367
pharmacokinetic meta-analysis, 365–366
pharmacokinetic models, 366
serum rHuEPO levels, 368
trafficking and degradation, 365
Recombinant peptide and protein vaccines, 450
Recombinant proteins
biophysical and biochemical analysis (see Biophysical and biochemical analysis, recombinant proteins)
contaminants, purification process, 61–65
downstream processing, 54–61
manufacture, 65
upstream processing (see Upstream processing)
Recombinant therapeutic proteins
cell culture, 12, 13
cloning PCR products
DNA sequencing, 11, 12
expression plasmid, mammalian cell line, 8, 10
TA cloning, 8, 9
transformation, 8
copyDNA
central dogma, molecular biology, 6, 7
messenger RNA synthesis, 5
and PCR, 8, 9
polyadenylation, 6
reverse-transcription, 5–6
RT, 6, 7
splicing, 5
thermostable DNA polymerase, 8, 9
DNA sequence, 4
expression host selection
bovine serum, 4
glycosylation, 5, 6
mammalian cells, 4, 5
PTM, 4
host cells transfection, 9–11
purification (see Purification, recombinant proteins) selection, 4
steps, production, 3
Recombinant thrombolytic agents
first-generation (see Recombinant t-PA (rt-PA))
second-generation, 313–316
t-PA, 309–311
Recombinant t-PA (rt-PA)
acute ischemic stroke, 313
AMI management, 312
Cathflo Activase, 312
COBALT trial, 312
doses, 313
INDEX 541

GUSTO trial, 312
3-h regimen, 312
patency grades, blood flow, 312
pharmacokinetics, 311
residue Asn184, 311
sterile lyophilized powder, 312
TIMI, 312
two dose regimens, 312
Regulatory framework, biosimilar products
analytical tools, 253–254
biopharmaceuticals, 247
cGMP, 248
CMC section, 247–248
complex proteins, 249
definitions, 247, 248
drug approval, generic product and biosimilar product (FDA), 247, 248
European Medicines Agency (EMA) (see EMA regulatory framework)
human growth hormone, 254
innovator’s product characteristics and functional activity, 248
protein structures, 247
safety, innovator’s drug product, 247
science-based regulatory policies, 254
small molecular weight drugs and macromolecular biopharmaceuticals, 247, 248
synthesized molecules, 254
in the USA (see USA regulatory framework)
Reimbursement, 232
REMS. See Risk evaluation and mitigation strategies (REMS)
Renal protein metabolism
elimination mechanism, 108
glomerular filtration, 108, 109
limitation, 108
pathways, 108, 109
peritubular extraction, 109
Replication-competent adenovirus (RCA), 486
Reteplase
administration, 313
AMI, 313
355-amino deletion variant, t-PA, 313
GUSTO III trial, 314
and heparin, 313
INJECT trial, 313–314
pharmacology, 313, 314
potency, 313
RAPID 2, 314
safety, 314
second bolus injection, 313
sterile water for injection, USP, 313
stroke rate, 314
Retroviruses
biology, 482, 483
clinical use, 483–484
HEK293 cells, 482
limitation, 483
“stem-cell-based gene therapy”, 482–483
Reverse transcriptase (RT), 6, 7
Reverse vaccinology, 451–452
rFIXFc. See Recombinant factor IX-Fc fusion protein (rFIXFc)
rhDNase I. See Recombinant human DNase I (rhDNase I)
Ribonucleoproteins, 463–464
Risk evaluation and mitigation strategies (REMS), 224
RIT agents. See Radioimmunotherapeutic (RIT) agents
Rituximab
antibody-mediated rejection, 385
B-cell lymphomas, 384
B cells, 385
CD20 antigen and protein, 384
chimeric murine/human IgG1 MAB, 384
description, 400
desensitization protocols, 385
desensitizing agent, 384
efficacy and safety, 400
FSGS, 385
plasmapheresis, 385
PTLD, 384
yttrium-90 (90Y) ibritumomab tiuxetan and iodine-131 (131I) tositumomab
CD20 antigen, 344
CHOP, 342–343
complete response rate (CR) plus, 342
conjunction with MAB, 344
pharmacology and pharmacokinetics, 342, 343
progression-free survival, 343
radioimmunotherapy, 344–345
safety, 344
safety profile, 343–344
single agent, 342
Romiplostim (Nplate®), 370–371
Routes of administration, protein
and absorption-enhancing effects
changes in glucose levels, 79
glycocholate and molecular weight, 79
intrinsic delivery systems, 81
plasma profile, GRF, 80–81
reproducibility, 79
transdermal iontophoretic delivery, 80
alternative routes
approaches, bioavailability enhancement, 79
bioavailability, 78
nose, lungs, rectum, oral cavity and skin, 77–78
pulmonary insulin formulation, 78–79
oral route
bioavailability, 76
failure, uptake, 76
permeability, 77
Peyer’s patches, 77
protein degradation in GI tract, 76–77
parenteral route
circulation half-life, t-PA, 75–76
definition, 75
differences in disposition, 76
prolonged residence time, 76
r-PA. See Recombinant t-PA (rt-PA)
S
SBS. See Short bowel syndrome (SBS)
Scale-up and postapproval changes (SUPAC)
“FDA guidance on comparability”, 249, 254
manufacturing process, 249–250
proposed product, 249
in small molecules, 249
SCF. See Stem cell factor (SCF)
Self-regulating systems
approaches, 86
Self-regulating systems (cont.)
- competitive desorption approach, 86, 87
- Con A-glycosylated insulin complex, 86, 87
- drug release, 86
- enzyme–substrate reactions, 87
- β-Sheet structure, proteins, 26
- Short bowel syndrome (SBS), 294
- Short stature homeobox-containing gene (SHOX), 293–294
- SHOX. See Short stature homeobox-containing gene (SHOX)
- Single-nucleotide polymorphisms (SNPs)
 - coding regions (cSNPs), 188
 - in CYP2D6 and CYP2C19, 191
 - databases, 189
 - DNA sequence variation, 188
 - and GWAS, 189
 - identification and mapping, 188–189
 - “snips”, 188
 - and type 2 diabetes, 189
- Sinusoidal obstructive syndrome (SOS), 342
- Site-directed mutagenesis, 208–209
- SLE. See Systemic lupus erythematosus (SLE)
- Small for gestational age (SGA), 293
- SNPs. See Single-nucleotide polymorphisms (SNPs)
- Solid organ transplantation
 - allograft rejection, 378
 - basiliximab (see Basiliximab)
 - calcineurin inhibitors, 378
 - cell-mediated immunity, 378
 - cellular-mediated rejection, 376
 - complications, current maintenance
 - immunosuppressants, 376, 377
 - daclizumab, 380
 - desensitization, 387, 388
 - distribution volume, 387, 388
 - host immune recognition, donor tissue, 375–376
 - host immune system recognizes donor tissue, 387, 388
 - IL-2 receptor antagonists, 379–380
 - induction immunosuppression, 376, 377
 - MHC, 387, 388
 - monoclonal antibody uses, 376
 - muromonab, 378–379
 - OKT3, 375
 - patient-specific factors, 375
 - per dose cost, 387
 - polyclonal antibodies, 375
 - posttransplant immunosuppression, 375
 - pre-transplant
 - blood samples, 377
 - desensitization, 377
 - immunologic barriers, 376
 - potential recipients, 377
 - signal transduction pathway, 376
 - time of transplant
 - cardiovascular events, 378
 - chronic administration, calcineurin inhibitors, 378
 - death in noncardiac transplant recipients, 377–378
 - patient and allograft adverse effects, 377
 - pharmacokinetic parameters, 378
 - plasma exchange procedures, 378
 - recipients, 378
- Solubility enhancers
 - aggregation, 70
 - approaches, 70
 - arginine effect, 70, 71
 - Soluble carrier systems, targeted protein delivery
 - bispecific antibodies, 90
 - immunoconjugates, 90–91
 - MAB (see Monoclonal antibodies (MABs))
- Splicing, 5
- Squamous cell carcinoma of the head and neck (SCCHN), 352
- Stability, protein
 - compacted forms, 75
 - factors, 72
 - freeze-drying, 72–73
 - freezing
 - in amorphous systems, 74
 - crystallization, 73
 - “free and fluid” water, 74
 - thawing/cooling, 73, 74
 - pH dependence, α1-antitrypsin, 72
 - primary drying
 - DSC, 75
 - eutectic and glass transition temperature, 74
 - gas conduction, 74
 - parameters, 74
 - sublimation, 74
 - recombinant proteins, 33–34
 - secondary drying, 75
 - storage, 72
- Stem-cell-based gene therapy
 - description, 492
 - ESCs, 492
 - gene delivery vehicles, 493
 - MSCs, 492–493
 - regenerative medicine, 493–494
- Stem cell factor (SCF), 370
- Stem cell technology
 - adult stem cells (see Adult stem cells)
 - cancer stem cells, 520–521
 - cell therapy (see Cell therapy, stem cells)
 - definitions, cell potency, 509, 510
 - description, 521–522
 - direct reprogramming, 518
 - disease modeling and drug discovery, 519–520
 - ES cells (see Embryonic stem cells (ESCs))
 - IPS cell technology, 515–518
 - origin, characteristics and uses, 509, 510
 - regulatory issues, 521
 - significance, 509
- Storage
 - dosing and administration devices, 228–229
 - interferon-α2a, 226
 - in IV solutions, 229
 - light protection, 229
 - shelf-life, 226
 - temperature requirements, 226, 228
- Structural genomics
 - description, 181
 - and functional, 182
 - and HGP, 181
 - and proteomics, 185
 - variation, 182
- SUPAC. See Scale-up and postapproval changes (SUPAC)
- Synthetic biology, 209
Systemic lupus erythematosus (SLE), 394, 400–401

Systems biology
 application, 199
 characterization, 199
 description, 199
 information challenges, 184
 SBGN, 199
 and vaccines, 453

Systems Biology Graphical Notation (SBGN), 199

T

Target-mediated drug disposition
 description, 111
 as elimination processes, 111
 macrophage colony-stimulating factor (M-CSF), 111
 multiple clearance pathways, 111, 112
 trastuzumab, 111–112

T2DM patients, 264

Tenecteplase
 administration, 315
 ASSENT-2, 316
 biological potency, 315
 description, 315
 intravenous bolus injection, 315
 pharmacology, 315
 reduction, mortality, 315
 safety, 316
 tetra-alanine substitution, 315
 TIMI 10A and 10B, 315–316
 T103N, 315
 weight-adjusted dosing table, 315

Therapeutic proteins. See also Recombinant therapeutic proteins

PTM, 4
 selection, 4

Thrombolysis in Myocardial Infarction (TIMI), 312

Thrombopoietin (TPO), 370

TIMI. See Thrombolysis in Myocardial Infarction (TIMI)

Tissue-type plasminogen activator (t-PA)
 A-and B-chain, 311
 and AMI, 309
 asparagine 117, 309–310
 complex N-linked glycan structures, 310
 description, 309
 fibrin and platelet depositions, 309
 primary structure, 309, 310
 serine protease synthesis, 309
 single-chain t-PA polypeptide, 310–311
 two-chain, 311
 types, 309

Tocilizumab, 396, 400

Toxicogenomics
 description, 196–197
 genomic techniques, 197
 manifestations, toxicity, 197
 as new drug candidates, 197
 systems models, 199

T-PA. See Tissue-type plasminogen activator (t-PA)

TPO. See Thrombopoietin (TPO)

Transcription regulatory elements (TRE), 478–479

Transcriptomics, 184–185

Transgenic animals
 biopharmaceutical protein production
 gene farming, 204
 human proteins, list, 204, 205
 protein purification, milk, 204, 205
 yields, 206
 cloned animals, 200
 description, 200
 foreign DNA sequences, 200
 Production by
 DNA microinjection and gene addition, 200–202
 pluripotent embryonic stem cell methodology, 202–204
 retroviral infection, 202

Transgenic plants
 agricultural enhancements, 204
 cultured eukaryotic microalgae, 204
 gene transfer technology, 204
 human proteins, biopharmaceuticals list, 204, 205
 pharming, 206

Trastuzumab
 pharmacology and pharmacokinetics, 349, 350
 safety, 350
 treatment, Her-2-positive breast cancer, 349–350

TRE. See Transcription regulatory elements (TRE)

Triplex helix formation, oligonucleotides, 462–464

TS. See Turner syndrome (TS)

Tumor lysis syndrome (TLS), 344

Turner syndrome (TS), 293

U

UFH. See Unfractionated heparin (UFH)

Unfractionated heparin (UFH), 242

Untranslated regions (UTR), 478, 480

Upstream processing
 cultivation
 medium, 53–54
 systems, 49–53
 expression systems, 47–49

USA regulatory framework
 characterization, 251, 252
 clinical studies, 251–252
 drug product approval, 250
 generic drug (small molecule), 249
 guidance documents, 251
 human pharmacokinetic and pharmacodynamic, 251
 proposed product manufacturer, 251
 protein product structure, 251
 quality-by-design approach, 251
 SUPAC, 249–250
 “totality-of-the-evidence” approach, 251

Ustekinumab, 396, 402, 403

UTR. See Untranslated regions (UTR)

V

Vaccines
 categorization, 439, 440
 characteristics, 439
 classical, 446–448
 description, 439
 immunological principles, 440–446
 modern (see Modern vaccine technologies)
 pharmaceutical aspects, 453–455

Van der Waals interactions, 29
Vascular endothelial growth factor (VEGF) inhibitors
 action mechanism, 347, 348
 bevacizumab, 347–349
 description, 347
Viral vectors, gene therapy
 AAV, 487–488
 adenoviruses, 484–487
 characteristics, 481, 482
 clinical trials, 481
 construction and maintenance, 480–481
 lentiviruses, 484
 retroviruses, 482–484

W
 Wasting syndromes, 294
 WCB. See Working cell bank (WCB)
 Working cell bank (WCB), 279

X
 Xenotransplantation, 206

Y
 Yttrium-90 (\(^{90}\)Y) ibritumomab tiuxetan, 342–345