Dr. Stephen H. Tsang is an associate professor in Departments of Ophthalmology and Pathology-Cell Biology at Columbia University. He received his M.D.-Ph.D. degrees from the NIH-National Institute of General Medical Sciences Medical Scientist Training Program (MSTP) at Columbia University. Dr. Tsang then completed his residency at Jules Stein Eye Institute/UCLA. Since 1992, he has been developing gene therapy and stem cell-based treatments for retinal degeneration. He created the first mouse model for retinitis pigmentosa using gene targeting, a model is currently in use in numerous laboratories.

Dr. Tsang’s contributions to retinal degeneration research have been recognized by the 2005 Bernard Becker-Association of University Professor in Ophthalmology-Research to Prevent Blindness Award. At Columbia, he has received the 2008 resident teaching award and is ophthalmology basic science course director (2006–2011). He is also a member of the Macular Society and has served for the past eight years as a grant-in-aid reviewer for the Fight For Sight. Named one of America’s Top Ophthalmologists, he has published over 60 research articles and lectured internationally on personalized medicine and stem cells in regenerative medicine.
Index

A
Abetalipoproteinemia, 6
Adaptive optics (AO), 174
Adeno-associated viral vectors (AVV)
 life cycle and genome structure of, 163–164
 recombinant, 164–165
Adenoviral vector, 162
Adipose-derived stem cells, 32–33
Age-related cataract, 60–61
Age-related macular degeneration (AMD)
 characters of, 7
 genetics of, 7–8
 incidence of, 7
 mechanism of, 108–110
 symptoms and clinical findings, 8
 treatment, 8–10
Altman, A.M., 37
Anatomic endpoints, 174
Ang, L.P.K., 53
Argus II retinal prosthesis system, 7
Asahara, T., 100
Ath5, 80–81
Autofluorescence imaging, 10–11

Bardet-Biedl syndrome, 4–5
Basic fibroblast growth factor (bFGF), 83
Bassen-Kornzweig syndrome. See
 Abetalipoproteinemia
Beaver dam eye study, 60
Bone marrow stem cells (BMSCs)
 advantages, 101
 endothelial progenitor cells (EPCs), 99–100
 hematopoietic stem cells (HSCs), 99
 for RGC therapy, 85–86
 therapeutic potential for transplantation, 100–101
 in tissue injury, 100
 transplantation for retinal disease, 101–103
Brn3, 81–82

C
Caballero, S., 101
Cancer stem cells
 functional characterisation of, 146–147
 metastatic uveal melanoma, 147
 in uveal melanoma
 cellular plasticity, 144–145
 developmental signalling pathways, 143–144
 melanocyte stem cells, 142
 vs. normal adult tissues, 140–141
 overview, 140
 primitive embryonic gene signatures, 142–143
 putative cancer stem cell markers, 145–146
Capeci, M., 157
Cellular plasticity, 144–145
CESC. See Corneal endothelial stem cells (CESCs)
Chang, R.L.J., 157
Ciliary marginal zone (CMZ), 86
CLAU. See Conjunctival limbal autograft (CLAU)
Complement factor H (CHF Y402H), 108
Cone vs. rod photoreceptors, 133
Congenital cataracts, 60
Conjunctival limbal autograft (CLAU), 51–52
Context-dependent assembly (CoDA) method, 159–160
Corneal endothelial stem cells (CSCs), 44–45, 49–51
Corneal stem cells
 corneal anatomy, 44–45
 definition of, 45–46
 endothelial stem cells, 49–51
 histology, cornea, 45
 limbal epithelial stem cells, 46–48
 for ocular surface disease, non-ocular adult and embryonic stem cells, 53
 stromal stem cells, 48–49
 treatment of deficiencies in, 51–52
Corneal stromal stem cells, 45, 48–49
Cotsarelis, G., 46
Cripto 1 gene, 143–144

D
Davanger, M., 46
Descemet’s membrane, 44
Diabetic retinopathy
 panretinal photocoagulation therapy for, 103
 progression of, 102
Drug administration, 176–177
Dua, H.S., 46

E
Ebrahimian, T.G., 37
Efficacy endpoints
 anatomic endpoints, 174
 color vision testing, 173
 definition, 173
 electrophysiology, 173
 functional living endpoints, 174
 objective physiologic endpoints, 173
 psychofunctional technique, 173
Electroretinography (ERG), 174–175
Embryonic stem cells (ESCs)
 biology, 58
 lens development and disease
 age-related cataract, 60–61
 congenital cataracts, 60
 embryonic development, 59–60
 lens differentiation
 in chemically defined conditions, 63–64
 3-D cultures of lentoid bodies, 64–65
 iPSC cells and cataract research, 66–67
 lentoid bodies, formation of, 63
 mammalian lens development, 61–63
 lentoid bodies, 58
 mechanism-based therapies, 111–113
ESC. See Embryonic stem cells (ESCs)
Evenson, A., 46
Ex-vivo gene replacement therapy
 gene addition therapy, 155
 vs. gene addition therapy, 156
 gene delivery, viral vectors in
 adeno-associated viral vectors, 163
 adenoviral vector, 162
 herpesviral vector, 163
 lentiviral vector, 162
 life cycle and genome structure of AVV, 163–164
 recombinant AVV, 164–165
 homologous recombination, 154
 induced pluripotent cells, 165–166
 mouse embryonic stem (ES) cells, 165
 site-directed engineering of, 156–158
 TALENs induced double-strand breaks, 160–161
 traditional gene therapy, 167
 zinc finger nucleases, 154–155, 158–160

F
Fang, D., 144
Fetal retina tissue transplantation, 115
Fibroblast growth factor (FGF) signaling pathway, 62
Fluorescein angiography (FA), 11–12
Forrester, J.V., 46
Functional living endpoints, 174
Fundus autofluorescence (FAF), 174

G
Gehring, 59
Gene addition therapy, 155–156
Gene correction therapy. See Ex-vivo gene replacement therapy
Genetics
 of age-related macular degeneration (AMD), 7–8
 of retinitis pigmentosa (RP), 3–4
Glaucoma
 cell transplantation
 cell choices for, 85–87
 for RGC neuroprotection, 90–91
 for RGC replacement, 87–89
 RGC fate determination
 Ath5, 80–81
 basic fibroblast growth factor, 83
 Brn3, 81–82
 cell-cycle duration, 78
cell division, 78
growth differentiation factor 11, 84
Notch, 81
Pax6, 79–80
retinal progenitor competence, 77–78
sonic hedgehog, 83–84
stages of progenitor cell, 77
transcription factors, 79–83
Wilms’ tumor gene (WT1), 82–83
stem and progenitor cells, 76
Griep, 59
Griffith, M., 52
Growth differentiation factor 11 (GDF11), 84

H
Harbour, J.W., 144
Herpesviral vector, 163
Hirami, Y., 114

I
Ikeo, 59
Indocyanine green (ICG), 12–13
Induced pluripotent stem (iPS) cells and cataract research, 66–67
for cell replacement therapy, 21–22
generation of, 21
lens development and disease
age-related cataract, 60–61
congenital cataracts, 60
embryonic development, 59–60
mechanism-based thearpies, 114
Intravitreal delivery, 176–177
Iris pigment epithelium transplants, 127

K
Kang, H.M., 33
Kenyon, K.R., 51
Kim, J.Y., 52
Kim, W.S., 37, 38
Korn, B.S., 33

L
Langer, R., 34
Lentiviral vector, 162
Lentoid bodies
3-D cultures of, 64–65
formation of, 58, 63
Limbal epithelial stem cells (LESCs), 46–48
Limbal stem cell deficiency (LSCD), 47–48
LOC387715/ARMS2 gene, 109
Lombardo, A., 159
LSCD. See Limbal stem cell deficiency (LSCD)

M
Majo, F., 47
McGowan, S.L., 49, 50
Mesenchymal stem cells (MSCs), 32
Metastatic uveal melanoma, 147
Microperimetry, 13, 15
Monteiro, B.G., 53
Müller cells, 86
Multifocal electroretinogram (ERG), 13–16
Multiple endocrine deficiency (MEN), 48

N
Nambu, M., 37
Neural retina-specific leucine zipper (NRL), 17–18
Neuronal stem cells (NSCs), 85
Normal adult tissues, stems cells in, 140–141
Normal corneal epithelium, 171
Notch, 81

O
Ocular surface disease, non-ocular adult and embryonic stem cells for, 53
Oculofacial plastic surgery
adipose-derived stem cells in, 32–33
clinical applications
skin rejuvenation, 37–38
tissue engineering and grafting, 33–36
wound therapy, 36–37
embryonic stem cells in, 32
mesenchymal stem cells in, 32
orbital stem cells in, 33
Oligomerized pool engineering (OPEN), 159
Onken, M.D., 143
Optical coherence tomography (OCT), 13, 14, 174
Orbital stem cells in, 33
Osakada, F., 113

P
Paget, 147
Panretinal photocoagulation therapy, 103
Park, B.S., 38
Pax6, 79–80
Argus II retinal prosthesis system, 7
vitamin A therapy, 5–6
RGC. See Retinal ganglion cell (RGC)
Rigotti, G., 37
Robdell, 32
RP. See Retinitis pigmentosa (RP)

S
Safety concerns, 175–176
Schwartzberg, P.L., 157
Senile cataract. See Age-related cataract
SERPING1 gene, 108–109
Simman, R., 37
Skin rejuvenation, 37–38
Song, H., 158
Sonic hedgehog (Shh), 83–84
Stargardt disease, 109, 111
Stem cell-based therapeutics, 172
Stem cell therapy
in clinical trials, 18–20
differentiation of, photoreceptors and RPE
in dry AMD, 15–16
human embryonic stem cells, 16
neural progenitor markers, 17
neural retina-specific leucine zipper, 17–19
eye for, anatomy and imaging capabilities of
auto fluorescence imaging, 10–11
fluorescein angiography, 11–12
indocyanine green, 12–13
microperimetry, 13, 15
multifocal ERG, 13–16
optical coherence tomography, 13, 14
induced pluripotent stem cells for cell replacement therapy, 21–22
generation of, 21
for retinal degenerations
characterization of, 1–2
clinical and pathological features of, 2–10
Sterodimas, A., 36
Stout, J.T., 172
Stromal keratocytes. See Corneal stromal stem cells
Subretinal delivery, 177
Suprachoroidal delivery, 177
Syndromic retinitis pigmentosa, 4–5
Systemic drug delivery, 176

T
Takahashi, K., 114, 132
Takahashi, M., 111
Thill, M., 145
Thoft, 51
Tissue engineering and grafting
adipose tissue, 35–36
bone, 35
cartilage, 35
fibroblast growth factor-2, 34
scaffolds, 34
Tissue injury, BMSC in, 100
Topical drug delivery, 176
Townes-Anderson, E., 131
Trans-corneal delivery, 176
Transcription activator-like effector nucleases (TALENs), 160–161
Trans-scleral delivery, 176
Tseng, S.C., 51
Turner, J.E., 122

U
Uveal melanoma
cancer stem-like cells in cellular plasticity, 144–145
developmental signalling pathways, 143–144
functional characterisation of, 146–147
primitive embryonic gene signatures, 142–143
putative cancer stem cell markers, 145–146
melanocyte stem cells, 142
metastatic, 147
neural crest, 142
stem cells in normal adult tissues and cancer, 140–141

V
Vacanti, J.P., 34
Vasculogenic mimicry, 144–145
Viral vectors
adeno-associated viral vectors, 163
adenoviral vector, 162
herpesviral vector, 163
lentiviral vector, 162
life cycle and genome structure of AAV, 163–164
Viral vectors (cont.)
properties, 154
recombinant adeno-associated viral
vectors, 164–165
Visual field testing, 173
Vugler, A., 113

W
Warnke, P.H., 35
Whitehart, 49
Whole retinal sheets, 129

Wilms’ tumor gene (Wt1), 82–83
Wound therapy, 36–37

Y
Yamanaka, S., 66, 114, 132, 165
Yanaga, H., 35
Yang, X., 53

Z
Zinc finger nucleases (ZFNs), 158–160