Index

A
Abramovich, F., 323, 326, 329, 334, 337, 342
Achim, A., 341
Adaptive Bayesian wavelet shrinkage (ABWS), 325–326, 330
Ahsanullah, M., 298, 299
Almost-shift-invariant space
Paley–Wiener space, 97
sinc function, 94
Ambler, G.K., 341
Amoroso distribution
pdf, 299
special rvs, gamma, 299, 301
Angelini, C., 327
Approximation order, 55, 77
Approximation, polynomials $P_{E-M}[-1,1]$, 34–35
Sinc points, 34, 35
Approximation, polynomials $P_{E-E}[-1,1]$, 34–35
intervals, 35
Sinc points, 34, 35
Array processing
applications, 108
DOA, 106
grating lobes, 114
ASH. See Average shifted histogram (ASH)
Autocorrelation
deterministic construction, 186
harmonic analysis, 184
sampling and reconstruction, 106
snapshot averaging, 109
Wiener–Wintner theorem, 185
WSS, 107
Autocorrelation sequences on Z
CAZACs and Hadamard sequences, 192–195
circulant Hadamard matrices and CAZACs, 188–191
definition, 184–185
Fejér function, 184
Fourier transforms, 183
Hadamard matrices, 186–188
harmonic analysis, 184
radar, 184
triangular (see Triangular autocorrelation)
unimodular sequence, 186
waveform design, 184
Wiener–Wintner theorem, 185
Average sampling
acquisition device, 102
density, exponentials, 103
Hilbert space, 102
Average shifted histogram (ASH), 276

B
Ball Joseph, A., 180
BAMS. See Bayesian adaptive multiresolution shrinkage (BAMS)
Barber, S., 333, 335, 342
Barmann–Segal–Foch space
Cauchy–Schwarz inequality, 154
chromatic derivatives, 157–158
Hilbert space, 153
orthonormal family, 154
Taylor series, 153–154
Bargmann transform
Gabor representation problem, 154–155
Hermite polynomial, 155–156
Parseval’s relation, 156–157
Bargmann, V., 140
Bayesian adaptive multiresolution shrinkage
(AMS)
ε–contamination prior uses, 322
double exponential and empirical
distribution, 321
exponential power model, 321
hard vs. soft thresholding rules, 322
Laplace transforms, 322
MED rule, 324, 325
posterior distribution, 323
posterior median, 323–324
squared error loss and regular models, 323
Bayesian block shrinkage (BBS)
Bernoulli random variable, 332
chi-square random variable and
correlations, 331
diagonal method, 328
empirical approach and nonlinear, 329
Gibbs sample and matrix, 331
HMT and MRF, 333
hyperparameters and covariance matrix, 329
mixture structure, 331–332
MSE and power prior, 332
Nelder–Mead simplex search method, 329
NIG distributions and ABWS, 330
posterior mean, 330
Bayesian hierarchical model, 335
Bayesian inference, 331, 339
Bayesian wavelet regression
BBS, 328–333
Box-Cox family, 342
complex shrinkage, 333–335
curve classification, 338–340
FDR, 342
GCD and BKF densities, 341
Gibbs sampling, 335–338
posterior mode, 341
term-by-term shrinkage
ABWS and SSVS, 325–326
cumulative and posterior distribution, 327
heavy-tailed density and
hyperparameters, 326
linear and orthogonal transform, 325
LPM, 328
MAP principle, 327–328
Γ-minimax, 327
mixture prior distributions, 326
nonparametric, 324
posterior mean rule, 327, 328
quasi-Cauchy distribution, 327
time and domain, 341
Bayesian wavelet shrinkage
BAMS, 321–324
block model, 320–321
discrete transformations, 319–320
Heisenberg’s principle, 318
MCMC, 321
modeling building blocks, 318
nonparametric statistical modeling, 317
realistic statistical models, 320
regression (see Bayesian wavelet
regression)
scaling laws, 318
three-step procedure, 317–318
thresholding rules, 320
whitening property, 318
BBS. See Bayesian block shrinkage (BBS)
Berger, J., 322
Bessel K forms (BKF) densities, 341
Biorthogonal Spline Family (BSF), 237–238
BKF densities. See Bessel K forms (BKF)
densities
Block shrinkage. See Bayesian block shrinkage
(BBS)
Box-Cox family, 342
Breiman, L., 284
B-splines, 74, 75
Bultheel, A., 333
C
CCR. See Correct classification rate (CCR)
CDFs. See Cumulative distribution functions
(CDFs)
CEB. See Complex empirical Bayes (CEB)
Centered Fourier matrix, 258, 259
Certain solutions of generalized Pearson
differential equations, 304–305
CGSWS. See Complex Gibbs sampling
wavelet smoother (CGSWS)
Chaos theory, 213, 223, 224
Characterizations of distributions
Amoroso, 299–304
Burr system, 298
Pearson system, 298
power function and uniform distributions, 298
SK, 306–307, 312–313
SKS, 305–309
SKS-type, 306, 309–312
SSS, 304–305
stochastic model, 297
Chebyshev polynomial approximation
error, 45, 46
use, 45
CHF. See Congestive heart failure (CHF)
CHf. See Continuous Hermite functions (CHf)
Chipman, H., 325, 330
Chromatic derivatives
Fourier transform, 141
integral transforms, 143–145
Legendre polynomials converge, 142
multidimensional, 149–152
polynomials, 149
Sturm–Liouville differential operator, 142–143
Taylor-type expansion, 141
Chromatic series expansions
Bargmann–Segal–Foch space (See
Bargmann–Segal–Foch space)
Bargmann transform, 154–157
derivatives (See Chromatic derivatives)
description, 139, 140
Fourier transformation, 139
orthogonal polynomials
expansions, 148–149
variables, 145–147
quantum mechanical system, 140
Sturm–Liouville boundary-value problems, 140
Clary, S., 258
Classification tree (CT), 283
Clyde, M., 341
Coarrays
MRAs, 111
symmetric, 110
Coiflet, 254
Coifman, R.R., 275
Complex empirical Bayes (CEB)
MeanKill procedure, 335
phase and modulus, wavelet, 333–334
posterior mean, 334–335
Complex Gibbs sampling wavelet smoother
(CGWS), 337
Complex-valued wavelets, 333–335
Compression
datasets, 282
smooth shrinkage rules, 323
wavelet transform, 234
Conditional probability density, 350
Congestive heart failure (CHF), 225–226
Contamination prior, 322, 327
Continuous Hermite functions (CHf)
analogous properties, 273
DoG function, 261–262
finite discrete domain, 258
Gaussian derivatives, 262–264
Hermite polynomials, 258
localized analysis
digital weighting function, 265
window and weighting function, 264
monic polynomial, 258
multiscale analysis, 257
shapes, 258
Convergence, classical cardinal series
Cauchy’s estimate, 11
classes, data
arithmetic means, sequence, 22
classical sampling theory, 20
Fourier transforms, 19
standard sampling theorem, 21
symmetric partial sums, 23
definition, 3
functions, analogy, 5
generic constants, 8
hypothesis, coefficients, 14
limiting function, 7
mutatis mutandis, 10
oscillatory nature, 6
sampling-type theorem, 4
special functions
elementary curiosity, 17
expansions, 17
plots, Sgn(x), 17, 18
specific bounds, 15
technical lemma, 12–13
Convolution
discrete wavelet transforms, 239
filters and filter banks, 235
Convolution sampling
Banach spaces, 83
reproducing Kernel Banach subspaces, 99–100
Convolution systems
Cauchy–Schwarz’s inequality, 59–60
impulse response, 59
linear time-invariant systems, 55
Parseval’s equality, 60
types, 58–59
Coprime arrays
autocorrelation, 108
carrays, 110–111
extra elements, 111–112
spatial
DOA, 109
mutual coupling, 110
snapshot averaging, 109
uniform samplers, 107, 108
Coprime circulants, 129–130
Coprime filter banks
cascade effect, 116
DFT, 114, 115
nonoverlapping bands, 118
sensor spacings, 115, 117
simulated beams, 118, 119
transfer function, 115
Coprime matrices
construction, integer, 125
families, integer
Bezout’s identity, 126
skew-circulant adjugate pair, 127
generation pairs, minors
adjugates, 130–131
arbitrary sizes, 128
circulants, 129–130
Coprime sampling and arrays
application, DOA estimation
MUSIC spectrum, 114
plane wave, 112, 113
commuting coprime matrices, 125–131
coprime arrays, one dimension, 107–112
DFT filter banks and beamforming, 114–118
DOA, 105
fractionally spaced equalizers
equivalent multirate representation, 134
oversampling receiver, 134
zero-forcing, 135
identification, sinusoids, 106
multiple dimensions, 118–125
notations, 107
pulsing, 106
system identification, 131–134
Corradi, F., 341
Correct classification rate (CCR), 340
Correlation integral, 216, 223
Courtney, D., 166
Crooks, G.E., 299
CT. See Classification tree (CT)
Cumulative distribution functions (CDFs), 279, 309–310
Cuntz relations
Blaschke product, 170, 173
gram matrix, 170
kernel Hilbert space, 171
orthogonality, 171
pick matrix, 170
vector spaces, 172
Curve classification, Bayesian wavelet shrinkage
binary and multiclass data, 338
functional data analysis, 338
leaf data, 339–340
logistic model and data set, 338
standard classification and unified hierarchical model, 339
Cutillo, L., 327
D
Daubechies family (DBF), 237
Daubechies, I., 234, 237, 238, 243, 245, 248, 251, 252
de Branges, L., 178
De Canditiis, D., 329
Denoising
hard thresholding, 244
signal interference, 243
Detrended fluctuation analysis (DFA), 221, 224
DFA. See Detrended fluctuation analysis (DFA)
DHf. See Discrete Hermite functions (DHf)
DHmT. See Discrete Hermite transform (DHmT)
Difference of two Gaussians (DoG)
darker curve, 262
definition, 261
discrete, 262
retinal ganglion cells, 261–262
scale-space representation, 261
standard deviation, 261
Dilation
DHmT, 267
digital weighting function, 265
discrete Gaussian, 263
parameter, 260
standard deviation, 261
Dimension, 217, 220, 222, 223
Direction of Arrival (DOA)
MRAs, 111
MUSIC spectrum, 114
plane wave, 112, 113
Direction of arrival (DOA), 106
Discrepancy curve, 362
Discrepancy principle (DP), 361–362
Discrete Fourier Transform (DFT)
filter banks and beamforming (see Coprime filter banks)
sampling array, 106
Discrete Fourier transforms, 264
windowed discrete signal, 265
Discrete Hermite functions (DHf)
advantages, 260
centered Fourier matrix, 259
CHf (See Continuous Hermite functions (CHf))
definition, 259
digital function, 261
dilation parameter, plots, 260
multiscale analysis, 265–272
plots, h0, h1, h2, and h61, vectors, 259
Discrete Hermite transform (DHmT)
analysis, input signal, 270
arbitrary digital signal, 263
dilation parameter \(\sigma\), 267
first-level, 268, 269
inverse, 267
scale parameter, 265
second-level, 269
subband decomposition, 272
subband method, 269
third-level, 269, 270
Discrete wavelet transforms
convolution approach, 239
matrix approach, 240
Discriminant measure
additive, 280
LDB, 293
signature time–frequency map and EMD, 281
subspace, 281
symmetric relative entropy, 283–284
DOA. See Direction of Arrival (DOA)
DoG. See Difference of two Gaussians (DoG)
Donoho, D.I., 243, 329, 332, 334
DP. See Discrepancy principle (DP)
DRTLS. See Dual regularized total least squares (DRTLS)
Dual frames, 56, 69
Dual regularized total least squares (DRTLS)
estimator graphs, 360
Hilbert spaces, 352, 353
ill-posed problem, 353
multi-parameter regularization methods, 364
noisy versions, 352
operator B, 357, 359
operator equation, 356, 365
parameter choice rule, 353–354
systems, linear equations, 365
TR, 356
E
Earth mover’s distance (EMD)
advantages, 277
cdfs, 279
color and textured images, 277
empirical cdfs, 1D signatures, 279–280
Euclidean distance and signatures, 278–279
Monge–Kantorovich mass transportation problem, 278
optimal and total flow, 278
piles, soil, 277–278
signature, 277
ECDFS. See Empirical cumulative distribution functions (ECDFS)
EEG analysis. See Electroencephalography (EEG) analysis
Einthoven, W., 233
Electrocardiogram (ECG)
analysis and synthesis filter banks, 240–241
biomedical signals, 241
convolution and filter banks, 235
diagnostic tool, 233
discrete wavelet transforms, 239–240
families
BSF, 237–238
DBF, 237
GBL, 243
properties, 238
heart, 241, 242
multiresolution analysis, 235–236
PRD, 234
process 1
comparison methods, 245–247
denoising, 243–244
PRD and SNR selection, 248–249
term-by-term thresholding, 244–245
process 2
comparison method, 251
global thresholding, 250
rankings, 251
steps, 250–251
process 1 vs. process 2
Biorthogonal 2.4, 253
coiflet, 254
properties, 243
signals, patients, 241, 242
SNR, 234
systems, 236–237
time-frequency analysis techniques, 255
Electroencephalography (EEG) analysis
box-counting dimension, 223
chaotic signals, 223
characteristic scale, 225
DFA, 224
entropy measures, 224
epileptic seizures, 220
Hurst parameter, 223
KS entropy, 223
LZ complexity, 220
random fractal theory, 221
seizure and non-seizure segments, 221
small and large scales, 221, 222

EMD. See Earth mover’s distance (EMD)

EMD based LDB
additive discriminant measures, 280
definition, 281
dimension, 282
discriminant power, subspace, 281
signature, 281–282
time–frequency map, 280, 281
tree-structure notation, 281

Empirical Bayes, 326, 327, 341
Empirical cumulative distribution functions
(ECDFS), 283
Empirical error, 351
Entire functions of exponential type, 4, 84
Entropy, 220, 222–224
Exponential power model, 321
Extrapolating estimators. See Multiparameter regularization
Extrapolation. See Multiparameter regularization

False discovery rate (FDR), 342
fBm process. See Fractional Brownian motion (fBm) process
FDR. See False discovery rate (FDR)
Fejér function, 184, 199, 204–205
Figueiredo, M., 341
Filter. See Filter banks
Filter banks
analysis and synthesis, 240–241
cascade effect, 116
convolution (see Convolution)
coprime arrays, 114, 115
snapshot averaging, 118
transfer function, 115
Finite unit normed tight frames (FUNTFs), 191
Foch, V., 140

Fractional Brownian motion (fBm) process, 217
Fractionally spaced equalizers, 134, 135
Frames
Laguerre transforms, 93
Riesz bases, 56
signal analysis, 155
Fryzlewicz, P., 333
Functions of generalized order statistics, 310–311
Functions of order statistics, 310
FUNTFs. See Finite unit normed tight frames (FUNTFs)

G
Galambos, J., 298
Gaussian derivatives
DHmT, 263
discrete and Fourier transforms, 263, 264
filter functions, 263
vs. Hermite functions, 263
Hermite polynomials, 262

GBL. See Global thresholding (GBL)
GCD. See Generalized Gaussian distribution (GCD)
Generalized gamma distribution, 300, 301
Generalized Gaussian distribution (GCD), 341
Generalized order statistics (GOS), 310
Generalized sampling
band-limited functions, 52
Cauchy–Schwarz’s inequality, 57
convolution systems (see Convolution systems)
evaluation functionals, 57
Hilbert space, 58
kernel transform, 58
lattice, Z(d)
invariant subspaces, 62
optimal frame bounds, 63
orthogonal relationship, 61
square matrix, 66
vector function, 64–65
regular sampling, V2(2)
Bessel sequence, 69
canonical dual frame, 70
Fourier transform, 70
Hermite cubic splines, 76
isomorphism, 66, 67
L2-approximation properties, 76–78
Laurent polynomials, 75
pseudo-inverse matrix, 68
reconstruction functions, properties, 72–74
Riesz basis, 71
shifting property, 67–68
scaling functions, 55
sequence, reconstruction functions, 56
shift-invariant spaces, 53–55
WSK sampling theorem, 51
George, E.I., 325, 341
Gibbs sampling
Bayesian hierarchical model, 335
CGSWS, 337
conjugate inverse gamma prior, 336
heavy-tailed mixture prior, 336
IPD, 337–338
MCMC, 335
multivariate exponential power distribution, 335
scale mixtures, 336–337
univariate double exponential prior, 336
Glänzel, W., 298, 307, 314, 315
Glass, L., 217
Global thresholding (GBL), 243
GOS. See Generalized order statistics (GOS)
Graph Laplacian, 360
Grassberger, P., 216
Hadamard, J., 183, 186–188, 190–195, 206
Hadamard matrices
CAZACs
circulant matrix, 188
constructions, sequence, 192–195
FUNTFs, 191
Parseval’s relation, 188, 189
unimodular sequences, 190
square matrix, 186–187
Walsh functions, 187–188
Hall, P., 187, 328
Hardy space functions
Blaschke product, 161–162
Branges–Rovnyak spaces, 166
Cuntz relations (see Cuntz relations)
De Branges Rovnyak spaces
Cuntz relations, 178–179
kernel, 178
multipoint interpolation problems, 180
$H^p_{2 \times 2}$, 169
$H^p_{2 \times q}$, 174–175
interpolation problems, 175–177
isometries, 164
kernel spaces techniques, 166
Leech’s theorem, 167–169
linear dynamical systems, 164–165
matrix functions, 167
matrix-valued Schur functions, 164
multipoint interpolation problem, 162–163
tangential interpolation problems, 162, 163
transfer function, 165
Heart rate variability (HRV) analysis
cardiovascular function, 225
CHF, 225, 226
plane separation, 226, 227
small-scale behaviors, 226
wavelet-based multifractal analysis, 225
Heavy-tailed prior, 336
Hermite cubic splines, 76
Hermite polynomials
CHF, 258
functions, 263
Gaussian derivatives, 262–263
Hidden Markov tree (HMT), 333
Hierarchical model. See Bayesian hierarchical model
HMT. See Hidden Markov tree (HMT)
HRV analysis. See Heart rate variability (HRV) analysis
Huerta, G., 331
Ignjatovic, A., 139
Ill-posed inversed problem, 348, 353
Inductance plethysmography data (IPD), 337–338
Intermittent Chaos, 218, 220
Interpolating estimators, 348, 349, 352
Interpolation
cardinal series, 4
polynomial-like interpolation., 26
and Sinc notation (see Sinc notation and interpolation formulas)
Interpolation problems, 175–177
Inverse problem
expansion theorems, 81
regularization methods., 348
sampling sequence, 82
IPD. See Inductance plethysmography data (IPD)
Jansen, M., 333
Johnstone, I.M., 326, 329, 332, 334
K
Kamps, U., 310
Kibria, B.M., 306
Kohn, R., 342
Kolmogorov–Sinai (KS) entropy, 223
Kotz, S., 298
KS entropy. See Kolmogorov–Sinai (KS) entropy
Kuruoglu, E.E., 341

L
Lagrange polynomial approximation, 29
Laplace transforms, 322
Larger posterior mode (LPM), 328
Lattices sampling
coprime, 120
gometries, 106
Z^d (see Generalized sampling)
Laurent polynomials
reconstruction functions, 73, 76
sampling functions, 76
Lawton, W., 333
LDA. See Linear discriminant analysis (LDA)
LDB. See Local discriminant basis (LDB)
Leech’s theorem, 167–169
Left inverse matrices, 70
Lei, J.J., 77
Lempel–Ziv (LZ) complexity, 220, 224
Levy, D., 218
Lina, J.-M., 333
Linear discriminant analysis (LDA), 285, 292
Local discriminant basis (LDB)
algorithm performance
bell waveforms, 288–290
chirp waveforms, 290–293
dimension reduction, 282–283
LDA and CT, 283
LDBK, 283
LDBKASH vs. LDBKEMD, 283, 293
shape waveforms, 287–288
synthetic signal datasets, 283
training and test waveforms
misclassification, 283–284
triangular waveforms, 284–287
ASH, 276
classification and discrimination, 276
depiction, WPT, 276
EMD (see Earth mover’s distance (EMD))
time–frequency dictionary, 275–276
time–frequency map, 276–277
Lorenz systems, 216
LPM. See Larger posterior mode (LPM)
LZ. See Lempel–Ziv (LZ)
complexity

M
Machine learning algorithms, 348
Mackey, M.C., 217
Mallat, S., 319
Mallick, B.K., 341
Marginal probability density, 350
Markov Chain Monte Carlo (MCMC), 321, 335
Markov random field (MRF), 333
Martens, J.B., 266
Maximum likelihood estimation, 326, 327, 332
Mayrand, M., 333
McCulloch, R., 325
MCMC. See Markov Chain Monte Carlo (MCMC)
Minimum redundancy arrays (MRAs), 111
Model function approach, 362
Monge-Kantorovich mass transport, 278
Moore-Penrose left pseudo-inverse, 68, 70
MPR. See Multi-penalty regularization (MPR)
MRAs. See Minimum redundancy arrays (MRAs)
MRF. See Markov random field (MRF)
Mugler, D.H., 258
Müller, P., 322
Multidimensional sampling
coprimality, 120
2D frequency tiling
dense tiling, frequency plane, 124
DFT, 122
mutual coupling, 125
passband regions, 123
lattice arrays, 118, 120
monochromatic plane waves, 125
properties of multidimensional coarrays,
121–122
Multiparameter regularization
DRTLS and MPR, 352–354
empirical data, 348
machine learning algorithms, 348
numerical realization and tests
additional input cases, 359–360
graph Laplacian, 360
MPR estimators f_α, β, 361
TR, 356–359
regularization parameter choice, 361–364
RKHS, 354–356
statistical learning theory (see Statistical learning theory)
Multi-penalty regularization (MPR)
 B-operators, 364
 closeness functional descriptions, 362–363
description, 353
discrepancy curve, 362
DP, 361–362
DRTLS, 349, 356, 364
estimators f_α, β graphs, 361
minimal extrapolating errors, 361
model function approach, 362
quasi-optimality principle, 362, 363
Multiresolution analysis, 235–236
Multiscale analysis, DHf
 broad context, polynomial transforms, 266
 DHmT, 267–270
discrete signals
 DHmT transform values, 266
downsampling, 266–267
Fourier transforms, 267
lower-indexed values, 267
plot, input signal, 267, 268
wavelet analysis
 biorthogonal 3.3, 270
decomposition, 270–272
wavelets, 266
MUSIC algorithm, 113

N
Nashed, M.Z., 88
Nason, G.P., 333, 335
Newton-Cotes polynomials, 38–39
Nonparametric regression, 320, 324
Nonstationarity, 218–220
Nowak, R., 341

O
Olhede, S., 342
One-parameter regularization methods, 349
Order statistics
 first, 298, 299, 303, 309
generalized, 310
jth, 301
nth, 298, 299, 302, 304, 309
progressive type II, 310
rth, 310

P
Paley, R.E.A.C, 187
Paley-Wiener spaces ($PW_{1/2}$)
 band-limited functions, 52
Fourier duality technique, 55
properties, Sinc function, 84–86
and properties, sinc function
orthogonality property, 85
shift-invariant space, 94, 97
WSK sampling theorem, 84
shift-invariant spaces, 97
Parameters choice rule, 353
Pearson, K., 298
Percentage root mean square difference (PRD)
 and SNR selection, 248–249
 wavelet denoising, 234
Perfect autocorrelation. See Autocorrelation
 sequences on Z
Pericchi, L.R., 327
p-frame, 101
Pižurica, A., 333
Polynomial approximation
 error, transformed Chebyshev, 45, 46
 Sinc and Lagrange, 29
uniform Chebyshev, 45
Polynomial-like interpolation., 26
Portilla, J., 333
Posterior mean
 Bayesian estimators, 321
 CEB, 335
 linear combination, 330
 marginal distribution, 332
 rule, 327–328
 standard estimator, 337
Posterior median, 323, 324, 327, 329, 332
PRD. See Percentage root mean square
difference (PRD)
Procaccia, I., 216

Q
Quadrature mirror filters, 319
Quasi-Cauchy distribution, 327
Quasi-optimality principle, 362, 363

R
Ray, S., 341
Regularization methods. See Multiparameter
 regularization
Regularization parameter, 349, 351, 352,
 361–364
Reproducing kernel Banach spaces, 101–102
Reproducing kernel Hilbert spaces (RKHS)
 corresponding data noise from, 356
 definition, 354
 numerical realization, regularization
 methods, 356
Index

Reproducing kernel Hilbert spaces (Cont.)
operator and data noise, 355
properties, multiplication and composition operators, 172–173
property, linear combinations, 355
Riesz representation theorem, 90
scalar product, 354
square-integrable functions, 91
Riesz bases, 56
RKHS. See Reproducing kernel Hilbert spaces (RKHS)
Rochberg, R., 167
Rosenblum, M., 168
Rovnyak, J., 178
Rubner, Y., 277–279
Runge, C., 38–44
Runge’s function
derivative, Sinc approximation error, 39, 41
exponential polynomial error, 41, 42
f minus trans circ poly approx error, 44
f-prime minus trans algebraic polynomial prime, 41, 43
Newton–Cotes polynomial error, 39, 40
Sinc approximation error, 39, 40
trans algebraic polynomial error, 41, 43
trans circ poly prime error, 44
S
Saito, N., 275, 276, 283, 284
Sampling
and arrays (see Coprime sampling and arrays)
classical sampling theory, 20
function spaces (see Sampling expansions)
generalized (see Generalized sampling)
Sampling expansions
average, 102–103
Banach space, 82
convolution, reproducing Kernel Banach subspaces, 99–100
engineering approach, 91–92
expansion theorems, 81
Fourier series/integral approach, 83–84
function spaces, 88–91
Kernel Hilbert space, 100–101
mathematical deficiencies
definition, 88
replication images, 86
Shannon sampling theorem, 87
non-bandlimited signals, 82
properties, Sinc Function and the Paley–Wiener space, 84–86
reproducing kernel banach spaces, 101–102
reproducing kernel banach subspaces, Lp, 97–99
RKHS, 92–93
series expansions and integral representations, 81
shift-invariant spaces, 93–94
signals, finite rate of innovation, 95–97
unitarily translation-invariant Hilbert spaces, 94–95
Sampling operator, 351, 357, 359
Sampling theory
band-limited functions, 20
functional analysis and harmonic analysis, 83
lattice geometries, 106
modeling signals, 95
shift-invariant spaces., 94
signal and image processing, 82
Sapatinas, T., 327
Sarason, D., 169
Scale-dependent Lyapunov exponent (SDLE)
biological data analysis
EEG (see Electroencephalography (EEG) analysis)
HRV (see Heart rate variability (HRV) analysis)
characterization, 227–228
complex systems, 212
definitions and fundamental properties
chaos theory, 213
computational procedure, 215
fBm process, 217
inherent scales and characteristic scale, 215
logarithm and averaging, 215
Lorenz systems, 216, 217
phase space, 214
reconstructed vectors, 214
scaling law, 217, 218
stochastic processes, 217, 218
time series, 214
detection, intermittent Chaos, 218, 219
HRV, 212
multiscale complexity measure, 227
multiscale nature, signals, 212, 213
nonstationarity, 218–220
Scaling law, 217, 218
Schur functions, 167–169
SDLE. See Scale-dependent Lyapunov exponent (SDLE)
Selesnick, I.W., 333
Sendur, L., 333
Shakil–Kibria (SK) distributions
characterizations, 312–313
five-parameter solution, 306–307

Shakil–Kibria–Singh (SKS)-type distributions
characterizations
arbirtary positive constant, 311–312
CDF, 309–310
conditional pdf, 311
first and rth order statistic, 309
GOS, 310
real-valued function, 309
description, 306
log-normal and inverse Gaussian, 305
Pearson system defined, 306
tuncated moments, 305–306

Shakil, M., 304–306

Shakil–Singh–Kibria (SSK) distributions
characterizations
continuous random variable, 307
differential equation, 308–309
real functions, 307–308
confluent hypergeometric functions, 305
parameter, 304–305
Shanbhag, D.N., 298
Shannon, D.C., 224
Shen, X., 25
Shift-invariant space. See Almost-shift-invariant space

Shift-invariant spaces
Fourier duality technique, 55
function spaces, 83
Riesz sequence, 53
sampling, 93–94
Zak transform, 54

Signal to-noise ratio (SNR), 234
Signal with finite of innovation
representative sampling expansions, 83
sampling
regularity and decay properties, 97
shift-invariant space, 96
theory, 95

Signature
EMD, 277–280
time–frequency map, 281
Silverman, B.W., 326, 341
Sinc interpolation, 29
Sinc methods, 26, 27, 34
Sinc notation and interpolation formulas
basis functions, 28, 29
derivative, p(x), 30
terror estimates, data, 31–33
Lagrange polynomial interpolation, 30
mathematical notation, 27
Sinc points
definition, function, 29
Rational function methods, 29
Smith, A.F.M., 327
SNR. See Signal to-noise ratio (SNR)
Sobolev space, 89
Sparse sampling, 120
Sparsity, 107, 322, 336, 339
Spectral problem, 103
SSVS. See Stochastic search variable selection
(STSVS)
Stable generators. See Generalized sampling
Statistical learning theory
definition, 348
estimator construction
approximation quality measurement, 350
empirical data, 349
empirical error, 351
expected error, 350
extrapolating estimators, 352
marginal probability and conditional probability density, 350
realizations, random variables, 349
regularization parameter, 351–352
sampling operator, 351
TR, 351
estimator types, 348
ideal estimator, testing learning algorithms, 356
il-posed, 348
TR, 349
Stein, E.M., 244
Stochastic search variable selection (SSVS), 325–326
Strang-fix conditions, 76–78, 96
Subband decomposition
DHmT values, 272
digital function, 261
multiscale analysis, 266
Support vector machine (SVM) classifier, 340
SVM classifier. See Support vector machine
classifier
Sylvester, J.J., 187, 188
Symmetric partial sums
cardinal series, 20–23
convergence, 4
Symmetric relative entropy, 283
System identification
blocked version, 133
continuous-time channel, 131
multirate building blocks, 132
T
Ter Braak, C.J.F., 328
Thresholding
analytic wavelet, 342
BAMS-MED rule, 324
classical, 333
ECG signals, 243
empirical Bayes, 340
GBL, 243
global, 250
hard and soft, 244, 322
individual and block, 329
term-by-term, 244–245
wavelet shrinkage, 319–320
wavelet transform, 234
Tikhonov regularization (TR)
additional input cases, 359–360
DRTLS-estimator graphs, 360
data, 357
estimator graph, 357, 358
extrapolating properties, 359
ideal estimator, testing learning algorithms, 356
linear equations, 358–359
RKHS, 357
Time-delay embedding, 214
Tomasi, C., 278, 279
TR. See Tikhonov regularization (TR)
Triangular autocorrelation
Fejér function, 195–199
function, sequence, 195
Lebesgue measure, 199
unimodular functions, 199–205
Truncated moments
Amoroso distribution, 301
first order statistic, 298, 303–304
nth order statistic, 298, 302–303
ratio, 314
Two dimensional sampling, 106, 115

U
Unimodular sequences, 183, 190, 192
Unitarily translation-invariant Hilbert spaces, 94–95
Unser, M., 52

V
Vannucci, M., 341
Vetterli, M., 95
Vidakovic, B., 322, 327, 329
von Goethe, J.W., 180

W
Walden, A., 342
Walsh, J.L., 187, 188
Walter, G.G., 25, 53–55, 88
Wang, X., 331, 338, 339, 341
Waveforms
bell, 288–290
chirp, 290–293
shape, 287–288
triangular, 284–287
Wavelet approximation
ero, 47
odd period function, 45
transformed, error, 47
Wavelets, 25
Wavelet shrinkage
Bayesian, 338–340
complex
bivariate real-valued random variables, 334
CEB, 333–335
Daubechies and zero-flipping, 333
Gibbs sampling (see Gibbs sampling)
valued and matrix, 333
discrete transformations
coefficients and decomposition, 319
linear and orthogonal, 319
quadrature mirror filters, 319
thresholding, 319–320
Wavelet transform
discrete, 239–240
shrinkage, 319–320
Whittaker cardinal series, 142
Whittaker–Shannon–Kotel’nikov (WSK) sampling theorem, 51
Wide-sense stationary (WSS), 107
Wiener, N., 185, 196
Wiener–Wintner theorem, 185
Windowed input signal, 265, 266
Wintner, A., 185
Wolf, A., 215, 218, 223, 224
Wood, A.T.A., 331
WSS. See Wide-sense stationary (WSS)

Z
Zak transform, 54, 58