References

Books:

R. B. Bapat and T. E. S. Raghavan, *Nonnegative Matrices and Applications*,
E. F. Beckenbach and R. Bellman, *Inequalities*, Springer-Verlag, New York,
Fourth printing, 1983.
R. Bellman, *Introduction to Matrix Analysis*, SIAM, Philadelphia, Reprint of
A. Berman and R. Plemmons, *Nonnegative Matrices in the Mathematical Sciences*,
NJ, 2005.
T. S. Blyth and E. F. Robertson, *Further Linear Algebra*, Springer, New York,
2002.
R. A. Brualdi, *Combinatorial Matrix Classes* (Encyclopedia of Mathematics and
R. A. Brualdi and D. Cvetkovic, *A Combinatorial Approach to Matrix Theory
and Its Applications* (Discrete Mathematics and Its Applications), CRC
D. Carlson, C. R. Johnson, D. C. Lay, and A. D. Porter, *Linear Algebra Gems:
Assets for Undergraduate Mathematics*, Mathematical Association of America,

Papers:

References

References

References

<table>
<thead>
<tr>
<th>Notation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>M_n, 8</td>
<td>$n \times n$ (i.e., n-square) complex matrices</td>
</tr>
<tr>
<td>$M_{m \times n}$, 8</td>
<td>$m \times n$ complex matrices</td>
</tr>
<tr>
<td>\mathbb{C}, 1</td>
<td>complex numbers</td>
</tr>
<tr>
<td>\mathbb{R}, 1</td>
<td>real numbers</td>
</tr>
<tr>
<td>\mathbb{Q}, 6</td>
<td>rational numbers</td>
</tr>
<tr>
<td>\mathbb{C}^n, 3</td>
<td>(column) vectors with n complex components</td>
</tr>
<tr>
<td>\mathbb{R}^n, 2</td>
<td>(column) vectors with n real components</td>
</tr>
<tr>
<td>\mathbb{R}^+_n, 331</td>
<td>(column) vectors with n nonnegative components</td>
</tr>
<tr>
<td>$\mathbb{F}[x]$, 5</td>
<td>polynomials over field \mathbb{F}</td>
</tr>
<tr>
<td>$\mathbb{F}_n[x]$, 5</td>
<td>polynomials over field \mathbb{F} with degree at most n</td>
</tr>
<tr>
<td>$\mathbb{C}[a,b]$, 6</td>
<td>real-valued continuous functions on interval $[a,b]$</td>
</tr>
<tr>
<td>$\mathbb{C}'(\mathbb{R})$, 6</td>
<td>real-valued functions with continuous derivatives on \mathbb{R}</td>
</tr>
<tr>
<td>$\Re c$, 129, 195</td>
<td>real part of complex number c</td>
</tr>
<tr>
<td>$\Im c$, 294</td>
<td>imaginary part of complex number c</td>
</tr>
<tr>
<td>ω, 139</td>
<td>nth primitive root of unity</td>
</tr>
<tr>
<td>t^+, 333</td>
<td>$t^+ = t$ if $t \geq 0$; $t^+ = 0$ if $t < 0$</td>
</tr>
<tr>
<td>δ_{ij}, 266</td>
<td>Kronecker delta, i.e., $\delta_{ij} = 1$ if $i = j$, and 0 otherwise</td>
</tr>
<tr>
<td>$V \cap W$, 4</td>
<td>intersection of sets V and W</td>
</tr>
<tr>
<td>$V \cup W$, 26, 68</td>
<td>union of sets V and W</td>
</tr>
<tr>
<td>$P \Rightarrow Q$, 4</td>
<td>statement P implies statement Q</td>
</tr>
<tr>
<td>$P \Leftrightarrow Q$, 32</td>
<td>statements P and Q are equivalent</td>
</tr>
<tr>
<td>$\text{Span} S$, 3</td>
<td>vector space spanned by the vectors in S</td>
</tr>
<tr>
<td>$\dim V$, 3</td>
<td>dimension of the vector space V</td>
</tr>
<tr>
<td>$V + W$, 4</td>
<td>sum of subspaces V and W</td>
</tr>
<tr>
<td>$V \oplus W$, 4</td>
<td>direct sum of subspaces V and W</td>
</tr>
<tr>
<td>\mathcal{D}_x, 17</td>
<td>differential operator</td>
</tr>
<tr>
<td>S_n, 12</td>
<td>nth symmetric group, i.e., all permutations on ${1, 2, \ldots, n}$</td>
</tr>
<tr>
<td>e_i, 3</td>
<td>vector with ith component 1 and 0 elsewhere</td>
</tr>
<tr>
<td>(u, v), 27</td>
<td>inner product of vectors u and v, i.e., $v^* u$</td>
</tr>
<tr>
<td>$\angle_{x, y}$, 30</td>
<td>angle between real vectors x, y, i.e., $\angle_{x, y} = \cos^{-1} \frac{(x, y)}{|x| |y|}$</td>
</tr>
<tr>
<td>$<_{x, y}$, 33, 198</td>
<td>angle between complex vectors x, y, i.e., $<_{x, y} = \cos^{-1} \frac{</td>
</tr>
<tr>
<td>$d(x, y)$, 182</td>
<td>distance between x and y in a metric space</td>
</tr>
<tr>
<td>$</td>
<td>x</td>
</tr>
<tr>
<td>$</td>
<td></td>
</tr>
<tr>
<td>$</td>
<td></td>
</tr>
<tr>
<td>$</td>
<td></td>
</tr>
<tr>
<td>x^T, 2</td>
<td>transpose of x; it is a column vector if x is a row vector</td>
</tr>
<tr>
<td>x^\perp, 28</td>
<td>vectors orthogonal to vector x</td>
</tr>
</tbody>
</table>
S^\perp, 28 vector space orthogonal to set S
$S_1 \perp S_2$, 28 $(x, y) = 0$ for all $x \in S_1$ and $y \in S_2$
V_λ, 23 eigenspace of the eigenvalue λ
I_n, 9 identity matrix of order n
$A = (a_{ij})$, 8 matrix with entries a_{ij}
A^T, 9 transpose of matrix A
A^\dagger, 9 conjugate of matrix A
A^{-1}, 9 conjugate transpose of matrix A
A^{-1}, 13 inverse of matrix A
A^{\dagger}, 377 Moore–Penrose inverse of matrix A
A_{11}, 41, 217 principal submatrix of matrix A in the upper-left corner
$A(i|j)$, 13 matrix by deleting the ith row and jth column of matrix A
$\text{adj}(A)$, 13 adjoint matrix of matrix A
$\det(A)$, 12 determinant of matrix A
$\text{rank}(A)$, 11 rank of matrix A
$\text{tr}(A)$, 21 trace of matrix A
$|A|$, 11 determinant of the 2×2 block matrix
$(A, B)_M$, 30 matrix inner product, i.e., $(A, B)_M = \text{tr}(B^* A)$
$\text{Im} A$, 17, 51 image of matrix or linear transformation A, i.e., $\text{Im} A = \{Ax\}$
$\text{Ker} A$, 17, 51 kernel or null space of A, i.e., $\text{Ker} A = \{x : Ax = 0\}$
$\mathcal{R}(A)$, 55 row space spanned by the row vectors of matrix A
$\mathcal{C}(A)$, 55 column space spanned by the column vectors of matrix A
$R(A)$, 306 row sum vector of matrix A
$C(A)$, 306 column sum vector of matrix A
$\mathcal{H}(A)$, 233 Hermitian part of matrix A, i.e., $\frac{1}{2}(A + A^*)$
$S(A)$, 361 skew-Hermitian part of matrix A, i.e., $\frac{1}{2}(A - A^*)$
$W(A)$, 107 numerical range of matrix A
J_n, 152 n-square matrix with all entries equal to 1
T_n, 133 n-square tridiagonal matrix
H_n, 150 Hadamard matrix
$V_n(a_i)$, 143 n-square Vandermonde matrix of a_1, \ldots, a_n
$G(x_i)$, 225 Gram matrix of x_1, \ldots, x_n
$s_k(a_i)$, 124 kth elementary symmetric function of a_1, \ldots, a_n
$w(A)$, 109 numerical radius of matrix A
$\rho(A)$, 109 spectral radius of matrix A
$i_+(A)$, 255 number of positive eigenvalues of Hermitian matrix A
$i_-(A)$, 255 number of negative eigenvalues of Hermitian matrix A
$i_0(A)$, 255 number of zero eigenvalues of Hermitian matrix A
$\text{In}(A)$, 256 inertia of Hermitian matrix A, i.e., $\text{In}(A) = (i_+(A), i_-(A), i_0(A))$
$\lambda_{\text{max}}(A)$, 124 largest eigenvalue of matrix A
$\lambda_{\text{max}}(A)$, 109 largest singular value of matrix A, i.e., the spectral norm of A
$\lambda_1(A)$, 266 largest singular value of matrix A; the same as $\lambda_{\text{max}}(A)$
$\lambda_{\text{min}}(A)$, 266 smallest eigenvalue of matrix A
$\lambda_{\text{min}}(A)$, 266 smallest singular value of matrix A
\(\lambda_i(A)\), 21, 82 eigenvalue of matrix \(A\)
\(\sigma_i(A)\), 61, 82 singular value of matrix \(A\)
\(\lambda(A)\), 349 eigenvalue vector of \(A \in \mathbb{M}_n\), i.e., \(\lambda(A) = (\lambda_1(A), \ldots, \lambda_n(A))\)
\(\sigma(A)\), 349 singular value vector of \(A \in \mathbb{M}_{m \times n}\), i.e., \(\sigma(A) = (\sigma_1(A), \ldots, \sigma_n(A))\)
\(\lambda^\alpha(A)\), 365 \(\lambda^\alpha(A) = (\lambda_1^\alpha(A), \ldots, \lambda_n^\alpha(A)) = ((\lambda_1(A))^\alpha, \ldots, (\lambda_n(A))^\alpha)\)
\(\sigma^\alpha(A)\), 365 \(\sigma^\alpha(A) = (\sigma_1^\alpha(A), \ldots, \sigma_n^\alpha(A)) = ((\sigma_1(A))^\alpha, \ldots, (\sigma_n(A))^\alpha)\)
\(p(\lambda)|q(\lambda)\), 94 \(p(\lambda)\) divides \(q(\lambda)\)
d(\lambda)\), 94 invariant factors of \(\lambda\)-matrix \(M - A\)
d(A)\), 349 vector of diagonal entries of a square matrix \(A\)
m\(_{\lambda}(\lambda)\), 88 minimal polynomial of matrix \(A\)
p\(_{\lambda}(A)\), 21, 87 characteristic polynomial of matrix \(A\), i.e., \(p_{\lambda}(A) = \det(\lambda I - A)\)
\(A \geq 0, 81\) \(A\) is positive semidefinite (or a nonnegative matrix in Section 5.7)
\(A > 0, 81\) \(A\) is positive definite (or a positive matrix in Section 5.7)
\(A \geq B, 81\) \(A - B\) is positive semidefinite (or \(a_{ij} \geq b_{ij}\) in Section 5.7)
\(A^{1/2}, 81\), 203 square root of positive semidefinite matrix \(A\)
\(A^\alpha, 81\) \(A^\alpha = U^* \text{diag}(\lambda_1^\alpha, \ldots, \lambda_n^\alpha)U\) if \(A = U^* \text{diag}(\lambda_1, \ldots, \lambda_n)U\)
e\(A, 66\) \(\sum_{k=0}^{\infty} \frac{1}{k!} A^k\)
[A], 219 principal submatrix of \(A\)
\(A[\alpha, \beta]\), 122 submatrix of \(A\) indexed by \(\alpha\) and \(\beta\)
\(|A|, 83, 287\) \(|A| = (A^*A)^{1/2}\) (or \(|a_{ij}|\) in Section 5.7)
\(A_{11}, 217\) Schur complement of \(A_{11}\)
\(A^{(k)}, 122\) \(k\)th compound matrix of matrix \(A\)
\(|A|\), 113 norm of matrix \(A\)
\(|A|_{op}\), 113 operator norm of matrix \(A\), i.e., \(|A|_{op} = \sup_{||x||=1} ||Ax||\)
\(|A|_F\), 115 Frobenious norm of matrix \(A\), i.e., \(|A|_F = (\sum_{i=1}^{n} \sigma_i^2(A))^{1/2}\)
\(|A|_{(k)}\), 115 Ky Fan \(k\)-norm of matrix \(A\), i.e., \(|A|_{(k)} = \sum_{i=1}^{k} \sigma_i(A)\)
\(|A|_p\), 115 Schatten \(p\)-norm of matrix \(A\), i.e., \(|A|_p = (\sum_{i=1}^{n} \sigma_i^p(A))^{1/p}\)
\(|A|_2, 115\) \(|A|_2 = ||A||_F = \left(\sum_{i,j} |a_{ij}|^2\right)^{1/2} = (\sum_{i=1}^{n} \sigma_i^2(A))^{1/2}\)
\([A, B]\), 305 commutator of \(A\) and \(B\), i.e., \([A, B] = AB - BA\)
\(A \oplus B, 11\) direct sum of matrices \(A\) and \(B\), i.e., \(A \oplus B = \begin{pmatrix} A & 0 \\ 0 & B \end{pmatrix}\)
\(A \otimes B, 117\) Kronecker product of matrices \(A\) and \(B\)
\(A \circ B, 117\) Hadamard product of matrices \(A\) and \(B\)

\(|x|_1, 117, 327\) \(|x|_1 = (x_1 y_1, \ldots, x_n y_n)\)
\(|x|_m, 348\) \(|x|_m = (x_1^m, \ldots, x_n^m)\) if \(x = (x_1, \ldots, x_n)\)
\(x^+, 325\) \(x^+ = (x_1^+, x_2^+, \ldots, x_n^+)\), where \(x_1^+ \geq x_2^+ \geq \cdots \geq x_n^+\)
\(x^-, 325\) \(x^- = (x_1^-, x_2^-, \ldots, x_n^-)\), where \(x_1^- \leq x_2^- \leq \cdots \leq x_n^-\)
\(x \prec_w y, 326\) \(x\) is weakly majorized by \(y\), i.e., \(\sum_{i=1}^{k} x_i^+ \leq \sum_{i=1}^{k} y_i^+\), \(k \leq n\)
\(x \prec y, 326\) \(x\) is majorized by \(y\), i.e., \(x \prec_w y\) and \(\sum_{i=1}^{n} x_i = \sum_{i=1}^{n} y_i\)
\(x \prec_{\text{wlog}} y, 344\) \(x\) is weakly log-majorized by \(y\), i.e., \(\prod_{i=1}^{n} x_i^+ \leq \prod_{i=1}^{n} y_i^+\), \(k \leq n\)
\(x \prec_{\text{log}} y, 344\) \(x\) is log-majorized by \(y\), i.e., \(x \prec_{\text{wlog}} y\) and \(\prod_{i=1}^{n} x_i = \prod_{i=1}^{n} y_i\)
Index

T-transform, 335
T-transformation, 335
$*$-congruency, 256
λ-matrix, 93
λ-matrix standard form, 94
l_p-norm, 373, 376

addition, 1
adjoint, 13
algebraic multiplicity, 24
angle, 30
arithmetic mean–geometric mean
inequality, 86, 346

backward identity, 78, 100
backward identity matrix, 91
basis, 3
Bhatia–Kittaneh theorem on singular values, 354
Binet–Cauchy formula, 123, 221
Birkhoff theorem, 159

Cauchy eigenvalue interlacing theorem, 269
Cauchy matrix, 137, 239
Cauchy sequence, 182
Cauchy–Schwarz inequality, xvii, 27, 245
Cayley–Hamilton theorem, 87
characteristic polynomial, 21
Cholesky factorization, 201, 204
cofactor, 13
column rank, 51
column space, 55
column sum vector, 306
commutator, 305

companion matrix, 89, 91
complete space, 182
conjugate, 9
continuity argument, 62
contraction, 182, 206, 230, 362
strict, 182
convergency, 182
convex combination, 159
convex hull, 112
coordinate, 4
Courant–Fischer theorem, 268
decomposable matrix, 339
decomposition
 Cholesky, 201, 204
 Jordan, 97
 LU, 85
 polar, 83
 QR, 85
 rank, 11, 201
 Schur, 79
 singular value, 82
 spectral, 81
 triangularization, 80
determinant, 11
differential operator, 17
dimension, 3
 finite, 3
 infinite, 3
dimension identity, 5
direct product, 117
direct sum, 4, 11
dual norm, 116
eigenspace, 23
eigenvalue, 19, 21
<table>
<thead>
<tr>
<th>Term</th>
<th>Page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>eigenvalue interlacing theorem</td>
<td>269</td>
</tr>
<tr>
<td>eigenvector</td>
<td>19</td>
</tr>
<tr>
<td>elementary λ-matrix</td>
<td>94</td>
</tr>
<tr>
<td>elementary column operations</td>
<td>10</td>
</tr>
<tr>
<td>elementary divisors</td>
<td>94</td>
</tr>
<tr>
<td>elementary operation on λ-matrix</td>
<td>94</td>
</tr>
<tr>
<td>elementary operations</td>
<td>10</td>
</tr>
<tr>
<td>elementary row operations</td>
<td>10</td>
</tr>
<tr>
<td>elementary symmetric function</td>
<td>124, 145</td>
</tr>
<tr>
<td>Euclidean norm</td>
<td>115</td>
</tr>
<tr>
<td>Euclidean space</td>
<td>27, 30</td>
</tr>
<tr>
<td>even permutation</td>
<td>11</td>
</tr>
<tr>
<td>Fan dominance theorem</td>
<td>375</td>
</tr>
<tr>
<td>Fan eigenvalue majorization theorem</td>
<td>356</td>
</tr>
<tr>
<td>Fan max-representation</td>
<td>281</td>
</tr>
<tr>
<td>Fan–Hoffman theorem</td>
<td>361</td>
</tr>
<tr>
<td>field of values</td>
<td>107</td>
</tr>
<tr>
<td>Fischer inequality</td>
<td>217, 225</td>
</tr>
<tr>
<td>fixed point</td>
<td>183</td>
</tr>
<tr>
<td>Frobenius norm</td>
<td>115</td>
</tr>
<tr>
<td>Frobenius–König theorem</td>
<td>158</td>
</tr>
<tr>
<td>function</td>
<td></td>
</tr>
<tr>
<td>concave</td>
<td>340</td>
</tr>
<tr>
<td>convex</td>
<td>340</td>
</tr>
<tr>
<td>increasing</td>
<td>340</td>
</tr>
<tr>
<td>Schur-convex</td>
<td>341</td>
</tr>
<tr>
<td>strictly convex</td>
<td>340</td>
</tr>
<tr>
<td>generalized elementary matrix</td>
<td>36, 40</td>
</tr>
<tr>
<td>geometric multiplicity</td>
<td>24</td>
</tr>
<tr>
<td>Geršgorin disc theorem</td>
<td>68</td>
</tr>
<tr>
<td>Gram matrix</td>
<td>225</td>
</tr>
<tr>
<td>Gram–Schmidt orthonormalization</td>
<td>33</td>
</tr>
<tr>
<td>Gram–Schmidt process</td>
<td>33</td>
</tr>
<tr>
<td>Hölder inequality</td>
<td>346</td>
</tr>
<tr>
<td>Hadamard inequality</td>
<td>218, 225</td>
</tr>
<tr>
<td>Hadamard product</td>
<td>117</td>
</tr>
<tr>
<td>Hilbert–Schmidt norm</td>
<td>115</td>
</tr>
<tr>
<td>Hoffman–Schmidt norm</td>
<td>115</td>
</tr>
<tr>
<td>Hoffman–Wielandt theorem</td>
<td>320</td>
</tr>
<tr>
<td>Horn theorem on singular values</td>
<td>353</td>
</tr>
<tr>
<td>Horn–Johnson theorem</td>
<td>378</td>
</tr>
<tr>
<td>Hua determinant inequality</td>
<td>230, 231</td>
</tr>
<tr>
<td>image</td>
<td>17</td>
</tr>
<tr>
<td>indecomposable matrix</td>
<td>339</td>
</tr>
<tr>
<td>induced norm</td>
<td>33, 113</td>
</tr>
<tr>
<td>inertia</td>
<td>255</td>
</tr>
<tr>
<td>inner product</td>
<td>27</td>
</tr>
<tr>
<td>inner product of vectors</td>
<td>27</td>
</tr>
<tr>
<td>inner product space</td>
<td>27</td>
</tr>
<tr>
<td>interpolation</td>
<td>75, 144</td>
</tr>
<tr>
<td>invariant factors</td>
<td>94</td>
</tr>
<tr>
<td>invariant subspace</td>
<td>22, 23</td>
</tr>
<tr>
<td>inverse</td>
<td>13</td>
</tr>
<tr>
<td>invertible λ-matrix</td>
<td>94</td>
</tr>
<tr>
<td>invertible matrix</td>
<td>13</td>
</tr>
<tr>
<td>involution</td>
<td>179</td>
</tr>
<tr>
<td>irreducible matrix</td>
<td>155, 339</td>
</tr>
<tr>
<td>isomorphism</td>
<td>26</td>
</tr>
<tr>
<td>Jensen inequality</td>
<td>340</td>
</tr>
<tr>
<td>Jordan block</td>
<td>93</td>
</tr>
<tr>
<td>Jordan canonical form</td>
<td>93</td>
</tr>
<tr>
<td>Jordan decomposition</td>
<td>97</td>
</tr>
<tr>
<td>Jordan decomposition theorem</td>
<td>xvii</td>
</tr>
<tr>
<td>Jordan form</td>
<td>93</td>
</tr>
<tr>
<td>Kantorovich inequality</td>
<td>248, 249, 348</td>
</tr>
<tr>
<td>kernel</td>
<td>17, 51</td>
</tr>
<tr>
<td>Kittaneh theorem</td>
<td>319</td>
</tr>
<tr>
<td>Kronecker delta</td>
<td>266</td>
</tr>
<tr>
<td>Kronecker product</td>
<td>117</td>
</tr>
<tr>
<td>Ky Fan k-norm for matrix</td>
<td>115, 375, 376</td>
</tr>
<tr>
<td>Ky Fan k-norm for vector</td>
<td>373, 376</td>
</tr>
<tr>
<td>Löwner (partial) ordering</td>
<td>207</td>
</tr>
<tr>
<td>Löwner ordering</td>
<td>274</td>
</tr>
<tr>
<td>Löwner–Heinz theorem</td>
<td>211</td>
</tr>
<tr>
<td>Laplace formula</td>
<td>12</td>
</tr>
<tr>
<td>Laplace expansion formula</td>
<td>12</td>
</tr>
<tr>
<td>length</td>
<td>28</td>
</tr>
<tr>
<td>Levy–Desplanques theorem</td>
<td>72</td>
</tr>
<tr>
<td>Lidskiï theorem</td>
<td>363</td>
</tr>
<tr>
<td>Lieb–Thirring theorem</td>
<td>368</td>
</tr>
<tr>
<td>linear transformation</td>
<td>17</td>
</tr>
<tr>
<td>addition</td>
<td>22</td>
</tr>
<tr>
<td>identity</td>
<td>22, 25</td>
</tr>
<tr>
<td>invertible</td>
<td>25</td>
</tr>
</tbody>
</table>
product, 22
scalar multiplication, 22
linearly dependent, 3
linearly independent, 3
log-majorization, 344
LU factorization, 85

majorization, 325, 326, 349
matrix
M_-, 170
\ast-congruent, 256
λ-, 93
$(0,1)$-, 306
addition, 8
adjoint, 13
backward identity, 78, 91
block, 10
Cauchy, 137, 239
circulant, 138
companion, 89, 91
compound, 122
conjugate, 9
constractive, 230
correlation, 243
decomposable, 339
definition, 8
diagonal, 9
direct sum, 11
doubly stochastic, 158, 334
doubly substochastic, 334
elementary, 10
elementary operations, 10
Fourier, 140, 142
function, 63
generalized elementary, 36, 40
Gram, 225
Hadamard, 150
Hankel, 142
Hermitian, 9, 253
idempotent, 125
identity, 9
indecomposable, 339
inverse, 13
invertible, 12
involutary, 125
involution, 179
irreducible, 155, 339
nilpotent, 125
nonnegative, 164
nonnegative definite, 199
nonsingular, 12
normal, 9, 293
order, 8
orthogonal, 9, 171
partitioned, 10
permutation, 155
positive, 164
positive definite, 199
positive semidefinite, 80, 199
primary permutation, 138, 156
product, 8
projection, 125
rank, 11
reducible, 155, 339
reflection, 177
rotation, 177
scalar, 9
scalar multiplication, 8
sequence, 64
series, 64
similar, 18
size, 8
skew-Hermitian, 257
skew-symmetric, 64
square root, 64, 81, 202
strictly diagonally dominant, 72
subpermutation, 338
symmetric, 9
symmetric unitary, 192
Toeplitz, 142
transpose, 9
tridiagonal, 133
under a basis, 19
unitary, 9, 171
upper-triangular, 9
Vandermonde, 74, 142, 143
zero, 9
matrix addition, 8
matrix function, 63
matrix norm, 113
matrix product, 8
Index

matrix sequence, 64
matrix series, 64
matrix square root, 203
matrix-vector norm, 113, 373
metric, 182
metric space, 182
min-max representation, 266
minimal polynomial, 88
Minkowski inequality, 346
minor, 25
modulus of a matrix, 83, 287, 314
Moore–Penrose inverse, 377
multiplicative matrix norm, 113

norm, 28
 \(l_p\), 373, 376
 Euclidean, 115
 Frobenius, 115
 Hilbert–Schmidt, 115
 induced, 33, 113
 Ky Fan \(k\)-matrix, 115, 375, 376
 Ky Fan \(k\)-vector, 373, 376
 matrix, 113
 matrix-vector, 113, 373
 multiplicative, 374
 multiplicative matrix, 113
 operator, 113
 Schatten \(p\)-matrix, 115
 Schatten \(p\)-vector, 376
 spectral, 114
 unitarily invariant, 115, 373
 vector, 34, 113, 372
normed space, 34
null space, 11, 17, 51
numerical radius, 109
numerical range, 107

odd permutation, 11
operator, 22
operator norm, 113
Oppenheim inequality, 242
orthogonal, 28
orthogonal projection, 127, 132
orthogonal set, 28
orthonormal, 28

permutation
 even, 11
 interchange, 163
 odd, 11
 of \(\{1, 2, \ldots, n\}\), 163
permutation similarity, 155
Perron root, 169
Perron theorem, 167
Perron vector, 169
Poincaré eigenvalue interlacing theorem, 269, 271
polar decomposition, 83
positive linear transformation, 248
positive semidefinite matrix, 80
primary permutation matrix, 138
primitive root of unity, 139
principal submatrix, 25
product
 linear transformation, 22
 operator, 22
projection, 125, 127, 132
QR factorization, 85
range, 51
rank, 11
rank decomposition, 11
rank factorization, 201
Rayleigh–Ritz theorem, 267
reducible matrix, 155, 339
reflection, 177
rotation, 177
row rank, 51
row space, 55
row sum vector, 306

scalar, 2
scalar multiplication, 1
Schatten \(p\)-norm for matrix, 115
Schatten \(p\)-norm for vector, 376
Schur complement, 217, 227
Schur decomposition, 79
Schur inequality, 312
Schur product, 117
Schur theorem on Hadamard product, 234
Schur theorem on majorization, 349
Schur triangularization, 80
Schur triangularization theorem, xvii
Schur-convex function, 341
similarity, 18
singular value, 61, 82
singular value decomposition, 82
singular value decomposition theorem, xvii
solution space, 11
span, 3
spectral decomposition, 81
spectral decomposition theorem, xvii
spectral norm, 109, 114
spectral radius, 109, 165
spread, 324
square root, 64, 81
square root of a matrix, 81, 203
square root of a positive semidefinite matrix, 81, 202
standard basis, 3
Sturm eigenvalue interlacing theorem, 269
submatrix, 9
subpermutation, 338
subspace, 4
sum
direct, 4
 vector spaces, 4
Sun theorem, 322
SVD, 82
Sylvester rank identity, 52
Sylvester’s law of inertia, 256
symmetric gauge function, 372
tensor product, 117
Thompson theorem on matrix modulus, 289
Thompson theorem on sum of Hermitian matrices, 281
Toeplitz–Hausdorff theorem, 108
trace, 21
transpose, 9
triangle inequality, 28
triangularization, 80
uniqueness of matrix square root, 81, 202
unit, 28
unital linear transformation, 248
unitarily invariant norm, 115
Vandermonde determinant, 14
Vandermonde matrix, 74, 143
vector, 2
vector norm, 34, 113, 372
vector norm of matrix, 373
vector space, 1
ton Neumann theorem, 375
Wang–Gong theorem, 367
weak majorization, 326
Weyl theorem on log-majorization, 353
Wielandt inequality, 247