Appendix A
Conventions and Some Properties of Vector Spaces

A.1 Notation

A group of relations with a single equation number (***)) will be numbered by counting "=" signs. Thus, (***)_5 refers to the relation with the fifth "=" sign. Minor exceptions will be clear from context.

Vectors and tensors are denoted by boldface characters respectively and scalars by ordinary script. The real line is denoted by \mathbb{R}, the nonnegative reals by \mathbb{R}^+, and the strictly positive reals by \mathbb{R}^{++}. Also, \mathbb{R}^- denotes the nonpositive reals and \mathbb{R}^{--} the strictly negative reals. We will be dealing with spaces of scalar quantities with values in \mathbb{R} or \mathbb{R}^+, vector quantities in \mathbb{R}^3, second-order tensors and symmetric second-order tensors, the latter space being denoted by Sym. Let one of these spaces, or a composite of more than one, be denoted by V. The space of linear transformations $V \mapsto V$ is denoted by $\text{Lin}(V)$. If V is omitted, it is understood to be \mathbb{R}^3; also Lin^+ denotes the set of linear transformations with positive determinant from \mathbb{R}^3 to \mathbb{R}^3.

The space of linear transformations $V_1 \mapsto V_2$ is $\text{Lin}(V_1, V_2)$.

We will be considering frequency-space quantities, defined by analytic continuation from integral definitions, as functions on the complex plane Ω, where

$$\Omega^+ = \{ \omega \in \Omega \mid \text{Im}\omega \in \mathbb{R}^+\},$$

$$\Omega^{++} = \{ \omega \in \Omega \mid \text{Im}\omega \in \mathbb{R}^{++}\}.$$

Similarly, Ω^- and $\Omega^{(-)}$ are the lower half-planes including and excluding the real axis, respectively.

In certain contexts, for example where the complex plane is not necessarily related to frequency, we use the above convention but with \mathbb{C} replacing Ω. The latter symbol is in some chapters used to denote the spatial region occupied by the body under discussion, for consistency with usage in the literature.
A.2 Finite-Dimensional Vector Spaces

We deal extensively with quadratic forms in the main text, so that it is worthwhile describing certain notation and concepts relating to finite vector spaces. More in-depth discussion can be found in, for example, [133]. Consider first the case that V, of dimension m, is a vector space over the reals. For any two vectors L, M in V, we denote their inner (scalar or dot) product by $L \cdot M$. Let $C_i, i = 1, 2, \ldots, m$, be an orthonormal basis of V, so that

\[C_i \cdot C_j = \delta_{ij}, \quad i, j = 1, 2, \ldots, m. \]

We have

\[
L = \sum_{i=1}^{m} L_i C_i, \quad M = \sum_{i=1}^{m} M_i C_i. \tag{A.2.1}
\]

Also

\[
L \cdot M = L^\top M = \sum_{i=1}^{m} L_i M_i = M \cdot L = M^\top L, \tag{A.2.2}
\]

and $|M|^2 = M \cdot M$ is the squared norm of M. A linear transformation $K \in \text{Lin}(V)$ has the representation (we keep the same notation)

\[
K = \sum_{i,j=1}^{m} K_{ij} C_i \otimes C_j,
\]

where $K_{ij}, i, j = 1, 2, \ldots, m$, are its components in this basis. We will generally refer to linear transformations (with well-defined behavior under a change of reference frame) as tensors and their representations as matrices. The tensor K^\top is the transpose of K. Now

\[
(C_i \otimes C_j)C_k = C_j \cdot C_k C_i = \delta_{jk} C_i,
\]

giving

\[
(KM)_i = KM \cdot C_i = \sum_{j=1}^{m} K_{ij} M_j.
\]

We have the quadratic form

\[
L \cdot KM = \sum_{i,j=1}^{m} L_i K_{ij} M_j = \sum_{i,j=1}^{m} (K^\top)_{ji} L_i M_j = K^\top L \cdot M = M \cdot K^\top L. \tag{A.2.3}
\]

A commonly used scalar product on the vector space $\text{Lin}(V)$ is

\[
K \cdot N = \text{tr}(KN^\top) = \sum_{i,j=1}^{m} K_{ij} N_{ij}, \tag{A.2.4}
\]
and the associated squared norm $|\mathbb{K}|^2$ of $\mathbb{K} \in \text{Lin}(\mathcal{V})$ is

$$|\mathbb{K}|^2 = \text{tr}((\mathbb{K}\mathbb{K}^\top)) = \sum_{i,j=1}^{m} K_{ij}K_{ji}. \quad (A.2.5)$$

It it frequently the case in the present work that \mathbb{K} is symmetric, so that $\mathbb{K} = \mathbb{K}^\top$.

If \mathcal{V} is over the complex numbers—which is the case in this work when we are dealing with quantities in the frequency domain—we define the complex conjugate of L by

$$\overline{L} = \sum_{i=1}^{m} \overline{L}_i C_i,$$ \quad (A.2.6)

where \overline{L}_i is the ordinary complex conjugate of L_i. The dot product is still defined by (A.2.2). Thus, for example,

$$\overline{L} \cdot M = L^\top M = \sum_{i=1}^{m} \overline{L}_i M_i,$$

giving a real, positive squared norm

$$|L|^2 = \overline{L} \cdot L = \sum_{i=1}^{m} |L_i|^2.$$

If $\mathbb{K} \in \text{Lin}(\mathcal{V})$, now with complex components, we have

$$\overline{L} \cdot \mathbb{K} M = \mathbb{K}^* L \cdot M,$$ \quad (A.2.7)

where \mathbb{K}^* is the Hermitian conjugate of \mathbb{K}, defined by

$$\mathbb{K}^* = \overline{\mathbb{K}}^\top,$$ \quad (A.2.8)

where the overhead bar indicates taking the complex conjugate of each element. A Hermitian tensor is one with the property

$$\mathbb{K}^* = \mathbb{K}. \quad (A.2.9)$$

Note that

$$\overline{L} \cdot \mathbb{K} L = \overline{L} \cdot \mathbb{K}^* L,$$

so that $\overline{L} \cdot \mathbb{K} L$ is real if \mathbb{K} is Hermitian. We deal largely with symmetric tensors. A Hermitian symmetric tensor is defined by $\mathbb{K}^* = \overline{\mathbb{K}}$.

A natural choice of orthonormal basis is the eigenvectors of a Hermitian tensor $\mathbb{K} = \mathbb{K}^*$. Denoting these as above by C_i, $i = 1, 2, \ldots, m$, the quantities $C_i \otimes C_i$, $i = 1, 2, \ldots, m$, are the projectors on the eigenspaces of this tensor. The spectral form of \mathbb{K} is the representation
\[K = \sum_{i=1}^{m} \lambda_i C_i \otimes C_i, \quad (A.2.10) \]

where \(\lambda_i, i = 1, 2, \ldots, m, \) are the real eigenvalues of \(K. \) Any tensor \(N \) that can be given by
\[N = \sum_{i=1}^{m} \mu_i C_i \otimes C_i, \quad (A.2.11) \]

where \(\mu_i, i = 1, 2, \ldots, m, \) are arbitrary complex numbers, commutes with \(K. \)

The tensor \(N \) is, in general, a normal transformation, in the sense that it commutes with its Hermitian conjugate \(N^*. \)

Note that for any \(N \) given by (A.2.11) and \(L, M \) given by (A.2.1),
\[\overline{L} \cdot NM = \sum_{i=1}^{m} \mu_i \overline{L_i M_i}. \]

A.2.1 Positive Definite Tensors

A Hermitian tensor \(K \) is positive definite if for every \(L \in \mathcal{V} \) (the relation for vector spaces over the reals is given in parentheses; the tensor \(K \) can be taken to be symmetric, since any antisymmetric portion does not contribute),
\[\overline{L} \cdot KL \geq 0 \quad (L \cdot KL \geq 0), \quad (A.2.12) \]

where equality is true only if \(L = 0, \) where 0 is the zero in \(\mathcal{V} \) or \(\text{Lin}(\mathcal{V}). \) If equality occurs for \(L \neq 0, \) then \(K \) is positive semidefinite. The relation \(K > 0 \) indicates that \(K \) is positive definite, while \(K \geq 0 \) implies that it is positive semidefinite. The description nonnegative for a tensor is equivalent to positive semidefinite. Negative definiteness and semidefiniteness can be defined analogously. We have an ordering on \(\text{Lin}(\mathcal{V}) \) in that, for example,
\[K_1 > K_2 \iff K_1 - K_2 > 0. \]

A tensor is positive definite if and only if its eigenvalues are all positive. It is positive semidefinite if all eigenvalues are nonnegative.

Remark A.2.1. An example of a positive semidefinite tensor that occurs in the main text is the following. Let \(L \in \mathcal{V} \) be of the form (A.2.1)_1, but with complex components, \(\overline{L} \) being given by (A.2.6). Then consider
\[K = \overline{L} \otimes L = \sum_{i,j=1}^{m} \overline{L_i L_j} C_i \otimes C_j. \]
Clearly, $\overline{N} \cdot KN \geq 0$ for any $N \in V$, as required by (A.2.12). However, any vector M perpendicular to L in V will obey the relation $KM = 0$, so that it is an eigenvector of K with eigenvalue zero. Thus, K is positive semidefinite.

A.2.2 Differentiation with Respect to Vector Fields

Let ϕ be a scalar depending on L. The quantity

$$\frac{\partial \phi}{\partial L} \in V$$

is a vector with components $\partial \phi / \partial L_i$, $i = 1, 2, \ldots, m$, in a given basis. We take it to be a column vector, the transpose of which is a row vector. The quantity

$$\frac{\partial L}{\partial L} \in \text{Lin}(V)$$

is a tensor with components

$$\frac{\partial L_i}{\partial L_j} = \delta_{ij}, \quad i, j = 1, 2, \ldots, m,$$

so that $\partial L / \partial L$ is the unit tensor. We have

$$\frac{\partial}{\partial L} (L \cdot KM) = KM$$

and

$$\frac{\partial}{\partial M} (L \cdot KM) = \frac{\partial}{\partial M} (K^\top L \cdot M) = K^\top L$$

for a vector space over \mathbb{R}. In the complex case, we have

$$\frac{\partial}{\partial L} (\overline{L} \cdot KM) = KM$$

and

$$\frac{\partial}{\partial M} (\overline{L} \cdot KM) = \frac{\partial}{\partial M} (\overline{K^\top L} \cdot M) = \overline{K^\top L}.$$

A.2.3 The Vector Space Sym

The space of symmetric second-order tensors acting on \mathbb{R}^3 is denoted by $\text{Sym} := \{E \in \text{Lin}(\mathbb{R}^3) : E = E^\top\}$. Operating on Sym is the space of fourth-order tensors $\text{Lin}($Sym$)$.

The vector space \text{Sym} is isomorphic to \(\mathbb{R}^6 \). In particular, for every \(\mathbf{E}, \mathbf{F} \in \text{Sym} \), if \(\mathbf{C}_i, i = 1, 2, \ldots, 6, \) is an orthonormal basis of \text{Sym} with respect to the inner product (A.2.4) in \text{Lin}(\mathbb{R}^3), namely \(\text{tr}(\mathbf{E}\mathbf{F}^\top) \), it is clear that the representation
\[
\mathbf{E} = \sum_{i=1}^{6} E_i \mathbf{C}_i, \quad \mathbf{F} = \sum_{i=1}^{6} F_i \mathbf{C}_i, \quad \text{(A.2.13)}
\]
yields that \(\text{tr}(\mathbf{E}\mathbf{F}^\top) = \sum_{i=1}^{6} E_i F_i \). Therefore, we can treat each tensor of \text{Sym} as a vector in \(\mathbb{R}^6 \) and denote by \(\mathbf{E} \cdot \mathbf{F} \) the inner product between elements of \text{Sym}:
\[
\mathbf{E} \cdot \mathbf{F} = \text{tr}(\mathbf{E} \mathbf{F}^\top) = \text{tr}(\mathbf{E} \mathbf{F}) = \sum_{i=1}^{6} E_i F_i \quad \text{(A.2.14)}
\]
and \(|\mathbf{F}|^2 = \mathbf{F} \cdot \mathbf{F} \). Consequently, any fourth-order tensor \(\mathbf{G} \in \text{Lin}(\text{Sym}) \) will be identified with an element of \text{Lin}(\mathbb{R}^6) \) by the representation
\[
\mathbf{G} = \sum_{i,j=1}^{6} K_{ij} \mathbf{C}_i \otimes \mathbf{C}_j, \quad \text{(A.2.15)}
\]
and \(\mathbf{G}^\top \) is the transpose of \(\mathbf{G} \) as an element of \text{Lin}(\mathbb{R}^6). The scalar product and norm in \text{Lin}(\mathbb{R}^3) \) are given by (A.2.4) and (A.2.5) for \(m = 6 \).

For complex-valued tensors, let \text{Sym}(\Omega) \) and \text{Lin}(\text{Sym}(\Omega)) \) be respectively the sets of tensors represented by the forms (A.2.13) and (A.2.15) with \(L_i, M_i, K_{ij} \in \Omega \). Then for \(\mathbf{E}, \mathbf{F} \in \text{Sym}(\Omega) \), we have, instead of (A.2.14),
\[
\mathbf{E} \cdot \overline{\mathbf{F}} = \text{tr}((\mathbf{E}^*)^\top) = \text{tr}(\mathbf{E} \overline{\mathbf{F}}) = \sum_{i=1}^{6} E_i \overline{F_i}. \quad \text{(A.2.16)}
\]

In the present work, we deal with \(\mathcal{V} = \Gamma^+ \) defined by (5.1.10), which has dimension \(m = 10, \) or vector spaces contained in \(\Gamma^+ \). The scalar product between two elements of \(\Gamma^+ \) is understood to mean the sum of (A.2.14) or (A.2.16) on \text{Sym}, the standard scalar product on \(\mathbb{R}^3 \) and the product of quantities in \(\mathbb{R} \).
Appendix B
Some Properties of Functions on the Complex Plane

B.1 Introduction

We describe briefly, for the sake of convenient reference, some properties of analytic functions that are required in various contexts, mainly in Part III. For a more complete treatment of these topics, we refer to the numerous available standard references, for example [203]. A useful now classical reference is [179].

Of all functions defined on the xy plane, there is a very special class, termed analytic functions, that have the property that they are functions only of the combination $z = x + iy$ and have a uniquely defined derivative with respect to z at each point in the region of analyticity. This latter requirement is very restrictive in that it means that the derivative is independent of the infinite number of directions from which the limit may be taken. If we write such a function $F(z)$ in the form

$$F(z) = F(x, y) = u(x, y) + iv(x, y),$$

then the uniqueness of the limit gives the Cauchy–Riemann conditions

$$\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}, \quad \frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x}.$$

These conditions are necessary consequences of the analyticity assumption. If the derivatives are continuous at (x, y), it may also be shown that they are sufficient to ensure analyticity.

Note that the Cauchy–Riemann equations imply that if the real part of a complex function is known, its imaginary part is determined to within a constant and vice versa.
B.1.1 Cauchy’s Theorem and Integral Formula

If \(F(z) \) is analytic on an open set \(O \), then for any contour \(C \) in \(O \), we have

\[
\oint_C F(z) \, dz = 0. \tag{B.1.1}
\]

This is a simple statement of Cauchy’s theorem. The term contour is taken to mean a closed contour. Cauchy’s integral formula states that if \(F(z) \) is analytic within and on a contour \(C \), then

\[
F(z) = \frac{1}{2\pi i} \oint_C \frac{F(z')}{z' - z} \, dz', \tag{B.1.2}
\]

if the contour is taken counterclockwise, which is the conventional positive direction, and is a manifestation of a more basic convention, namely that angles are presumed to increase in a counterclockwise direction. If \(C \) is clockwise, then the integral in (B.1.2) is equal to \(-F(z)\). Unless otherwise stated, a contour \(C \) may be taken to be counterclockwise. If \(z \) is outside of the contour \(C \), this integral gives zero. An immediate consequence of (B.1.2) is

\[
F^{(n)}(z) = \frac{n!}{2\pi i} \oint_C \frac{F(z')}{(z' - z)^{n+1}} \, dz', \tag{B.1.3}
\]

where \(F^{(n)}(z) \) is the \(n \)th derivative of \(F \).

Now let \(z \) approach the contour from the inside toward a point \(z_0 \) on \(C \). The integral can be assigned a particular finite value as a result of a limiting process that will now be described. We distort the contour into a small semicircle around \(z_0 \) outside of \(C \). In the limit, as this semicircle gets smaller, it can be shown that it yields a finite contribution of \(F(z_0)/2 \). We define the Cauchy principal value of the integral as the value obtained by means of this limiting process minus the contribution \(F(z_0)/2 \) of the semicircle. Therefore, for \(z \) on the contour,

\[
\frac{1}{\pi i} \text{P} \oint_C \frac{F(z')}{z' - z} \, dz' = F(z), \tag{B.1.4}
\]

where the integral is interpreted as a Cauchy principal value.

We are mainly interested in cases in which \(C \) encloses the upper or lower half-plane \(\Omega^{\pm} \). Let \(F(z) \) be analytic in the upper half-plane and let it go to zero at infinity more strongly than \(z^{-1} \), at least in this half-plane. We take \(C \) in (B.1.4) to be the real axis and the infinite semicircle enclosing the upper half-plane. This contour is counterclockwise, so we obtain from (B.1.4), for \(x \) on the real axis,

\[
\frac{1}{\pi i} \text{P} \int_{-\infty}^{\infty} \frac{F(x')}{x' - x} \, dx' = F(x), \tag{B.1.5}
\]

where the integral is a Cauchy principal value.
If F were analytic in the lower half-plane, the sign on the right-hand side would be negative, since the contour is clockwise.

A basic property of analytic functions is that they can be expressed as infinite (or finite in the case of polynomials) power series about any point z_0 in their region of analyticity. This power series has a radius of convergence equal to the distance between z_0 and the nearest singular point.

B.1.2 Analytic Continuation

In different parts of the complex plane, an analytic function may have different representations, as power series about different points, for example. A region of analyticity defined by a circle of convergence of one power series can be extended by considering a power series about another point. Given two representations, the question arises whether they are the same complex function or distinct functions. If they represent the same function, they are said to constitute analytic continuations of each other.

A fundamental result states that if a function is analytic in a region R and zero along any continuous arc in R, then it is zero everywhere in R. It follows trivially that if two functions, analytic in a region R, are equal on a continuous arc contained in this region, they are equal over all of R.

More generally, let two functions be analytic on R and let $O \subset R$ be a nonempty open set. If the two representations are equal on O, then they are the same analytic function defined on R.

It can be shown that if two different analytic continuations are constructed from a set R into R_1 and R_2, where $R_3 = R_1 \cap R_2$ is nonempty, then the functions are equal on R_3. Note that $R \cap R_1, R \cap R_2$ are nonempty.

The most widespread use of this concept in the present work is a simple application of these kinds of results. If we have a formula for a function on a certain part of the complex plane, for definiteness, let us say a part or all of the real axis, given by $G(x)$, then the analytic continuation of this function into the complex plane is given by $G(z)$, for whatever values of z this quantity is meaningful. If $G(x)$ is some combination of elementary functions, for example, then $G(z)$ will exist at all values of z that are not singular points. So, for example, if

$$G(x) = \frac{1}{1 + x^2}, \quad x \in \mathbb{R},$$

its analytic continuation to the complex plane is

$$G(z) = \frac{1}{1 + z^2},$$

(B.1.6)

which is valid everywhere except at the singular points $z = \pm i$. Its uniqueness everywhere except at these points is guaranteed by the above results.
B.1.3 Liouville’s Theorem

A result that is fundamental to the developments of Part III is Liouville’s theorem, which we state in a somewhat generalized form.

Let a function $F(z)$ be analytic at every finite point in the complex plane and let it behave like z^n as z tends to infinity. Then it must be a polynomial of degree n. In particular, if its limit at infinity is a constant, it is equal to this constant everywhere. The most important case for our purposes is where the constant is zero, and $F(z)$ is zero everywhere.

B.1.4 Singularities

What makes analytic functions interesting are their singularities, or points where they are not analytic. In fact, the content of Liouville’s theorem is that if they have no singularities, they are trivial.

The simplest singularities are poles, that is to say, behaving at z_0 like $(z - z_0)^{-n}$, where n is a positive integer called the order of the pole. These are isolated singularities. A function whose only singularities are poles is known as a meromorphic function. A function behaving like z^n for large $|z|$, where n is a positive integer, is regarded as having a pole of order n at infinity.

Remark B.1.1. If a real function has simple poles on the real axis, then it must have at least one zero between each two poles, because in passing through each pole $(x - a_i)^{-1}$, moving in a positive direction, the function switches from being a large negative number to being a large positive number. Therefore, it must pass through zero on the passage to the next pole.

Poles of infinite order are referred to as essential singularities. For example, the function $\exp(1/z)$ has an essential singularity at the origin, and $\exp(iz)$ has an essential singularity at infinity. Note that on the lower half-plane $\exp(iz)$ diverges exponentially and on the upper half-plane decays exponentially. It can be treated as analytic at infinity on the latter half-plane in the sense that it is analytic at finite points and we can take infinite contours over $\Omega^{(+)}$ for integrands with $\exp(iz)$ as a factor. For simplicity, though with some imprecision, we shall refer to its behavior in this half-plane as analytic.

Functions that are analytic over the whole complex plane are said to be entire or integral functions. They must be constant everywhere or singular at infinity. If the singularity is of finite order, then they are polynomials. This is a restatement of Liouville’s theorem, as given above. Nonpolynomial entire functions must have an essential singularity at infinity. Examples are e^{z}, $\sin z$, and $\cos z$.

We assume, except in Chapter 14, that the functions we deal with are analytic at infinity, that is to say, behave as a constant or go to zero at large $|z|$. It is further assumed that essential singularities do not occur at finite points on Ω.
B.1.5 Branch Points

If one follows an analytic function around a contour to the initial point and it does not return to the same value, then the function is multivalued. This is associated with a branch point within the contour. A branch point is a type of singularity, distinct from a pole or an essential singularity. It is not isolated because, as we shall see below, its effects are not localized at any one point. The function \((z - a)^\gamma\) is, for noninteger values of \(\gamma\), a multivalued function that is of interest in Chapter 13. In the standard polar representation, it becomes

\[
(z - a)^\gamma = |z - a|^{\gamma} e^{i\gamma \theta}, \tag{B.1.7}
\]

where \(\theta\) is the argument of \((z - a)\). Let \(\gamma\) be a real quantity. If it is rational, let us write it as \(p/q\), where \(p, q\) have no common factors. Then if we circle the point \(a\), say \(r\) times, where \(r < q\), the function returns to different values each time. When \(r = q\), the function returns to its original value. We say that \((z - a)^\gamma\) has a branch point at \(z = a\) and has \(q\) distinct branches. If \(\gamma\) is irrational, the function has an infinite number of branches.

Branch points always occur in pairs. The function \((z - a)^\gamma\) also has a branch point at infinity, where it behaves like \(z^\gamma\). We join the point \(a\) to infinity by some convenient line and agree that the function undergoes a discontinuous jump in crossing this line. If \(a\) is real, this line is conventionally chosen to be the \(x\)-axis from the point \(a\) to \(-\infty\). This is, however, an arbitrary choice. It is perfectly possible to choose another line of discontinuity. It would not be the same function, however.

The complex plane, excluding the line of discontinuity, is sometimes referred to as the cut plane and the line itself as a branch cut or simply a cut. A multivalued function with say \(q\) distinct branches can be completely characterized by taking \(q\) cut complex planes and defining a singlevalued branch on each of them.

A process of unique analytic continuation cannot go around a branch point. The branch cut represents a barrier. Thus, if we continue \(R\) into \(R_1\) and \(R_2\) around a branch point, then we cannot form a nonempty overlapping set \(R_3 = R_1 \cap R_2\). However, it can go around an isolated singularity.

Returning to the function \(F(z) = (z - a)^\gamma\) (where \(a\) is real) with a cut along \((-\infty, a]\), let \(F^\pm(x)\) be the limiting values of \(F(z)\) from above and below the real axis, respectively. Using (B.1.7), one can show that

\[
F^-(x) = e^{-2\pi i \gamma} F^+(x).
\]

Note that this applies also if \(\gamma\) is complex, in which case there is a real as well as an imaginary exponential factor.

Another example is

\[
F(z) = (z - a)^\gamma(z - b)^{1-\gamma}, \tag{B.1.8}
\]

where \(a\) and \(b\) are real with \(b > a\). The cut for \(F(z)\) given by (B.1.8) must join \(a\) and \(b\). The simplest choice is to take the portion of the real axis \([a, b]\) as the branch
Some Properties of Functions on the Complex Plane

cut. The function will in general have many branches, which we can represent as follows. Let \(\arg(z-a) = \theta_a \) and \(\arg(z-b) = \theta_b \). Then

\[
F(z) = |z-a|^\gamma|z-b|^{1-\gamma} \exp\{i[\theta_a \gamma + \theta_b (1 - \gamma) + 2\pi m \gamma + 2\pi n (1 - \gamma)]\},
\]

\(m, n \) integers.

One can show that

\[
F^-(x) = \Gamma F^+(x),
\]

where

\[
\Gamma = \begin{cases}
1, & x \notin [a, b], \\
e^{2\pi i \gamma}, & x \in [a, b].
\end{cases}
\]

Therefore this function is analytic except in the interval \([a, b]\). It will be different for different choices of \(m \) and \(n \), though these contribute only a constant factor. Unique analytic continuation is possible around \([a, b]\), avoiding the branch cut.

Another multivalued function that has a role in our considerations is

\[
F(z) = \log(z-a) = \log|z-a| + i \arg(z-a),
\]

(B.1.9)

which has a branch point at \(a \). We take the choice \(\arg(z-a) = 0 \) if \(z-a \) is real as the standard branch of the logarithm. This vanishes if \(|z-a| \) is unity. The function \(\arg(z-a) \) has range \([-\pi, \pi]\). If \(a \in \mathbb{R} \), the branch cut is conventionally taken along \((-\infty, a]\). The function

\[
F(z) = \log\left(\frac{z-b}{z-a}\right)
\]

(B.1.10)

has a branch cut on a line joining \(a \) and \(b \), the simplest being the straight line segment \([a, b]\).

B.1.6 Evaluation of Contour Integrals

Let \(F \) be analytic on a contour \(C \) but with singularities within \(C \). Then (B.1.1) generalizes to

\[
\int_C F(z)dz = 2\pi i \sum \text{residues within } C.
\]

The contour \(C \) can be deformed at will without changing the value of the integral, provided it does not cross any singularities. If \(F \) has a pole of order \(n \) at \(z_0 \), that is to say,

\[
F(z) \xrightarrow{z \to z_0} G(z) \frac{1}{(z-z_0)^n},
\]

where \(G \) is analytic at \(z_0 \), then the residue of that pole can be determined to be \(G^{(n-1)}(z_0)/(n-1)! \), using (B.1.3).
If F has a branch cut B within C joining branch points a, b, then the residue is obtained by shrinking C tightly around the branch cut, giving

$$
\frac{1}{2\pi i} \int_a^b d(u)du, \quad d(u) = F^-(u) - F^+(u), \quad F^\pm(u) = \lim_{z \to u^\pm} F(z), \quad u \in B, \quad (B.1.11)
$$

the positive side of B being that along which the shrunken contour is going from b to a and the negative side being that along which it is going from a to b.

We deal in the main text with integrals of the form

$$
\int_{-\infty}^{\infty} F(u)du,
$$

where $F(z)$ is analytic on an open region, including the real axis, with the behavior

$$
F(z) \sim \frac{A}{z^p}, \quad p \geq 1,
$$

at large $|z|$, where A is a constant. Consider a contour C in Ω^+ consisting of a semi-circle of radius R on a segment $[-R, R]$ of \mathbb{R} that encloses all the singularities of F in Ω^+. Let

$$
I_R = \oint_C F(z)dz.
$$

Now on the circumference of the semicircle,

$$
z = Re^{i\theta}, \quad dz = iRd\theta. \quad (B.1.12)
$$

If $p = 1$ then

$$
\lim_{R \to \infty} I_R = 2\pi i \sum \text{residues of singularities in } \Omega^+ = \int_{-\infty}^{\infty} F(u)du + i\pi A, \quad (B.1.13)
$$

the rightmost term being the contribution of the circumference of the semicircle, obtained using (B.1.12). If $p > 1$, we have

$$
\lim_{R \to \infty} I_R = 2\pi i \sum \text{residues of singularities in } \Omega^+ = \int_{-\infty}^{\infty} F(u)du. \quad (B.1.14)
$$

Closing the contour in Ω^- gives

$$
\lim_{R \to \infty} I_R = -2\pi i \sum \text{residues of singularities in } \Omega^- = \begin{cases}
\int_{-\infty}^{\infty} F(u)du - i\pi A, & p = 1, \\
\int_{-\infty}^{\infty} F(u)du, & p > 1,
\end{cases} \quad (B.1.15)
$$

where the sign changes are a result of the fact that the contour direction is now clockwise.
Remark B.1.2. Let \(F(z) \) be a function analytic on \(\Omega \) except at a variety of singularities. The notation \(\overline{F}(z) \) indicates the complex conjugate function, leaving the variable \(z \) untouched. Then \(\overline{F}(z) \) is analytic except at singularities that are a mirror image in the real axis of those of \(F(z) \).

In particular, if \(F \) is analytic in \(\Omega^+ (\Omega^-) \), then \(\overline{F} \) will be analytic in \(\Omega^- (\Omega^+) \).

Proposition B.1.3. Let \(F(z) \) be analytic in \(\Omega^+ \) and \(G(z) \) in \(\Omega^- \). Let both go to zero as \(|z|^{-p} \), \(p > 1/2 \) at large \(|z| \). Then
\[
\int_{-\infty}^{\infty} \overline{F}(s)G(s)ds = \int_{-\infty}^{\infty} F(s)\overline{G}(s)ds = 0,
\]
so that they are orthogonal in an \(L^2 \) scalar product.

Proof. This follows from Cauchy’s theorem by closing the first integral on \(\Omega^- \) and the second on \(\Omega^+ \).

B.2 Cauchy Integrals

We consider integrals of the following type [186]:
\[
F(z) = \frac{1}{2\pi i} \int_L \frac{f(u)}{u-z}du,
\]
where \(L \) is a sectionally smooth curve in the complex plane. By this, we mean a finite number of nonintersecting smooth arcs and contours. The term contour is used to indicate a closed curve, as before, while arc refers to a curve that is not closed and therefore has endpoints. Smoothness indicates that a tangent exists at each point of \(L \) and its slope varies continuously. In other words, each arc or contour, if represented parametrically, has continuous first derivatives with respect to its parameter.

The more interesting developments around Cauchy integrals deal largely with the case in which \(L \) is finite in length. However, we are mainly interested in the cases in which \(L \) is infinite in length, given by \(\mathbb{R} \), discussed below, or \(\mathbb{R}^+ \) for example, or infinite segments of the imaginary axis. Provided convergence issues are taken into account, there is no difficulty in dealing with \(L \) infinite in length.

We need to choose a positive direction along \(L \). For contours, this is generally taken to be the counterclockwise direction, but for arcs, there is no set convention. For an integral along a line segment \([a, b]\) anywhere in the complex plane, written as \(\int_{a}^{b} \), the positive direction is taken to be from \(a \) to \(b \). Thus, if \([a, b]\) is on the real axis and \(a < b \), the positive direction is the positive \(x \) direction. The region of the complex plane to the left, as one moves along \(L \) in the positive direction, is denoted by \(S^+ \) and the region to the right by \(S^- \). These are the upper and lower half-planes respectively, for \(L \) in a positive direction along the real axis.

The function \(f \), referred to as the density function, is assumed to be bounded everywhere, except possibly at endpoints of arcs, denoted by \(c_k, k = 1, 2, \ldots \), where
it may have integrable singular points with

\[f(u) \sim \frac{f_0}{|u - c_k|^\alpha}, \quad 0 \leq \alpha < 1, \tag{B.2.2} \]

where \(f_0 \) is a constant. Furthermore, it is assumed that \(f \) is Hölder continuous at each point of \(L \) where it is not singular. This property is defined as follows: for any two points \(u_1, u_2 \), there exist positive real constants \(A, \mu \) such that

\[|f(u_1) - f(u_2)| \leq A|u_1 - u_2|^\mu. \tag{B.2.3} \]

It is easy to show that if \(\mu > 1 \), the derivative of \(f(u) \) is zero, so that it is a constant. This case is not of great interest, so it is always assumed that \(\mu \leq 1 \). For \(\mu = 1 \), the Hölder condition is termed the Lipschitz condition and is obeyed by any differentiable function and others not in this class. For \(\mu < 1 \), the condition implies continuity in the ordinary sense. The case \(\mu = 0 \), which is excluded, is consistent with discontinuity. A function obeying this condition at a point, or on a line, will be described as obeying the \(H(\mu) \) condition on that set if \(\mu \) is specified, or otherwise just the \(H \) condition.

At large \(|z| \), the function \(F \) behaves like

\[F(z) \sim -\frac{A}{z}, \quad 2\pi i A = -\int_L f(u)du, \]

if the integral is nonzero. If it is zero, \(F \) falls off as some higher power of \(z \). Consider the limiting value as \(z \) approaches a point \(u \) on \(L \) at which \(f \) is nonsingular and that is not an endpoint of an arc. We write

\[F(z) = \frac{1}{2\pi i} \int_L \frac{f(t) - f(u)}{t - z} dt + \frac{f(u)}{2\pi i} \int_L \frac{1}{t - z} dt. \tag{B.2.4} \]

The Hölder condition (B.2.3) implies that the first term approaches a well-defined integral

\[\frac{1}{2\pi i} \int_L \frac{f(t) - f(u)}{t - u} dt \]

as \(z \to u \) because the behavior at the singularity is integrable. This step illustrates the importance of the Hölder property. The second term can be assigned a finite value but one that depends on the direction in which the limit is taken. Let

\[\bar{\psi}(z) = \frac{1}{2\pi i} \int_L \frac{dt}{t - z} \]

and denote by \(\bar{\psi}^+(u) \), \(\bar{\psi}^-(u) \) the limiting values of \(\bar{\psi}(z) \) as \(z \) approaches \(u \) from \(S^+ \) and \(S^- \), respectively. In each of these cases, we deform the contour into a small semicircle around \(u \) and consider the limit as this semicircle shrinks to zero. It is easy to show that
Some Properties of Functions on the Complex Plane

\[\tilde{\psi}^+(u) = \frac{1}{2} + \frac{1}{2\pi i} \int_L \frac{dt}{t-u}, \quad \tilde{\psi}^-(u) = -\frac{1}{2} + \frac{1}{2\pi i} \int_L \frac{dt}{t-u}, \tag{B.2.5} \]

where the integrals are Cauchy principal values. The more general formulas

\[F^+(u) = \frac{1}{2} f(u) + \frac{1}{2\pi i} \int_L \frac{f(t)}{t-u} dt, \tag{B.2.6} \]

\[F^-(u) = -\frac{1}{2} f(u) + \frac{1}{2\pi i} \int_L \frac{f(t)}{t-u} dt, \]

follow from (B.2.4) and (B.2.5), since we can write the first, well-defined, integral in (B.2.4) as its Cauchy principal value, and the two integrals can then be recombined. These are the well-known Plemelj formulas which are of great importance in Part III of the present work. Another form of these relations is given by

\[F^+(u) - F^-(u) = f(u), \]

\[F^+(u) + F^-(u) = \frac{1}{\pi i} \int_L \frac{f(t)}{t-u} dt, \]

which show clearly that \(F \), defined by (B.2.1), is discontinuous across \(L \) at all points where \(f \) is nonzero. This implies the existence of branch points on \(L \), resulting in branch cuts along \(L \).

For \(z \notin L \), \(F(z) \), given by (B.2.1), is analytic since it is differentiable. It should be noted that this property requires no assumption on \(f \) other than Hölder continuity. In particular, no analyticity requirements need be imposed.

Consider the Cauchy integral over a single arc \([a, b]\) of finite length:

\[F(z) = \frac{1}{2\pi i} \int_a^b \frac{f(u)}{u-z} du. \]

This is a function analytic everywhere on \(\Omega \) except on \([a, b]\). If \(f \) is nonzero on this segment, \(F \) has a branch cut between \(a \) and \(b \). It is of interest to determine the behavior of \(F(z) \) as \(z \) approaches the endpoints. Consider \(z \) close to \(a \). Let \(f(a) \) be finite. Then, using the same trick as in (B.2.4), we obtain

\[F(z) = \frac{f(a)}{2\pi i} \log \left(\frac{b-z}{a-z} \right) + \frac{1}{2\pi i} \int_a^b \frac{f(t) - f(a)}{t-z} dt = \frac{f(a)}{2\pi i} \log \left(\frac{1}{a-z} \right) + F_1(z), \tag{B.2.7} \]

where \(F_1(z) \) has a definite, nonsingular, limit as \(z \to a \). Similarly, near \(z = b \),

\[F(z) = \frac{f(b)}{2\pi i} \log(b-z) + F_2(z), \tag{B.2.8} \]

where \(F_2(b) \) is nonsingular. Therefore, if \(f(a) \) or \(f(b) \) is finite, there is a logarithmic singularity in \(F(z) \) at that endpoint. If the limit is taken along the branch cut, similar formulas may be given by applying the Plemelj formulas to the singular term. Let us write
$a - z = |a - z|e^{i\theta},$

where $\theta = \theta_0$ gives the limit to the cut from the positive side and $\theta = \theta_0 + 2\pi$ is the limit from the negative side. Then we see that the dominant term has the form

$$\frac{1}{2}(F^+(u) + F^-(u)) \begin{cases} \sim f(a) \frac{1}{2\pi i} \log \frac{1}{|a - u|}, \\ \sim f(b) \frac{1}{2\pi i} \log |b - u|. \end{cases} \quad (B.2.9)$$

If the end value of $f(u)$ is zero, then $F(z)$ approaches a definite, finite, limit at that point. If $f(u)$ has a singularity at an endpoint of the type given by (B.2.2), then $F(z)$ has a singularity of the same type. This may be seen intuitively by considering the dominant term of the integral. Therefore, if we have the behavior (B.2.2) at a, then

$$F(z) \sim_a \frac{A}{(z - a)^\alpha} \quad (B.2.10)$$

off the cut and

$$\frac{1}{2} [F^+(u) + F^-(u)] \sim_u \frac{A_1}{(u - a)^\alpha}, \quad (B.2.11)$$

where rigorous arguments and detailed expressions for the constants A, A_1 are given by Muskhelishvili [186] and Gakhov [96], for example. Similar formulas apply for such behavior at b.

B.2.1 Cauchy Integrals on the Real Line

A most important special case of the Cauchy integral in the present context is that in which the curve L is the real axis \mathbb{R}, so that

$$F(z) = \frac{1}{2\pi i} \int_{-\infty}^{\infty} \frac{f(u)}{u - z} du. \quad (B.2.12)$$

If

$$I = \frac{1}{2\pi i} \int_{-\infty}^{\infty} f(u)du$$

exists, at least in the sense of a principal value infinite integral where $f(u) \sim u^{-1}$ at large values of $|u|$ and

$$I = \frac{1}{2\pi i} \lim_{L \to \infty} \int_{-L}^{L} f(u)du,$$

then

$$F(z) = -\frac{I}{z} + O\left(\frac{1}{z^2}\right) \quad (B.2.13)$$
at large \(z \). For most examples in the present work, we have \(f(u) \sim u^{-2} \) for large \(u \), so that \(I \) exists as an ordinary integral.

In this case, the complex plane is segmented into the upper half-plane \(\Omega^+ \) and the lower half-plane \(\Omega^- \). For \(z \in \Omega^+ \), \(F(z) \) is analytic in \(\Omega^+ \), while for \(z \in \Omega^- \), it is analytic in \(\Omega^- \).

We write out the Plemelj formulas in this case, for reference purposes:

\[
\begin{align*}
F^+(x) &= \frac{1}{2} f(x) + \frac{1}{2\pi i} \int_{-\infty}^{\infty} \frac{f(u)}{u-x} \, du, \\
F^-(x) &= -\frac{1}{2} f(x) + \frac{1}{2\pi i} \int_{-\infty}^{\infty} \frac{f(u)}{u-x} \, du,
\end{align*}
\]

or

\[
\begin{align*}
F^+(x) + F(x^-) &= \frac{1}{i\pi} \int_{-\infty}^{\infty} \frac{f(u)}{u-x} \, du, \\
F^+(x) - F^-(x) &= f(x),
\end{align*}
\]

where \(F^\pm(x) \) are the limits of \(F(z) \) as \(z \to x \) from \(\Omega^{\pm} \). Note that \(F^\pm \) correspond to \(F_z \) in the notation used in the main text and referred to after (C.2.2).

Remark B.2.1. Thus, any Hölder continuous function defined on \(\mathbb{R} \) can be written as the difference between the limits of two functions, one analytic in \(\Omega^+ \) and the other in \(\Omega^- \).

As noted earlier, there is no requirement that \(f \) be analytic. However, if \(f \) is analytic on an open set containing \(\Omega^+ \), we see by comparing (B.1.5) and (B.2.14), that \(f(x) = F^+(x) \) and indeed \(f(z) = F(z), \, z \in \Omega^+ \). Similarly, if \(f \) is analytic on \(\Omega^- \), we have \(f(z) = -F(z), \, z \in \Omega^- \). Let us introduce the notation

\[
F_i(z) = F(z), \quad z \in \Omega^-, \quad F_u(z) = F(z), \quad z \in \Omega^+,
\]

where \(F \) is defined by (B.2.12) and \(F_i, F_u \) are analytic in \(\Omega^- \) and \(\Omega^+ \), respectively. Let \(f \) be analytic on an open set containing \(\mathbb{R} \) but have singularities in \(\Omega^{\pm} \), away from the real axis. Also, let \(f(z) \) behave like \(z^{-p}, \, p > 0 \), at large \(|z| \). We take \(z \in \Omega^- \) and close the contour in (B.1.15) on \(\Omega^- \). Then by (B.1.14),

\[
F_i(z) = \sum_u \text{residues of } \frac{f(u)}{u-z},
\]

where the sum is over isolated singularities and integrals on branch cuts. Thus, \(F_i(z) \) is analytic in a band in \(\Omega^+ \), \(0 \leq \text{Im} z < \alpha \), where \(\alpha \) is the position of the singularity nearest to the real axis, which can be the position of an isolated singularity or a point on a branch cut. Therefore, \(F_i \) can be analytically continued into a band parallel to the real axis in \(\Omega^+ \) and indeed into larger regions of this half-plane, avoiding singularities. Note, however, that branch points can cause difficulties, as discussed in Section B.1.5.
Similarly, F_u can be analytically continued into regions of Ω^-. Note, however, that the analytical continuation of F_i into Ω^+ is not equal to F_u in Ω^+, and vice versa.

The following observation follows from (B.2.15).

Remark B.2.2. Let f be analytic on an open set containing \mathbb{R} but have singularities in Ω^\pm, away from the real axis. Then it can be expressed on \mathbb{R} as the difference between two functions, one analytic in an open set containing Ω^+ and the other in an open set containing Ω^-.
Appendix C
Fourier Transforms

We summarize in this appendix various properties of Fourier transforms required in the main text. References include the now classical works [205, 200] and the many modern texts on the topic.

C.1 Definitions

For any function $f : \mathbb{R} \rightarrow \mathcal{V}$, where \mathcal{V} is a finite-dimensional vector space, its Fourier transform $f_F : \mathbb{R} \rightarrow \mathcal{V}$ is defined by

$$ f_F(\omega) = \int_{-\infty}^{\infty} f(s)e^{-i\omega s} \, ds. \quad (C.1.1) $$

This formula and each of the properties noted below apply to each component of f and f_F. If $f \in L^1(\mathbb{R})$, then f_F exists on \mathbb{R}. The inverse transform is defined by

$$ g(s) = \frac{1}{2\pi} \int_{-\infty}^{\infty} f_F(\omega)e^{i\omega s} \, d\omega. \quad (C.1.2) $$

If $f \in L^1(\mathbb{R})$ and its first derivatives are piecewise continuous on \mathbb{R}, then

$$ g(s) = \frac{1}{2} [f(s^+) + f(s^-)], \quad s \in \mathbb{R}. $$

This is one version of Fourier’s integral theorem. Another is the following. Let $f \in L^2(\mathbb{R})$. Then $f_F \in L^2(\mathbb{R})$ and $g = f$ almost everywhere on \mathbb{R}. The existence of the transform and inverse transform for functions in $L^2(\mathbb{R})$ is at first sight unclear. However [205], convergent forms can be given as follows:
\[f_F(\omega) = -\frac{d}{d\omega} \int_{-\infty}^{\infty} f(s) \frac{e^{-i\omega s} - 1}{is} ds, \]
\[f(s) = \frac{1}{2\pi} \frac{d}{ds} \int_{-\infty}^{\infty} f(\omega) \frac{e^{i\omega s} - 1}{i\omega} d\omega. \]

Let us define
\[f_+(\omega) = \int_{0}^{\infty} f(s) e^{-i\omega s} ds, \quad f_-(\omega) = \int_{-\infty}^{0} f(s) e^{-i\omega s} ds, \]
\[f_s(\omega) = \int_{0}^{\infty} f(s) \sin \omega s ds, \quad f_c(\omega) = \int_{0}^{\infty} f(s) \cos \omega s ds. \] (C.1.3)

We have
\[f_F(\omega) = f_+(\omega) + f_-(\omega). \] (C.1.4)

Assuming that \(f \) is even, we obtain from (C.1.1) and (C.1.2) the form of \(f_F \) and the inverse cosine transform, given by (taking \(f = g \))
\[f_F(\omega) = 2f_c(\omega), \quad f(s) = \frac{2}{\pi} \int_{0}^{\infty} f_c(\omega) \cos(\omega s) d\omega, \quad s \in \mathbb{R}^+. \] (C.1.5)

Also, if \(f \) is odd, we have the form of \(f_F \) and the inverse sine transform,
\[f_F(\omega) = -2if_s(\omega), \quad f(s) = \frac{2}{\pi} \int_{0}^{\infty} f_s(\omega) \sin(\omega s) d\omega, \quad s \in \mathbb{R}^+. \] (C.1.6)

For these, the statements of Fourier’s integral theorem also apply but modified by replacing \(\mathbb{R} \) with \(\mathbb{R}^+ \). For functions nonzero only on \(\mathbb{R}^+ \) or \(\mathbb{R}^- \), the properties of \(f \) may be stated on \(\mathbb{R}^\pm \) as appropriate.

We shall generally assume that \(f \in L^1(\mathbb{R}) \cap L^2(\mathbb{R}) \) (or \(f \in L^1(\mathbb{R}^+) \cap L^2(\mathbb{R}^+) \)) as appropriate), ensuring the existence of the transform and the property that \(f_F \in L^2(\mathbb{R}) \) (or \(f_F \in L^2(\mathbb{R}^+) \)), though in certain cases discussed below, we need to consider certain functions not in this category. Membership of these function spaces imposes restrictions on the behavior at infinity of \(f \). For example, if a piecewise continuous function \(f : \mathbb{R}^+ \mapsto \mathbb{R} \) belongs to \(L^1(\mathbb{R}^+) \cap L^2(\mathbb{R}^+) \), then at large positive \(s \), we must have
\[|f(s)| \leq As^{-p}, \quad p > 1, \]
where \(A \) is a constant and, since \(f_+ \in L^2(\mathbb{R}^+) \),
\[|f_+(\omega)| \leq B|\omega|^{-q}, \quad q > \frac{1}{2}, \]
where \(B \) is a constant, for large real \(\omega \).

It is easily shown that
\[f'_F(\omega) = i\omega f_F(\omega), \]
where \(f' \) is the derivative of \(f \).
If \(f \) is real, which is almost always the case, then
\[
\overline{f_F(\omega)} = f_F(-\omega), \tag{C.1.7}
\]
where the bar denotes the complex conjugate. If \(h(s) = f(s + u) \), where \(u \) is a constant, then we have
\[
h_F(\omega) = e^{iu\omega} f_F(\omega). \tag{C.1.8}
\]

C.2 Fourier Transforms on the Complex Plane

It is central to the considerations of the present work, most particularly Part III, that we consider various quantities defined on the frequency domain over the complex plane \(\Omega \). This is effectively an analytic continuation from their definition on \(\mathbb{R} \). Consider the quantity \(f_+ \) extended to the complex plane. Its integral definition allows us to carry out this extension to \(\Omega^{(-)} \) without difficulty in that the quantity
\[
f_+(\omega) = \int_0^\infty f(s) e^{-i\omega s} ds, \quad \omega = \omega_r - i\omega_i, \quad \omega_r, \omega_i \in \mathbb{R}, \quad \omega_i \in \mathbb{R}^{++}, \tag{C.2.1}
\]
exists everywhere on \(\Omega^{(-)} \) if it exists on \(\mathbb{R} \). It is also uniquely differentiable everywhere on the open set \(\Omega^{(-)} \) with respect to \(\omega = \omega_r - i\omega_i \) and therefore analytic on this set. It goes to zero as \(\text{Im}\omega \to -\infty \).

Also, if \(f_+ \) is free of singularities in \(\Omega^{(-)} \), then
\[
f(s) = \frac{1}{2\pi} \int_0^{\infty} f_+(\omega) e^{i\omega s} d\omega = 0, \quad s \in \mathbb{R}^{--},
\]
by (B.1.2). Thus, we have the following result.

Proposition C.2.1. The function \(f \) is zero on \(\mathbb{R}^{--} \) if and only if \(f_+ \) is analytic on \(\Omega^{(-)} \).

A similar result holds for \(f \) zero on \(\mathbb{R}^{++} \), where the analyticity of \(f_- \) is on \(\Omega^{(+)} \).

As noted in Section B.1.4, we exclude the possibility of essential singularities in the extension of \(f_r \) to the complex plane, at finite points, and except in the context of Chapter 14, assume analytic behavior at infinity, given in fact by (C.2.16) below.

Proposition C.2.2. The function \(f_+(\omega) \) is analytic on a band in \(\Omega^+ \), \(0 \leq \text{Im}\omega < \alpha \) (but not in a band \(\text{Im}\omega < \beta, \beta > \alpha \)), if and only if \(f(s) \) decays like \(\exp(-\alpha s) \) for large \(s \).

Proof. If \(f(s) \) decays like \(\exp(-\alpha s) \) for large \(s \), then putting \(\omega = \omega_r + i\omega_i \), where \(\omega_r, \omega_i \) are real, we have that
\[
f_+(\omega_r + i\omega_i) = \int_0^{\infty} f(s) e^{-i(\omega_r + i\omega_i)s} ds.
\]
exists and is analytic for $\omega_i < \alpha$.

Let $f_F(\omega)$ be analytic for $\text{Im}\omega < \alpha$ but not in a band $\text{Im}\omega < \beta, \beta > \alpha$. We can evaluate

$$f(s) = \frac{1}{2\pi} \int_{-\infty}^{\infty} f_+(\omega) e^{i\omega s} d\omega,$$

where f_+ is analytic at infinity, as a contour integral over Ω^+ with no contribution from the infinite semicircle. Then, using (B.1.14), we have

$$f(s) = 2\pi i \sum_{\omega_i} \text{residues of } f_F(\omega) e^{i\omega s} \text{ at singular points } \omega_i \text{ in } \Omega^+.$$

The position ω_n of the singularity (or more than one) nearest the real axis, whether this is an isolated singularity or a point on a branch cut, must be such that $\text{Im}\omega_n = \alpha$. All other singular points will yield more strongly decaying exponentials. \(\square\)

Thus, the integral definition of f_+ will typically not exist on Ω^+ except perhaps on a band of finite thickness parallel to the real axis. Outside of Ω^- and this region, we must define $f_+(\omega)$ by analytic continuation from the region of analyticity, though not using the integral definition. If we can obtain an explicit formula for the transform, then the analytic continuation is very easy, as can be seen from (B.1.6). It will certainly have singularities in the region $\text{Im}\omega \geq \alpha$ unless it is a constant.

Similarly, f_- is analytic in Ω^- and perhaps in certain regions of $\Omega^±$.

Hypothesis C.2.3. For crucial manipulations in Part III, we will always assume that the regions of analyticity of $f_±$ (this quantity being an independent field variable or a relaxation function derivative) is extended to include an open region containing \mathbb{R}.

This assumption is, for brevity, sometimes stated in the main text as that $f_±$ is analytic on $\Omega^±$ and \mathbb{R}, or on Ω^\pm. It is a restrictive assumption in that it means, by virtue of Proposition C.2.2, that $f(s)$ decays exponentially at large s. For relaxation functions determined by branch-cut singularities, this is particularly important in that if the cuts are allowed to touch the real axis, interesting nonexponential behaviors are possible. This raises the issue whether one can take the limit of the cut approaching the real axis after final results have been obtained, which is discussed in Chapter 13. Isolated singularities off the real axis are always associated with exponential decay, though by taking poles sufficiently close to the real axis, slow decay can be simulated.

For $f : \mathbb{R}^+ \to \mathcal{V}$ we can always extend the domain of f to \mathbb{R}, by considering its *causal* extension

$$f(s) = \begin{cases} f(s) & \text{for } s \geq 0, \\ 0 & \text{for } s < 0, \end{cases}$$

in which case

$$f_F(\omega) = f_+(\omega) = f_+(\omega) - if_-(\omega). \quad (C.2.2)$$

The quantities $f_±$ provide an example of the notation used in Part III whereby the subscript $±$ indicates that the function is analytic in $\Omega^{±}$.

Let f be zero on \mathbb{R}^- and let it diverge like $\exp(\lambda_1 s)$ at large s. Then we consider the function

$$g(s) = f(s) e^{-\lambda s}, \quad \lambda > \lambda_1, \quad s \in \mathbb{R}^+.$$

Its transform is given by

$$g_+(\omega) = \int_0^{\infty} g(s) e^{-i\omega s} ds = \int_0^{\infty} f(s) e^{-i(\omega s - i\lambda)} ds = f_+(\omega - i\lambda),$$

so that f_+ exists and is analytic below the line $z = -i\lambda$. Taking the inverse transform of g_+, we obtain

$$g(s) = \frac{1}{2\pi} \int_{-\infty}^{\infty} g_+(\omega) e^{i\omega s} d\omega = \frac{1}{2\pi} \int_{-\infty}^{\infty} f_+(\omega - i\lambda) e^{i\omega s} d\omega,$$

so that

$$f(s) = \frac{1}{2\pi} \int_{-\infty}^{\infty} f_+(\omega - i\lambda) e^{i(\omega s - i\lambda)} ds d\omega = \frac{1}{2\pi} \int_{-\infty}^{\infty} f_+(\xi) e^{i\xi s} d\xi. \quad (C.2.3)$$

C.2.1 Laplace Transforms

Let f be zero on \mathbb{R}^-. Then

$$f_L(\alpha) = \int_0^{\infty} f(s) e^{-\alpha s} ds = f_+(-i\alpha), \quad \alpha \in \Omega, \quad (C.2.4)$$

is the Laplace transform of f. It is analytic for $\text{Re} \alpha > 0$. The imaginary axis is included if hypothesis C.2.3 is introduced. If f diverges like $\exp(\alpha_0 s)$ for large s, then f_L exists and is analytic for $\text{Re} \alpha > \alpha_0$. Allowing for this possibility, we use (C.2.3) to determine the (unique) inverse Laplace transform. Making a change of variable $\alpha = i\xi$, we obtain

$$f(s) = \frac{1}{2\pi i} \int_{-i\infty}^{i\infty} f_L(\alpha) e^{\alpha s} d\alpha, \quad \lambda > \alpha_0. \quad (C.2.5)$$

This gives zero if $\text{Re} s < 0$, allowing the contour to be closed in the right-hand half-plane.

C.2.2 The Fourier Transform of Functions with Compact Support

Proposition C.2.4. Consider the case that $f(s) = 0, s \notin [0, d]$, and f is continuous for $s \in [0, d], d > 0$, with $f(0)$ and $f(d)$ nonzero. Then
The quantity \(f_F \) is an entire function with an essential singularity at infinity and dominant behavior given by

\[
f_+(\omega) \xrightarrow{\text{Im} \omega \to +\infty} \frac{f(d)}{i\omega} e^{-i\omega d}.
\]

(C.2.7)

Also, for \(|\text{Re} \omega|\) large and \(\text{Im} \omega\) fixed,

\[
f_+(\omega) \sim \frac{f(0)}{i\omega} \left(1 - e^{-i\omega d}\right).
\]

(C.2.8)

For \(\text{Im} \omega \to -\infty\),

\[
f_+(\omega) \sim \frac{f(0)}{i\omega}.
\]

(C.2.9)

Conversely, if \(f_+\) is an entire function that has an essential singularity of the form (C.2.7), then \(f(s) = 0\), \(s > d\).

Proof. The analyticity of \(f_+\) at all finite points in the complex plane follows from the fact that the integral exists and is uniquely differentiable everywhere. The analyticity of \(f_+\) on \(\Omega^+\) follows from the observation after (C.2.1). By taking \(|\omega| \to \infty\) along the real axis and changing integration variables, we obtain (C.2.8). This formula can be analytically continued onto \(\Omega^+\), so that (C.2.9) follows. Relation (C.2.8) cannot be analytically continued into \(\Omega^+\) because of the presence of a divergence at infinity. By changing the integration variable in (C.2.6), we obtain

\[
f_+(\omega) = e^{-i\omega d} g(\omega), \quad g(\omega) = \int_{-d}^{0} f(s + d) e^{-i\omega s} ds.
\]

It follows from its definition that \(g(\omega)\) is analytic on \(\Omega^+\). As before, we find that

\[
g(\omega) \sim -\frac{f(d)}{i\omega} \left(1 - e^{i\omega d}\right)
\]

for \(|\text{Re} \omega|\) large and \(\text{Im} \omega\) fixed, giving

\[
g(\omega) \xrightarrow{\text{Im} \omega \to +\infty} \frac{f(d)}{i\omega},
\]

and (C.2.7) follows.

Remark C.2.5. If \(f(d)\) vanishes and \(f'(d) \neq 0\), a slightly different version of (C.2.7) emerges.

Conversely, we assume that \(f_+\) is analytic at all finite points of \(\Omega\) and diverges as indicated by (C.2.7) on \(\Omega^+\). Then \(g\) is an entire function that goes to zero as \(\text{Im} \omega \to +\infty\). We write

\[
f(s) = \frac{1}{2\pi} \int_{-\infty}^{\infty} g(\omega) e^{i\omega(s - d)} d\omega.
\]
If $s > d$, the contour can be closed in $\Omega^(+)$ with the contribution from the infinite portion exponentially attenuated. The analyticity of $g(\omega)$ in $\Omega^(+)$ ensures that the result is zero. □

Proposition C.2.4 is closely related to the Paley–Wiener theorem [194].

C.2.3 Functions That Do Not Belong to $L^1 \cap L^2$

It is necessary to include cases of functions that do not belong to $L^1 \cap L^2$. Consider the case that $f(\infty) \neq 0$ but with $f_0 \in L^1(\mathbb{R}^+) \cap L^2(\mathbb{R}^+)$ defined by

$$f_0(s) = f(s) - f(\infty).$$

In this case, we write

$$f_+(\omega) = \int_0^\infty e^{-i\omega s} f(s) ds = \int_0^\infty e^{-i\omega s} f_0(s) ds + f(\infty) \int_0^\infty e^{-i\omega s} ds,$$

(C.2.10)

$$= f_0(\omega) + \frac{f(\infty)}{i\omega}; \quad \omega^- = \lim_{\alpha \to 0^+} (\omega - i\alpha),$$

where we have moved ω in the rightmost integral of the second relation into $\Omega^(-)$ to give a finite result. The limit in the definition of ω^- is taken after any integrations in frequency space are carried out. This is a well-known device for handling such functions—effectively as a limit of $L^1 \cap L^2$ functions—which avoids the use of distribution theory. It is, in the present context, largely redundant, since $f_+(\omega)$ will generally multiply functions that vanish at $\omega = 0$ in such a way as to cancel the pole.

Similarly, if $f(-\infty) \neq 0$ but if $f_0 \in L^1(\mathbb{R}^-) \cap L^2(\mathbb{R}^-)$, where

$$f_0(s) = f(s) - f(-\infty),$$

then

$$f_-(\omega) = \int_{-\infty}^0 e^{-i\omega s} f(s) ds = f_0(\omega) - \frac{f(-\infty)}{i\omega^+}, \quad \omega^+ = \lim_{\alpha \to 0^+} (\omega + i\alpha).$$

(C.2.11)

Finally, we note the formal relation, referred to on occasion in the main text,

$$\int_{-\infty}^\infty e^{\pm i\omega s} ds = 2\pi \delta(\omega),$$

(C.2.12)

where δ is the singular delta function.
C.2.4 The Form of \(f_{\pm} \) at Large Frequencies

The Riemann–Lebesgue lemma states that if \(f \in L^1(\mathbb{R}) \), then

\[
\lim_{\omega \to \infty} \int_{-\infty}^{\infty} f(s)e^{\pm i\omega s} \, ds = 0. \tag{C.2.13}
\]

Similar statements apply to \(f \) defined on \(\mathbb{R}^\pm \). It is of interest to determine in more detail, however, the behavior of Fourier transforms at large \(\omega \). The results apply to inverse transforms with minor changes of sign. Consider the relations

\[
\int_{0}^{\infty} e^{-i\omega s} \, ds = \frac{1}{i\omega}, \quad \int_{-\infty}^{0} e^{-i\omega s} \, ds = -\frac{1}{i\omega^+}, \tag{C.2.14}
\]

obtained by the device introduced in (C.2.10) and (C.2.11). Differentiating \(n \) times yields

\[
\int_{0}^{\infty} s^n e^{-i\omega s} \, ds = \frac{n!}{(i\omega)^{n+1}}, \quad \int_{-\infty}^{0} s^n e^{-i\omega s} \, ds = -\frac{n!}{(i\omega^+)^{n+1}}. \tag{C.2.15}
\]

If \(f_{\pm}(\omega) \) is analytic at infinity and if the first \(N \) right and left derivatives of \(f \) exist at the origin, then we obtain, by Taylor expansion and (C.2.15), the asymptotic behavior

\[
f_{\pm}(\omega) \xrightarrow{\omega \to \infty} \pm \sum_{n=0}^{N} f^{(n)}(0)_{\pm} \left(\frac{1}{\omega^{n+2}} + O\left(\frac{1}{\omega^{N+2}}\right)\right), \tag{C.2.16}
\]

where \(f^{(n)}(0+)_{\pm} = f^{(n)}(0-)_{\pm} \) is the \(n \)th right (left) derivative of \(f \) at the origin. Thus

\[
f_{\even}(\omega) \xrightarrow{\omega \to \infty} \sum_{n \text{ even}}^{N} f^{(n)}(0)_{\pm} \left(\frac{1}{i\omega^{n+1}} + O\left(\frac{1}{\omega^{N+2}}\right)\right), \tag{C.2.17}
\]

\[
f_{\odd}(\omega) \xrightarrow{\omega \to \infty} i \sum_{n \text{ odd}}^{N} f^{(n)}(0)_{\pm} \left(\frac{1}{i\omega^{n+1}} + O\left(\frac{1}{\omega^{N+2}}\right)\right) + i\delta(\omega). \]

If

\[
f^{(n)}(0+) = f^{(n)}(0-) = f^{(n)}(0), \quad n = 0, 1, 2, \ldots, m,
\]

in other words, if \(f \) is differentiable \(n \) times at the origin, then it follows from (C.2.16) that

\[
f_{F}(\omega) \sim \omega^{-(m+2)} \tag{C.2.18}
\]

at large \(\omega \).

Note that combining (C.2.12) and (C.2.14) yields

\[
\frac{1}{\omega^-} - \frac{1}{\omega^+} = 2\pi i\delta(\omega). \tag{C.2.19}
\]
C.2.5 Expressions for f_{\pm} in Terms of f_F

Using the inverse transform to express f in terms of f_F, together with (C.1.3), we obtain

\[
f_+(\omega) = -\frac{1}{2\pi i} \int_{-\infty}^{\infty} \frac{f_F(\omega')}{\omega' - \omega} d\omega',
\]
\[
f_-(\omega) = \frac{1}{2\pi i} \int_{-\infty}^{\infty} \frac{f_F(\omega')}{\omega' + \omega} d\omega',
\]
\[
\omega^\pm = \lim_{\alpha \to 0^+} (\omega \pm i\alpha).
\]

Thus, we move ω slightly into the half-plane of analyticity of f_{\pm} to achieve convergence in the time integration, as in (C.2.10) and (C.2.11). This also ensures that the integrals on the right-hand side of (C.2.20) have a well-defined meaning. The limit is taken after the integration is carried out. The forms of the analytic functions f_{\pm}, $\omega \in \Omega^{(\pm)}$, are given by

\[
f_{\pm}(\omega) = \mp \frac{1}{2\pi i} \int_{-\infty}^{\infty} \frac{f_F(\omega')}{\omega' - \omega} d\omega'.
\]

Note that (C.1.4) follows from (C.2.20) and the Plemelj formula (B.2.15). Using (C.1.4) in (C.2.21) and (C.2.16), we see that in the formula for f_+, the contribution from f_- in the integral vanishes by Cauchy’s theorem (closing the contour on $\Omega^{(\pm)}$). Thus, we obtain

\[
f_+(\omega) = -\frac{1}{2\pi i} \int_{-\infty}^{\infty} \frac{f_+(\omega')}{\omega' - \omega} d\omega', \quad \omega \in \Omega^{(-)},
\]

with a similar relation for f_- (no minus sign on the integral). These relations and their limit as ω approaches the real axis provides an example of the properties noted after Remark B.2.1, where F^\pm corresponds to f_{\mp}.

C.3 Parseval’s Formula and the Convolution Theorem

Parseval’s formula states that

\[
\int_{-\infty}^{\infty} \overline{f(u)}g(u)du = \frac{1}{2\pi} \int_{-\infty}^{\infty} \overline{f_F(\omega)}g_F(\omega)d\omega,
\]

so that the L^2 scalar products in the time and frequency domains are proportional. We have allowed the possibility of complex functions in the time domain, which occurs only rarely in the main text. The convolution, or faltung, theorem gives that if h is the convolution product $f \ast g$, namely
\[h(s) = \int_{-\infty}^{\infty} f(s - u)g(u)du = \int_{-\infty}^{\infty} f(u)g(s - u)du, \quad (C.3.2) \]

then
\[h_F(\omega) = f_F(\omega)g_F(\omega). \quad (C.3.3) \]

The converse also holds. Note that if \(f \) and \(g \) are causal, then \(h \) also has this property and is given by
\[h(s) = \int_{0}^{s} f(s - u)g(u)du, \quad s \in \mathbb{R}^+. \quad (C.3.4) \]

Remark C.3.1. From (C.3.2), we see that the convolution product is commutative if \(f \) and \(g \) commute. It can also be shown to be associative.

48. C.M. Dafermos and J.A. Nohel, Energy methods for nonlinear hyperbolic Volterra integro-
49. P.L. Davis, On the hyperbolicity of the equations of the linear theory of heat conduction for
160.
1–34.
52. W.A. Day, Reversibility, recoverable work and free energy in linear viscoelasticity, *Quart. J.
55. G. Del Piero and L. Deseri, Monotonic, completely monotonic and exponential relaxation
56. G. Del Piero and L. Deseri, On the analytic expression of the free energy in linear viscoelastic-
57. G. Del Piero and L. Deseri, On the concepts of state and free energy in linear viscoelasticity,
58. L. Deseri, M. Fabrizio, and J.M. Golden, On the concept of a minimal state in viscoelasticity:
96.
59. L. Deseri, G. Gentili, and J.M. Golden, An explicit formula for the minimum free energy in
60. L. Deseri, G. Gentili, and J.M. Golden, On the minimum free energy and the Saint-Venant
principle in linear viscoelasticity, in *Mathematical Models and Methods for Smart Materials*,
61. L. Deseri and J.M. Golden, The minimum free energy for continuous spectrum materials,
62. E.D. Dill, Simple materials with fading memory, in *Continuum Physics II*, Academic Press,
64. G. Duvant and J. Lions, *Inequalities in Mechanics and Physics*, Springer-Verlag, Berlin,
1976.
69. M. Fabrizio, C. Giorgi, and A. Morro, Free energies and dissipation properties for systems
70. M. Fabrizio, C. Giorgi, and A. Morro, Internal dissipation, relaxation property and free en-
71. M. Fabrizio, C. Giorgi, and V. Pata, A new approach to equations with memory, *Arch. Ratio-
72. M. Fabrizio and J.M. Golden, Maximum and minimum free energies and the concept of a
73. M. Fabrizio and J.M. Golden, Maximum and minimum free energies for a linear viscoelastic

References

179. P.M. Morse and H. Feshbach, Methods of Theoretical Physics, McGraw-Hill, New York, 1953.

Index

A

Acceleration 10, 45, 47
Analytic
 at infinity: definition 534
 continuation: definition 533
 function: definition 531
 on entire plane see Entire function, see Liouville’s theorem
 on real axis: definition 548
Analyticity and causality 547
Anisotropic material 56
Area element 21
Area vector 21, 75

B

Balance law 112
 angular momentum 27, 30
 energy 80, 95, see Conservation of energy, see First law of thermodynamics
 hyperelastic materials 61
 viscous fluid 50
 entropy power 96
 linear momentum 26, 30
 mass 24, 34, 35, 56, 57, 181, 187, see Conservation of mass
 momentum 27, 28, 30, 31, 34, 35, 70
 power 50, 61, 80, 89, 90, 92, 93, 373, 374
 electromagnetic 93, see Poynting’s theorem
Balance of forces 70
Banach space 412, 415, 416, 432, 461, 462, 496
Bernoulli’s theorem 33, 45–47, 49
 for elastic fluids 47
 for ideal fluids 45
Betti’s reciprocal theorem 68
Boundary conditions 112, 132, 133, 155, 390, 394, 398, 402, 419, 436, 440–443, 445, 456, 492, 495, 500
 Dirichlet 392, 421, 477, 514
 finite elasticity 57
 global 69, 441, 448, 449, 455
 homogeneous 402, 403
 ideal fluid 46
 lateral 70–72, 440, 442, 448, 455
 linear elastic 68, 70–72
 radiation 404
 static problem 58
 viscous fluid 53, 54
Boundary value problem 440, 442, 444, 445, 448, 451, 452, 514
 finite elasticity 58
 Newtonian fluid 51, 52
 plane 442, 443, 445, 452
 static 58
Bounded operator 280, 289, 461, 463, 496

C

Cahn–Hilliard equation 93, 95
Cauchy
 integral 320, 538, 540, 541
 integral formula 311, 315, 532
 materials with memory 36
 principal value 149, 310, 317, 532, 540, 541
 definition 532
 problem 393, 480, 487, 508
 theorem
 complex analysis 144, 146, 249, 251, 253, 255, 349, 532, 538, 553
 existence of stress 28, 75

563
Cauchy–Riemann conditions 531
Causal extension 548
function 139, 177, 405, 554
relationship 167
Cayley–Hamilton theorem 14
Chemical potential 95
Clausius–Duhem inequality 84, 86, 89, 96, 110, 111, 160, 201, 208, see Second law of thermodynamics
Lagrange form 84
Coercivity 280, 289, 395, 515–518
Coldness 109, 125
equilibrium 135
gradient 135, 421
Compatibility conditions
Saint-Venant 18, 19, 66, 70, 71
Compression 31
modulus of 65, 285
Configuration
current 14, 22, 33, 34, 36, 57, 180
reference 9, 11, 34–36, 44, 56, 57, 75, 76, 110, 111, 180
Conservation of energy 62, 78
Conservation of mass 47, 181
local version of principle 24
principle of 23, 25
Constitutive relation 1, 112, 121
continuous spectrum 308
elastic solid 55–57
electromagnetic 93
fading memory 2
finite-memory material 326
fluid local in time 43, 46, 47, 49–51, 81, 87, 89
general 38, 109, 112, 113, 131, 132, 135
heat flow 199–201, 203, 205, 207, 210, 214, 381
inversion of 166
isotropic 64
linear elastic 43, 62, 63
linear memory 2, 3, 118, 120, 125, 150, 357
linearized 62, 63, 199, 382
mechanics 7, 35, 36, 38, 39, 43, 84, 155
nonlocal 381, see nonsimple
nonsimple 96–98, 373, 374, 380
scalar 235, 357
simple 77
thermodynamic constraints on 78
thermoelastic 78, 92, 420
types of 43
viscoelastic fluid 1, 41, 180–182, 184, 187, 189, 191, 196, 197, 513, 514
viscoelastic solid 1, 41, 155, 161, 163, 166, 171, 262, 391, 392, 397, 404, 411, 416, 453
Continuation 1, 145, 202, 205, 209, 240, 241, 245, 281, 286, 348, 352, 379
static 202, 203, 209
strain 282
zero 345
Continuity equation 24, 36, 87, see Conservation of mass
Control function 420
Control problem 422
Control system
with memory 421
Controllability 419–424, 436
Convex set 84, 101, 122, 350, 361, 365, 367, 368
Convolution product 399, 421, 425, 427, 461, 467, 470, 475, 476, 492, 504, 509, 554
Coordinates
dimensionless 51
Eulerian 9
Lagrangean 9
material 9, 18, see Lagrangean
reference 36
spatial 9, 18, 36, see Eulerian
Creep function 168, 175, 303

D
Deformation 8, 9, 11, 13, 56, 58, 65, 446
area change 21
constraints on 43
definition 11
Eulerian 13, 44
gradient 10, 12, 13, 55
history of 39
history of 1, 2
incompressible material 44
infinitesimal theory of 18, 62
isochoric 18, 43, 44
Lagrangean 13
linear theory 18, 22
optimal 266
shear 258
velocity of see Stretching
volume change 17, 21
volume-preserving see isochoric
Delta function 132, 145, 154, 190, 272, 292, 494, 517, 551

Description
Eulerian 10, 44, 112, 134, 200
Lagrangian 10, 76, 77, 134, 200
material 83, 109, see Lagrangian
spatial see Eulerian

Dielectric 93

Direct problem 493, 494, 497–499, 501
Dispersion relations 144
Displacement problem 68
Displacement: definition 11
Dissipation of energy 43, 160
rate of 112, 148, 219, 344
continuous spectrum 319
Day 230
Dill 227, 231
finite-memory material 333
Graff–Volterra 217, 226, 231, 233, 377, 384
heat flow 201
in terms of stress 175
intermediate 364, 367
isolated singularities 344, 353, 355, 361
minimum free energy 243, 244, 250, 263, 267, 271, 379
nonlocal 376, 382, 383
physical 131, 357, 367, 370
quadratic functional 130, 173, 215
single-integral quadratic form 223, 228, 232, 234, 378
sinusoidal history 261
viscoelastic fluid 295
viscoelastic solid 172
viscous fluid 50, 138
total 344, 347
finite-memory material 333
isolated singularities 353
minimum free energy 244, 250, 263
physical 131
zero rate of 154, 176

Dissipation principle 101–103, 157, 159, 184, 187, 188, 191, 192, 376, 383
strong 102–105, 107

Divergence theorem 23, 30, 32, 35, 54, 67–69, 439, 456

Domain-of-dependence inequality 411, 413, 415–417

Dynamic viscosity 460

E

Eigensolution 393

Eigenspace 135, 137, 257, 258, 263, 264, 335, 338, 357, 527
time-independent 256

Eigenvalue 31, 54, 136, 342, 350, 357, 462, 521, 528
Eigenvector 31, 134, 135, 527, 529

Elastic material 1, 3, 41, 58, 59, 84–86, 449, 457
homogeneous 56
inhomogeneous 56
linear 62, 64, 66, 439
Hooke’s law 43
solid 55, 56, 66

Elastic modulus 160, 398

Elastic problem 325, 392

Elasticity tensor 62, 63, 66, 68, 140, 449, 457

Elastostatics 67
equations of 69
linear 66
mixed boundary problem of 66, 67

Electric field 93

Electrical conductor 93

Electromagnetic field 93, 94, 111

Elongation 13, 14, 35

Energy
extra flux 97
kinetic 31, 32, 37, 50, 90
potential 33, 45, 47, 49

Energy equation 50, 61, 80, 89, 200

Energy function 423, 425, 428

Energy transformation 78, 80

Entire function 325, 326, 534, 550

Entropy 37, 81, 83, 84, 86, 87, 96, 97, 99, 109, 110, 118, 200, 374
action 83, 382
extra flux 96–98
flux 81, 96, 110
power 96–98
source 81

Equations of motion 28, 30, 32, 33, 35, 36, 44, 47, 56, 64, 87, 90, 92, 155, 394, 399, 402, 459, 514
displacement 65
equilibrium 65–70, 72, 441, 443, 455, 456

Equivalence class
branch cut 342
isolated singularities 342, 350, 361
viscoelastic fluid 182, 191, 292
viscoelastic solid 164, 391

Euler’s equations 46

Evolution function 77, 99, 202

Evolution problem 200, 405, 410, 411, 416, 513

Extra flux 91, 94, 373, 381, 384

F

Factorization
 commutative 255, 257
 scalar 236, 240, 256, 286, 293, 301, 304, 307, 327, 379
 continuous spectrum 308, 311, 314, 319, 322
 finite memory 325, 328, 331, 332
 isolated singularities 337, 338, 342, 363, 365, 368
 commuting 244
 isolated singularities 338, 341, 345, 346, 348, 350, 351
 left 236–238, 284, 285
 right 236, 238

Fading memory 1, 2, 40, 41, 101–103, 119, 125, 129, 178, 180, 182, 389, 465, 491
 norm 112, 513
 principle 112

Faltung theorem 177, see Convolution theorem

Finite work 193, 195

 nonsimple 93, 94, 97

First principle of thermodynamics 79, 80, 87, 89

Flow 32, 45, 47, 50, 51
 compressible 51, 87, 89
 irrotational 32
 Poiseuille 53
 potential 32, 33, 45, 47
 region 32
 shear 127
 slow see Stokes
 sonic 49
 steady 32, 33, 45–48, 51
 steady and irrotational 33, 45–47, 49

Stokes 51
 subsonic 49
 supersonic 49
 unsteady 46
 viscous 53

Fluid
 elastic 46–49

ideal 44, 49, 81

incompressible 138

Newtonian 49–51, 87, 89

viscoelastic 156, 287
 compressible 159, 181, 189–191, 193, 196, 235
 second-order 373
 viscosity 49, 51
 coefficient 51
 kinematic 49, 53
 viscous 84, 87
 compressible 51, 87, 89

Force
 body 25, 32, 49, 51, 58, 67, 69, 374, 392, 400, 442
 conservative 33, 45, 47
 contact 25
 environmental 25
 equipollent 70, 71
 external 90, see body
 gravity 25
 normal 31
 resultant 70, 443
 shearing 31
 surface 26, 31, 32

Fourier series 142, 159, 188

Fourier transform
 analytic continuation of 548
 at large frequency 552
 compact support 549
 cosine 143, 159, 177–179, 188, 383, 522
 definition 546
 definition 545
 distributional sense 161
 existence of 546
 finite memory 325
 inverse 167–169, 192, 221, 253, 274, 296, 354, 398, 549, 552, 553
 definition 545
 inverse cosine
 definition 546
 inverse sine 159
 definition 546
 notation convention 238
 of causal function 349
 of constant 292
 of constitutive relation 167, 169
 of continuation 145, 241, 246, 247, 262, 284, 316, 319, 352
 of convolution product 296, 342
 of displacement 411, 519
of dynamical equations 395, 405
of history 144, 145, 254, 259, 282, 300, 340, 342, 344, 345, 348
of history and continuation 145
of relaxation function 192, 309, 521
of relaxation function derivative 139, 141, 144, 154, 256, 282, 307
of state variable 195, 247, 252, 253, 273, 274, 301
of weak solution 406
of Wiener–Hopf equation 246, 284, 290, 319
sine 139, 159, 178, 179, 188, 212, 308
space of 405
Fourier’s integral theorem 545, 546
Fréchet derivative 117
differentiable 112, 119, 125
differential 112, 113, 119
Frame of reference 14, 36, 38, 51, 526
laboratory 27
Fredholm’s theorems 407
Free energy abstract 99, 101, 103–106, 108
Breuer–Onat 402, 403
characterized by relaxation function 131
convex set 84
Day 229, 230, 367
definition 101
Dill 219, 220, 363, 372, 416
frequency-domain 221
heat conductor 233
viscoelastic fluid 231
viscoelastic solid 226
discrete-spectrum material 230, 357
equilibrium 114, 115, 117, 121, 175, 217, 227, 280, 307, 360, 362
functional of minimal state 151, 152, 357, 361, 391
functional of state 84, 152
general 109–114, 117, 121, 122
Graffi conditions for 115, 117, 128, 154, 173, 248, 249, 344, 353, 360
Graffi–Volterra 128, 217, 218, 222, 391, 415
heat conductor 233
nonlocal 376, 383
viscoelastic fluid 231
viscoelastic solid 226
heat conductor 201, 232
nonlocal 381
Helmholtz 84, 87, 110, 118, 136, 374
nonlocal 381
history-dependent part 114
in terms of stress 174, 175
isolated singularities 346, 347, 351, 352, 357, 361, 364, 366, 368
functional of minimal state 338, 352
branch-cut singularities 343, 344, 350
heat conductor 216
isolated singularities 335, 341, 343, 350, 352, 355
viscoelastic fluid 196, 198
viscoelastic solid 412, 415, 417
minimum 137, 152, 235, 240, 241, 243, 244, 250, 254, see Maximum recoverable work
abstract 102–104, 107
averaged 260
branch-cut singularities 350
continuous-spectrum material 149, 307, 308, 316, 317, 319
discrete-spectrum material 235, 264, 266, 363
finite-memory material 149, 235, 325, 327, 328, 332, 333
heat conductor 235, 300
in terms of stress 286
isolated singularities 335, 346, 350, 352, 355, 361, 363, 372
nonlinear theory 119, 120
nonlocal 379, 385
properties 248
scalar material 258
sinusoidal history 252, 258–260
standard linear solid 235
time domain 269, 272, 274, 276, 295
viscoelastic fluid 185, 186, 235, 289, 292–294, 297
viscoelastic solid 235, 262, 263, 278, 282, 285, 391
multiple-integral quadratic form 224
nonlocal 373, 375, 378, see nonsimple single-integral quadratic form 378, 384, 385
nonsimple material 98
nonuniqueness of 109, 117, 128, 131
objective scalar 37
physical 131, 357, 367–370, 372
properties 2, 109, 115, 121, 173, 353, 360, 362
quadratic functional 109, 114, 118, 125, 128, 138, 170, 172, 187, 196, 219
heat conductor 215
scalar relaxation function 258
Index

simple material 98
single-integral quadratic form 2, 221, 222, 378, 391, 480
heat conductor 233, 234
viscoelastic fluid 231
viscoelastic solid 227
Staverman–Schwarzl see Dill
viscoelastic fluid 185, 197, 198, 232
viscoelastic solid 280, 411
work function 176
Free energy density 458
Future stress 2

G

Gradient of a potential 32, 45, 47
Grafi’s conditions 362
Graffi’s inequality 160
Green function 517, 518
Group
full unimodular 180
rotation 258
symmetry 180

H

Hölder condition 539
Hölder continuity 309, 310, 539, 540, 542
Hardy space 462, 471
Heat 75, 78, 131
conduction coefficient 380
equation 76, 80, 81, 84, 91, 95, 96, 130, 374, 381, 420
with memory 421
flow 98, 127, 150
Cattaneo–Maxwell theory 199, 380
cumulative 111, 150
Fourier 138, 199, 374, 420
Gurtin–Pipkin 199, 420
isotropic 135
flow density 75
flux 37, 75, 97, 98, 199, 201, 203, 205, 206, 208, 209, 211, 213, 373, 374, 420
Piola–Kirchhoff 37, 75, 109
relaxation function 200
power 78, 84, 374
specific 76
rigid conductor 3, 155, 200, 201, 203, 205–207, 209, 210, 214, 225, 232, 235, 298, 373, 380, 381
homogeneous 209
isotropic 209
nonsimple 383
rigid 140

with memory 199, 202
supply 75, 96, 110, 112, 200, 374
Hilbert problem 320, 322
History 1, 36, 102, 117, 132, 342, 348, 352, 467, 475
admissible 411
and dissipation 130
arbitrary 114
cumulative heat flow 111
dependent part 114, 152, 328
displacement 412, 417, 478
initial 390, 398, 411, 415
equivalent 1, 254, 340, 343, 390, 391
heat conductor 206
heat flow 205
nonisothermal 150
viscoelastic fluid 191, 289, 292
viscoelastic solid 163, 164
functional of 112
heat flow 135
initial 390, 392, 417, 460, 465, 475, 478, 481, 482, 514, 520–522
integrated temperature gradient 209, 211
optimal 344, 354, 355
partly static 41, 179, 182, 190
periodic 101, 116, 141, 142, 188, 416
recent 1
relative 156, 181, 189, 190, 193, 196, 222, 227, 248, 255, 282, 292, 341, 345, 355
initial 184, 194
sinusoidal 259
strain 374
zero 125, 129, 185, 195
remote 1
sinusoidal 140, 258, 260, 458, 522
space 477, 478
static 113–118, 162, 164, 165, 170, 248, 345, 360, 362
strain 38–40, 55, 163, 164, 175, 180, 181, 235, 280–284, 286, 327, 328, 358, 389, 391, 411, 412
initial 277
stress 174
temperature 201, 202, 206, 209
gradient 202
zero 204, 206
temperature gradient 199, 203, 206
constant 208
integrated 200, 202
zero 204–207
velocity 514
Index

zero 112, 114, 151, 152, 218, 253, 254, 340
History and state 1, 2, 100, 150, 341, 389, 486, 488
Homogeneous equation 472, 473, 509
Hyperbolicity 199, 417, 420, 421, 461, 469, 491
Hyperelastic material 58, 60–63

I

Identification problem 491, 493, 495–497, 499–501, 509, 510, 512
scalar 493
Incompressibility 43
constraint 44, 193, 197, 231, 375, 514
Incompressible material 44, 49
Initial boundary value problem 391, 401, 405, 406, 413, 513, 520, 523
finite elasticity 57
viscous fluid 53
Initial condition 112, 155, 389, 392–394, 398, 402, 413, 459, 460, 472, 475, 476, 478, 479, 492, 494
finite elasticity 57
viscous fluid 53
Internal energy 37, 79–81, 84, 87, 90, 109, 118, 136, 200, 201, 203, 205, 206, 208, 211, 215, 232, 374
Invariant set 101, 107, 185
Inverse problem 491
Irrotational 16, 33, 45–47, 49, 514
Isothermal theory 84, 131, 151, 172, 249, 261, 263

J

Jacobian 17

K

Korn’s inequality 408, 413, 517

L

Lamé moduli 64, 285, 421
Laplace transform 220, 460–464, 467, 471, 472, 474, 488, 514, 515, 517, 549
inverse 323, 549
Laplacian 51, 52, 459
Liouville’s theorem 243, 246, 253, 285, 291, 340, 349, 534
Loss modulus 160, 460

M

Mach number 48
Magnetic
 displacement 93
 induction 93
Mass
 definition 8
 flow 48
Mass center 451
Mass density 24, 36, 46, 47, 56, 90, 110, 180, 181, 185, 200, 514
Mass flux 95
Material see Elastic material, see Fluid
 aging 38
 completely linear 125, 150, 155, 156, 171, 172, 248, 258, 261, 277
 continuous-spectrum 149, 168, 307, 308, 311, 316, 319, 322, 372
 discrete-spectrum 165, 235, 264, 297, 303, 307, 319, 357
 finite linear viscoelastic 125, 155
 homogeneous 64, 65, 69, 189, 451, 477, 513
 inhomogeneous 38, 460
 linear memory 125, 134
 nonlocal 98, 373, 381, see nonsimple
 rigid 13
 simple 38, 77, 79, 89, 91, 93, 94, 96–100, 102, 103, 115, 180, 189, 201, 373, 377
 viscoelastic solid 41, 189, 190, 196, 277
 with dissipation 81
 with memory 1, 43, 389
Material derivative 10
Material element 2, 100, 101, 111, 244
 simple 101
Material frame indi

 see Material objectivity
Material gradient 10
Material objectivity 36, 37, 59
 principle of 38, 39
Maximum recoverable work 109, 118, 235, 240
 discrete-spectrum material 267
 heat conductor 235, 298, 299
 nonlinear theory 119, 120
 viscoelastic fluid 186, 287, 289, 293
 viscoelastic solid 278, 281
Maxwell’s equations 93
Mechanical action 375
<table>
<thead>
<tr>
<th>Term</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mechanical energy</td>
<td>78, 83</td>
</tr>
<tr>
<td>maximum</td>
<td>412</td>
</tr>
<tr>
<td>Memory kernel</td>
<td>181, 189, 193, 335, 421, 422, 424, 426, 427, 432, 434, 476, 480, 492</td>
</tr>
<tr>
<td>Meromorphic function</td>
<td>534</td>
</tr>
<tr>
<td>Moment</td>
<td>26, 70, 71</td>
</tr>
<tr>
<td>resultant</td>
<td>70, 443</td>
</tr>
<tr>
<td>Moment of inertia</td>
<td>71</td>
</tr>
<tr>
<td>Momentum</td>
<td></td>
</tr>
<tr>
<td>angular</td>
<td>25</td>
</tr>
<tr>
<td>linear</td>
<td>25</td>
</tr>
<tr>
<td>Motion</td>
<td>8, 10, 15, 22, 25, 26, 28, 32, 64</td>
</tr>
<tr>
<td>Brownian</td>
<td>147</td>
</tr>
<tr>
<td>irrotational</td>
<td>16</td>
</tr>
<tr>
<td>isochoric</td>
<td>22</td>
</tr>
<tr>
<td>perpetual</td>
<td>78</td>
</tr>
<tr>
<td>rigid</td>
<td>16, 43</td>
</tr>
<tr>
<td>steady</td>
<td>46</td>
</tr>
<tr>
<td>Navier–Stokes equations</td>
<td>49–51, 53, 190</td>
</tr>
<tr>
<td>Neumann problem</td>
<td>72</td>
</tr>
<tr>
<td>Newton</td>
<td></td>
</tr>
<tr>
<td>law of action and reaction</td>
<td>27, 29</td>
</tr>
<tr>
<td>second law</td>
<td>27</td>
</tr>
<tr>
<td>No-slip condition</td>
<td>50, 52</td>
</tr>
<tr>
<td>Nonisothermal theory</td>
<td>1, 2, 75, 99, 109, 150, 155, 217, 357</td>
</tr>
<tr>
<td>Objective</td>
<td></td>
</tr>
<tr>
<td>scalar</td>
<td>37–40, 57, 59, 60, 75, 77, 110, 112, 113</td>
</tr>
<tr>
<td>thermodynamic quantities</td>
<td>37</td>
</tr>
<tr>
<td>tensor</td>
<td>36–38</td>
</tr>
<tr>
<td>vector</td>
<td>37, 38</td>
</tr>
<tr>
<td>Ohm’s law</td>
<td>93</td>
</tr>
<tr>
<td>Orthogonal tensor</td>
<td>36, 39, 40, 56, 59, 135</td>
</tr>
<tr>
<td>Orthonormal</td>
<td></td>
</tr>
<tr>
<td>basis</td>
<td>135, 258, 462, 526, 527, 530</td>
</tr>
<tr>
<td>projector</td>
<td>135, 257</td>
</tr>
<tr>
<td>Paley–Wiener theorems</td>
<td>462, 551</td>
</tr>
<tr>
<td>Parabolicity</td>
<td>420, 461</td>
</tr>
<tr>
<td>Parseval’s formula</td>
<td>145, 146, 154, 161, 177, 194, 212, 240, 269, 272, 275, 285, 296, 332, 348, 396, 406, 411, 516, 519, 553</td>
</tr>
<tr>
<td>Phase</td>
<td>93, 95</td>
</tr>
<tr>
<td>transformation</td>
<td>338</td>
</tr>
<tr>
<td>transition</td>
<td>93, 95</td>
</tr>
<tr>
<td>Plemelj formulas</td>
<td>144, 148, 239, 242, 273, 274, 284, 291, 301, 309, 314, 343, 348, 352, 540, 542, 553</td>
</tr>
<tr>
<td>Poincaré theorem</td>
<td>397</td>
</tr>
<tr>
<td>Poisson’s ratio</td>
<td>64</td>
</tr>
<tr>
<td>Polar decomposition</td>
<td>11, 39, 56</td>
</tr>
<tr>
<td>Positive definite</td>
<td></td>
</tr>
<tr>
<td>functional</td>
<td>152, 177, 178</td>
</tr>
<tr>
<td>operator</td>
<td>459</td>
</tr>
<tr>
<td>Positive semidefinite</td>
<td></td>
</tr>
<tr>
<td>functional</td>
<td>152</td>
</tr>
<tr>
<td>operator</td>
<td>126</td>
</tr>
<tr>
<td>Power</td>
<td></td>
</tr>
<tr>
<td>external</td>
<td>90, 91, 93, 97, 98, 375</td>
</tr>
<tr>
<td>internal</td>
<td>61, 89–91, 93–97, 373–375</td>
</tr>
<tr>
<td>mechanical</td>
<td>89</td>
</tr>
<tr>
<td>thermal</td>
<td>90, 92, 94, 208, 374</td>
</tr>
<tr>
<td>virtual</td>
<td>402, 404</td>
</tr>
<tr>
<td>Power expended</td>
<td>32, 50</td>
</tr>
<tr>
<td>theorem of</td>
<td>35, 50, 61</td>
</tr>
<tr>
<td>Poynting’s theorem</td>
<td>93</td>
</tr>
<tr>
<td>Pre-Hilbert space</td>
<td>179</td>
</tr>
<tr>
<td>Pressure</td>
<td>31, 33, 43, 44, 46, 49, 50, 53, 81, 181, 183, 189, 373, 514</td>
</tr>
<tr>
<td>uniform</td>
<td>44</td>
</tr>
<tr>
<td>Principal</td>
<td></td>
</tr>
<tr>
<td>direction</td>
<td>31</td>
</tr>
<tr>
<td>invariants</td>
<td>14, 57</td>
</tr>
<tr>
<td>stress</td>
<td>31</td>
</tr>
<tr>
<td>Principal axes of inertia</td>
<td>69, 451</td>
</tr>
<tr>
<td>Principle of virtual power</td>
<td>403</td>
</tr>
<tr>
<td>Process</td>
<td>76, 77, 79, 99, 102–107</td>
</tr>
<tr>
<td>closed</td>
<td>83, 85, 101</td>
</tr>
<tr>
<td>cyclic</td>
<td>90, 97, 101, 116, 131, 140, 157, 159</td>
</tr>
<tr>
<td>definition</td>
<td>101</td>
</tr>
<tr>
<td>dynamical</td>
<td>44, 58, 61, 62</td>
</tr>
<tr>
<td>closed</td>
<td>59–61</td>
</tr>
<tr>
<td>Eulerian</td>
<td>44, 46</td>
</tr>
<tr>
<td>isochoric</td>
<td>44</td>
</tr>
<tr>
<td>elastic material</td>
<td>85, 86</td>
</tr>
<tr>
<td>finite work</td>
<td>195, 212, 213</td>
</tr>
<tr>
<td>fluid</td>
<td>87, 88</td>
</tr>
<tr>
<td>cyclic</td>
<td>187, 188</td>
</tr>
<tr>
<td>general</td>
<td>112, 150, 151</td>
</tr>
<tr>
<td>heat conductor</td>
<td>202, 204–206, 208–213, 381</td>
</tr>
<tr>
<td>nonlocal</td>
<td>382</td>
</tr>
<tr>
<td>optimal</td>
<td>298</td>
</tr>
<tr>
<td>isothermal</td>
<td>83, 97, 184, 520</td>
</tr>
<tr>
<td>kinetic</td>
<td>201</td>
</tr>
<tr>
<td>nonlinear material</td>
<td>119</td>
</tr>
<tr>
<td>nonsimple material</td>
<td>89</td>
</tr>
<tr>
<td>optimal</td>
<td>107, 120, 241</td>
</tr>
</tbody>
</table>
restraint of 202
space 254
viscoelastic fluid 180–185, 189–191, 194, 195, 197, 198, 287, 289, 293, 375, 376
optimal 287, 288, 293
viscoelastic solid 157, 162, 163, 169, 277, 279–281
optimal 278, 281
zero 102, 104, 105, 163, 164, 204
Pseudoenergy 200
Pure pressure 66
Pure shear 31, 65
Pure tension 31, 65, 66

Q
Quasistatic problem 155, 389, 392–395, 440, 448, 455, 456, 522
Quotient space 100, 184, 191, 206, 289

R
Relaxation function 2, 131, 136, 217, 253, 340, 367
branch-cut singularities 548
continuous-spectrum 307
derivative 139, 147, 160, 258, 307, 548
continuous-spectrum 308, 322
finite-memory 325, 331
discrete-spectrum 207, 230, 235, 362, 363
exponential 2, 3, 151, 165, 166
finite-memory 325, 328
generalized 146
internal energy 200
monotonic 2, 130, 148, 225, 309, 372, 416
one-exponential 235
oscillatory 149
scalar 1, 393, 415, 416, 451, 513, 514, 516, 517, 520–522
derivative 285
shear 189
symmetric 259
thermal 200, 209
thermoelastic 424, 426
viscoelastic fluid 1, 156, 292, 513
viscoelastic solid 1, 156, 157, 160, 168, 171, 226, 264, 398, 399, 410, 411, 415, 417, 439, 451, 460
Repeated subscript convention 17
Response 1–3, 38, 55, 65, 140, 150, 458
continuous-spectrum 307
discrete-spectrum 307
equilibrium 133–135
function 2, 46, 56, 99, 264
Reynold’s transport theorem 22, 24, 25
Reynolds number 51
Riemann–Lebesgue lemma 143, 158, 398, 464
Rotation 16, 56, see Orthogonal tensor
matrix 136
rigid 11
tensor 11
time-dependent 36

S
Saint-Venant
elastic
problem of bending 71
problem of extension 70
torsion problem 71
viscoelastic
extension-bending-torsion problem 449, 452
flexure problem 449, 450, 452
Saint-Venant’s principle 70, 441, 453, 458
Saint-Venant’s problem
elastic 69, 439
relaxed formulation of 69, 70
viscoelastic 440–442, 444, 447, 458
relaxed formulation of 448, 449, 453, 455, 458
Scalar product: finite dimensional 111, 526
Schwarz inequality 397, 456
nonsimple 97, 98, 381
Second principle of thermodynamics 80, 83, 85, 87, 89, 97
Self-penetration 10
Semigroup 3, 389, 480, 481, 485, 486
contraction 478
left translation 480
right translation 478
Shear modulus 65
Singularity
branch-cut
definition 535
in relaxation function 146, 148, 149
continuous-spectrum see branch-cut
continuous-spectrum: definition 149
delta-function 292
essential
definition 534
entire function 550
finite memory 325, 326
in relaxation function 146, 149
integrable 539
isolated definition 534
in relaxation function 146, 147, 335, 357
logarithmic 310, 320, 540
off imaginary axis 148
pole 534
power less than unity 309, 320
quadratic 275, 296
residue of 265, 536, 537, 542, 548
symmetric occurrence 143, 239, 282
Spectral representation 135, 527
Speed of propagation 411, 417, 420, 421
Speed of sound 47
Standard linear solid 235
State 120, 121, 241, 259, 343, 345, 350, 479, 481
abstract 99, 100, 104, 119
attainable 102
definition 78, 100, 116, 150
elastic 66–68, 86
equivalent 252–254, 340, 390
abstract 99, 100
continuous spectrum 322
discrete spectrum 362
heat conductor 205–207, 210, 211, 213
isolated singularities 347, 350, 358, 359
nonisothermal 150, 151
viscoelastic fluid 182, 183, 191, 196, 289
finite-memory material 328
fluid 78, 87
formulation 475
functional of 3, 84, 116, 343
heat conductor 201, 202, 205–207, 209–211
nonsimple 381
zero 211
minimal 1, 2, 225, 253, 254, 272, 295, 389, 391, 395, 475, 476
abstract 107
continuous spectrum 308, 322
Day 230
discrete spectrum 165, 166
finite memory 328
functional of 2, 151, 152, 154, 220, 221, 272, 274, 335, 340, 344, 350, 352, 361, 481
heat conductor 207, 384
isolated singularities 341, 343, 357, 359, 364
nonisothermal 1, 150, 151
nonsingleton 152, 218, 328, 341, 342
singleton 152, 218, 307, 322, 341–343, 350
viscoelastic fluid 182, 184, 191, 293, 378
viscoelastic solid 164, 165
Noll’s definition 1, 150
nonsimple material 89
proper 483, 485–488
reachable 419, 420
reference 80
simple material 77
thermoelastic 78, 419, 424
viscoelastic fluid 181, 184, 185, 189, 194
at rest 513, 523
nonsimple 375, 376
viscoelastic solid 162–165, 261, 278
w-equivalent 196, 213
zero 102, 103, 163, 185, 197, 206, 211, 341
State function 79, 80, 87, 90, 478, 482, 485
Static theory 58, 65
Stokes formula 17
Strain plane 441–443, 448, 450
Strain energy 61, 67
Strain tensor 13, 389, 439, 444, 453
Almansi 13
Cauchy 12, 392
Cauchy–Green left 11, 57
right 11, 40, 56
Eulerian 18
green geometric significance of 13
Green 13, 39
infinitesimal 18, 62, 63
Lagrangian 18
time derivative 181
Strain–displacement relation 64, 66, 68
Strain–energy density 60
Strain-energy density 59, 60
Stress extra 49, 134, 181, 182, 189–191, 287
generalized 114, 128, 140, 150, 259, 345
power 32, 157
shear 31, 49, 66
Stress tensor 63
Cauchy 28, 30, 33, 35, 37, 44, 55, 75, 78, 135, 155, 184, 277, 284, 391, 399, 411, 412, 415, 416, 453
symmetry of 30
Piola–Kirchhoff 33, 58
first 34, 57, 59, 62, 75
Index

<table>
<thead>
<tr>
<th>Term</th>
<th>Page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>second</td>
<td>35, 37, 40, 57, 60, 80</td>
</tr>
<tr>
<td>Stress–strain relation</td>
<td>64, 66, 68, 70, 71, 439</td>
</tr>
<tr>
<td>Stretch</td>
<td>11</td>
</tr>
<tr>
<td>left</td>
<td></td>
</tr>
<tr>
<td>right</td>
<td></td>
</tr>
<tr>
<td>Stretching</td>
<td>15, 32, 49</td>
</tr>
<tr>
<td>Superconducting material</td>
<td>94</td>
</tr>
<tr>
<td>Surface</td>
<td></td>
</tr>
<tr>
<td>traction</td>
<td>26, 66, 440</td>
</tr>
</tbody>
</table>

T

<table>
<thead>
<tr>
<th>Term</th>
<th>Page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature</td>
<td>37, 81, 82, 110, 138, 201, 202, 204, 206, 209, 215</td>
</tr>
<tr>
<td>absolute</td>
<td>76, 83, 96, 109, 199, 373</td>
</tr>
<tr>
<td>absolute scale</td>
<td>78, 81, 82</td>
</tr>
<tr>
<td>ambient</td>
<td>381</td>
</tr>
<tr>
<td>empirical</td>
<td>81, 82</td>
</tr>
<tr>
<td>gradient</td>
<td>199–209, 211, 215, 232</td>
</tr>
<tr>
<td>optimal</td>
<td>298</td>
</tr>
<tr>
<td>low</td>
<td>420</td>
</tr>
<tr>
<td>optimal</td>
<td>298</td>
</tr>
<tr>
<td>reference</td>
<td>200</td>
</tr>
<tr>
<td>relative</td>
<td>381, 421</td>
</tr>
<tr>
<td>transition</td>
<td>95</td>
</tr>
<tr>
<td>Tensor</td>
<td></td>
</tr>
<tr>
<td>fourth-order</td>
<td>41</td>
</tr>
<tr>
<td>Hermitian conjugate: definition</td>
<td>527</td>
</tr>
<tr>
<td>Hermitian: definition</td>
<td>527</td>
</tr>
<tr>
<td>normal: definition</td>
<td>528</td>
</tr>
<tr>
<td>positive definite: definition</td>
<td>528</td>
</tr>
<tr>
<td>positive semidefinite: definition</td>
<td>528</td>
</tr>
<tr>
<td>spin</td>
<td>15, 37</td>
</tr>
<tr>
<td>strongly elliptic</td>
<td>63</td>
</tr>
<tr>
<td>thermal conductivity</td>
<td>203</td>
</tr>
<tr>
<td>Theorem of work and energy</td>
<td>67</td>
</tr>
<tr>
<td>Thermal expansion</td>
<td>135</td>
</tr>
<tr>
<td>coefficient</td>
<td>135</td>
</tr>
<tr>
<td>Thermodynamic constraint</td>
<td>117, 118, 157, 207, 309, 393, 398</td>
</tr>
<tr>
<td>Thermodynamic potential</td>
<td>80, 87, 411</td>
</tr>
<tr>
<td>Thermodynamics</td>
<td></td>
</tr>
<tr>
<td>rational</td>
<td>112</td>
</tr>
<tr>
<td>rational extended</td>
<td>38</td>
</tr>
<tr>
<td>Thermoelastic material</td>
<td>77–79, 90, 419, 420, 436</td>
</tr>
<tr>
<td>with memory</td>
<td>92</td>
</tr>
<tr>
<td>Torsional rigidity</td>
<td>72</td>
</tr>
<tr>
<td>Traction problem</td>
<td>68</td>
</tr>
<tr>
<td>Transformation</td>
<td>8, 9, 17, 23, 37, 110, 135, 525, 526</td>
</tr>
<tr>
<td>Euclidean</td>
<td>36</td>
</tr>
<tr>
<td>Galilean</td>
<td>27, 36</td>
</tr>
<tr>
<td>normal: definition</td>
<td>528</td>
</tr>
<tr>
<td>symmetry</td>
<td>56</td>
</tr>
<tr>
<td>Transient effect</td>
<td>116, 140</td>
</tr>
<tr>
<td>Translation</td>
<td>16</td>
</tr>
<tr>
<td>time-dependent</td>
<td>36</td>
</tr>
<tr>
<td>Transport of volume</td>
<td>22</td>
</tr>
</tbody>
</table>

U

<table>
<thead>
<tr>
<th>Term</th>
<th>Page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Uniqueness of solution</td>
<td>155, 389–393, 401, 404, 405, 407, 410, 460, 479, 480, 485, 491, 494, 498, 513, 515, 517, 519</td>
</tr>
<tr>
<td>Uniqueness theorem</td>
<td></td>
</tr>
<tr>
<td>linear elasticity</td>
<td>67</td>
</tr>
<tr>
<td>viscous fluids</td>
<td>53</td>
</tr>
</tbody>
</table>

V

<table>
<thead>
<tr>
<th>Term</th>
<th>Page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Variational derivative</td>
<td>378</td>
</tr>
<tr>
<td>Variational formulation</td>
<td>400, 404, 515</td>
</tr>
<tr>
<td>Variational principle</td>
<td>399, 402</td>
</tr>
<tr>
<td>Velocity</td>
<td>10, 15, 16, 37, 57, 403, 514</td>
</tr>
<tr>
<td>boundary</td>
<td>53</td>
</tr>
<tr>
<td>dimensionless</td>
<td>50</td>
</tr>
<tr>
<td>initial</td>
<td>53</td>
</tr>
<tr>
<td>Velocity gradient</td>
<td>10, 15, 16, 32, 46, 49</td>
</tr>
<tr>
<td>Velocity of deformation</td>
<td></td>
</tr>
<tr>
<td>see Stretching</td>
<td></td>
</tr>
<tr>
<td>Virtual work principle</td>
<td>394</td>
</tr>
<tr>
<td>Volterra</td>
<td>1, 40</td>
</tr>
<tr>
<td>equation</td>
<td>449, 450, 452, 453, 459, 472, 485</td>
</tr>
<tr>
<td>Volume</td>
<td>22</td>
</tr>
<tr>
<td>change</td>
<td>17, 22</td>
</tr>
<tr>
<td>element</td>
<td>17, 21, 22</td>
</tr>
<tr>
<td>simply connected</td>
<td>16</td>
</tr>
<tr>
<td>Volumetric component</td>
<td>135, 136</td>
</tr>
<tr>
<td>Vorticity vector</td>
<td>16</td>
</tr>
</tbody>
</table>

W

<table>
<thead>
<tr>
<th>Term</th>
<th>Page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Warping function</td>
<td>72</td>
</tr>
<tr>
<td>Weak solution</td>
<td>394, 395, 399, 401–403, 405, 406, 410, 413–415, 417, 476, 497, 498, 515</td>
</tr>
<tr>
<td>Well-posedness</td>
<td>3, 389, 393, 491, 495</td>
</tr>
<tr>
<td>Wiener–Hopf equation</td>
<td>120, 241, 245, 293, 307</td>
</tr>
<tr>
<td>continuous-spectrum material</td>
<td>319</td>
</tr>
<tr>
<td>heat conductor</td>
<td>299, 302</td>
</tr>
<tr>
<td>inversion problem</td>
<td>166</td>
</tr>
<tr>
<td>isolated singularities material</td>
<td>346</td>
</tr>
<tr>
<td>viscoelastic fluid</td>
<td>288, 289</td>
</tr>
<tr>
<td>viscoelastic solid</td>
<td>278, 279, 284</td>
</tr>
<tr>
<td>Work function</td>
<td>121, 128, 148, 152, 341</td>
</tr>
<tr>
<td>abstract</td>
<td>99–101, 103</td>
</tr>
<tr>
<td>as free energy</td>
<td>154, 176</td>
</tr>
</tbody>
</table>
branch-cut singularities 343, 344, 350
continuous-spectrum material 307
finite-memory material 325, 328, 331, 332
general material 116, 118
heat flow 213, 216
isolated singularities 335, 341
norm 178
sinusoidal history 259

viscoelastic fluid 193, 196
viscoelastic solid 176, 261, 262

Young’s inequality 430, 504
Young’s modulus 64