Index

A
Adaptation, 267
Affectional system, 267
Affiliation
- grooming, 252
- social bonds strength, 251
AFR. See Age of first reproduction
Age of first reproduction (AFR)
- breeding value differences
 - cercopithecines, 204
 - heritability estimation, 204
- effects
 - cohort, 196–197, 203
 - genetic, 196–197
 - maternal, 196–197, 203–204
- female philopatry, 195
- genetic vs. environmental causes, 201–202
- heritability estimation, 203
- PBV, 197–198
phenotypic variation, animal model
- advantages, 198
- components and ratios, 201
- data and variables, 198–199
- fixed effects, 199, 200
- matriline rank, 199, 201
- pedigree information, 199, 200
pioneering research, 195–196
- reliability and connectivity, 202, 203
Allometry
- bivariate ontogenetic allometric analyses, 166
- negative
 - AMA scale, 163
 - EMA and body size, 162
 - growth, skeletal elements, 160
 - ontogenetic scaling, 160
- positive
 - AMA scale, 163
 - Biewener’s predictions, 162
 - M. fascicularis, 171
 - ontogenetic scaling, 170
 - radius length, load arm, 168
 - skeletal growth, 161
Anatomical mechanical advantage (AMA).
 See Biceps brachii muscle, AMA
Archetype
- attachments, siblings, 294–295
- description, 266–267
- developmental programs, 265
- expression, 267
- Jung’s concept, 268–269
- neural systems, 267
Asymmetry
- directional asymmetry and antisymmetry, 68
 - FA data, 68
 - FA, 63–64
B
Baboons
- description, 40
- phylogeny, 40, 41
SNPRC
- adult cranial capacity, 46
 - and Cayo macaque, 50, 51
- craniofacial measurement, 51, 52
- CT scans, skulls determination, 45–46
 - description, 40
- diversifying selection, 49–50
- Microscribe 3DX digitizer, skulls determination, 44
- phenotypic variance, 50
Baboons (cont.)
 skulls, 44
 vector measurement, 49
Behavior and social dynamics, rhesus macaques
 affiliation, 251–252
 Cayo Santiago, 247–248
 description, 247
 dominance, 250–251
 ecological variables, 255–256
 feeding times, 256–257
 group and matriline size, 258
 male dominance hierarchy, 257–258
 maternal care and life span development
 description, 253–254
 responsibility, female, 254
 sex differences, 255
 mating, 252–253
 social organization and life history, 248–250
Behavioral primatology, 263
Between group competition (BGC), 229
BGC. See Between group competition
Biceps brachii muscle, AMA
 changes, body size and growth
 anatomical mechanical advantage
 (AMA), 163
 growing musculoskeletal system, 162–163
 locomotor function, performance, and postural stability, 161
 muscle mass, ontogenetic changes, 163
 muscle moment arms, 161–162
 positive scaling relationship, 162
 rapid and propulsive quadrupedal modes, 163
 structure, EMA, 161, 162
 dramatic postcranial changes, 159–160
 growth, hind limb skeleton, 170–171
 juvenile risk, 159
materials and methods
 bivariate ontogenetic allometric analyses, 166
 dental age comparisons, 164
 macaques use, 164
 measurement, anatomical mechanical advantage, 164–165
 predictions, anatomical mechanical advantage, 166–168
 mechanical advantage, evolutionary implications, 160–161
 negative scaling relationships, AMA and body mass, 172
 rapid propulsive quadrupedal modes, 170
results
 changes, calculation, 168–169
 heterogeneity test, 167, 168
 ontogenetic scaling, variables, 167, 170
 scaling, radius length, 168
 scaling rate, differences, 171–172
 scaling, lever arm length, 170
 skeletal elements
 negative allometric growth, 160
 scaling, 160
 transition time, differences, 171
 young primates, 159
Bivariate ontogenetic allometric analyses
 heterogeneity test, 167, 169
 major axis regression slopes, 166
 methods, 166
 mode II reduced major axis regression, 166
 ontogenetic scaling, variables, 166, 167
Bone mineral density (BMD). See Bone mineral density
Bone mineral density (BMD)
 DEXA, 88
 females and males, 87
 values, 87–88

C
Caribbean Primate Research Center (CPRC)
 administrative jurisdiction, 8–9
 long-term behavioral research plan, 9–10
 LPMG, 11
 LVG, 11–12
 Museum, 10–11
 skeletal collection, 10
 SSFS, 8, 11
Cayo Santiago
 additional colonies and habitats, 6–7
 and La Parguera colony
 food chain, 8
 nesting birds, 8
 rhesus monkeys, 4, 7–8
 Carpenter
 biomedical laboratory research,
 monkeys, 3
 gibbons, 3–4
 Puerto Rico, 3, 4
 communication and acoustic perception, 14
 CPRC, 8–12
 data collection, 13
 DNA fingerprinting, 14
 economic and political factors, 12
 funds and College of Natural Sciences, 5–6
 habits and life styles, nonhuman primates, 2–3
interactions
 mating and competitive, 14–15
 mother and infant, 14
LPP’s interests, 13
NINDB’s interest, 6
patas monkeys
 free-ranging populations, 7
 La Parguera colony, 7
 project and research, 7
pigtailed macaques, 5
prenatal androgen effects, 15
publications, 12–13
rhesus monkey colony, 2
sexual behavior and reproduction, 13
test subjects, 5
Cayo Santiago, *Macaca mulatta*
 brain size and interlandmark
differences, 43
description, 42
genealogic relationships, 43
 skeletal collection, 42–43
Cercopithecine
 primates, 195
 reproduction, female, 204
Costs of reproduction, rhesus macaque
 females
age-related changes
 interbirth interval, 218, 219
 maternal investment and offspring
 survival, 218–219
 physical and behavioral changes,
 217–218
data analysis
 interbirth interval, 215
 maternal behavioral investment and
 offspring survival, 215
 physical and behavioral change, 215
 plasma cortisol, 214–215
 seasonality, 214
female deaths seasonality, 216, 217
female reproductive strategies, 210
lactation, 220
long-term data, 212
 older females, 221–222
 plasma cortisol, 216–218
primates, 210
rhesus macaque colony, 211
seasonality and climatic factors, 216
senescence hypotheses, 209–210
short-term data
 behavioral data collection, 213–214
 blood samples, 212–213
 morphometric measurements, 213
terminal investment hypothesis, 222

Covariance
 and genetic variance, discriminant function
equation, 49
 pedigree covariance matrix, 47
CPRC. See Caribbean Primate Research
Center
Cranial capacity (CC) and craniofacial
 morphology
baboons and macaques, 40, 41
 brain size and craniofacial variation, 40
 complementary methods, 39
 correlation, craniodiometric landmark
 traits, 56
 description, heritability, 39
 differential cranial patterning, 55
 differential growth timing, 38
encephalization, 38
 estimation, genetic parameters, 39–40
 evolutionary change, 38
 genetic and intraspecific phenotypic
 variation, 41–42
heritability estimation
 craniofacial traits, 28
 heritable traits, 54
identification, units, 38
 measurements, 39
 morphological differences, 55–56
 neurocranial and face, correlation, 38
 phylogeny, catarrhine primates, 40, 41
 primate populations and data collection
Southwest National Primate Research
Center, *Papio* sp., 43–46
results
 correlations, 51
 diversifying selection, 51–54
 heritabilities and genetic
 variances, 50–51
SNPRC baboons, 40
statistical and quantitative genetic analyses
 correlations, 48–49
 diversifying selection, 49–50
quantitative genetic model, 47–48

D
Demography
Cayo Santiago, 255
 characteristics, 259
 ecology, 255
 size, 249
 structure, 256
Dental functional maturity, 185, 188
Dental material maturity, 185, 188
Dentofacial complex
males and females, 186–187
maturational differences, 188
survival rates, 185, 186
Desecheo Island, 16
Developmental pathway
direct interactions, 62–63
variations, 61–62
DEXA. See Dual energy X-ray absorptiometry
Digit ratios (2D:4D), female rhesus macaques
adult females
age and weight, 140–141
birth-order effects, 142
data collection, 136
dominance rank, 141–142
GLM and dominance rank, 139
measurements, 136
social group and matriline, 136, 137
dominance rank, 134–136, 138–139
dyad, 140, 142–145
fetus development, 146
genetic and nongenetic components,
 PAE, 151–152
heritability, 145
ketamine injection, 138
measurement
 procedures, 138
 repeatability, 140
PAE, 132–134
sex hormones, 131–132
small familial study, 150–151
social structure and maternal effects,
 146–147
Diversifying selection
coefficient, 53

linear discriminant function equation,
 49–50
principal patterns, 53
relationship, neurocranium and face, 53, 54
vectors, selection reconstruction
 analysis, 51, 52
Dominance
 aggression, 250
 agonistic support, 251
 juveniles, 251
Dominance rank, 2D:4D ratios
adult females, relationships
 matrilines, 141–142
 ranked families, 137, 142
 social groups, 137, 141
and PAE, 147, 148
 birth order and sex ratio, 148
dominance expressions, 148
 familial resemblance, 145, 150
 female kin lines, 146
 female rank, 138–139
 fine-tuning behavior, 135
GLM, 139
heritability values, 145, 149–150
higher and lower-ranking monkeys, 147
maternal effects, 135
matrilineal bonds, 134
mother-infant sample, 143, 145
nonhuman primate, 146
prenatal androgens, 134–135
rank-appropriate behaviors, 147–148
sex differences, 149
social groups and matrilines, 137, 139
spotted hyenas, 135
Dual energy X-ray absorptiometry (DEXA)
 BMD, 88–89
 micro-CT, 94, 97
 SPA, 107
 variables, 92
Dyad, mother-infant
 age and weight, 143
dominance rank, 143, 145
 sex differences, 142–143

E
Ecology
demographic characteristics, 248
variables, 255–256
Effective mechanical advantage (EMA)
 AMA, 163, 165
description, 161
 scaling relationship, 162
EMA. See Effective mechanical advantage
Evolutionary constraint
 kin bias role, 228–229
 phylogenetic signals, 228
Evolutionary dynamics, 117
Evolutionary psychiatry, 263–264

F
FA. See Fluctuating asymmetry
Facial skeletal maturity
 dentofacial maturity, 182
 growth, 185
 sexual maturity, 181
 size, 182
Facial traits
 eigenvalue variance analyses, 75
 hypothetical matrix, 72
 list, comparisons, 69, 70
 modules, 67
 theoretical matrices, 70
Fission
 analyses, social structure, 118
 matrilineal, social group, 127
 postcranial skeleton, rhesus macaques, 119
 social group differentiation, 122, 123
Fluctuating asymmetry (FA)
 calculation, 68
 covariance, 64
 description, 63–64
Fracture risk, BMD, 87–89
Fragile spines, Cayo Santiago
 BMD, 107–108
 bone density, 104
 compression fracture, 99
 cortical bone, 99–100
 DEXA, 92, 107
 hypotheses test, 88–89
 life cycle stages, 102, 103
 micro-CT
 and DEXA, 97
 reconstructions, 94, 95
 technology and method, 89–91
 multivariate analyses, 101
 nonhuman primate models, 104–105
 osteoporosis, 85–88
 osteoporotic females left femur and humerus, 109
 OVX model, 105
 parity impact, 97–98
 quadrupedal animal, 101–102
 reproductive parameters, 106
 research results, 94
 rhesus monkey model, 105–107
 SPA, 107

study population, sample and data
 analysis, 93
 trabecular patterns and architecture, 100
 trabecular thickness role, 95–96
 vertebral fracture predictors, 96–97
G
General linear model (GLM), 139
GLM. See General linear model
Grooming. See Grooming kin bias, time
Grooming kin bias, time
 Cayo Santiago rhesus vs. Tibetan
 macaques, 238–239
 data collection, measures, and data analysis
 ANCOVA methods, 233–234
 measurement, 233
 point-time samples, 232–233
 evolutionary constraints, 228–229
 female, 227–228
 group size, 239
 intensity, 234–235
 predictions
 description, 230
 female, 231
 time constraints, 231
 presence, 234
 social structure, 227
 species comparison, 241–242
 study groups and subjects
 females sample, 232
 size, females and subjects
 numbers, 231–232
H
Heritability
 and population size, rhesus macaques
 description, 124
 mean, variances and standard
 error, 125–126
 description, 122
 maximum likelihood methods, 122
 HOX gene, 132–133
I
Integration
 covariance, FA, 64
 metric vs. nonmetric traits
 description, 69
 list, comparisons used, 69
Integration (cont.)
Mantel’s tests, 70
repeatabilities, 71
theoretical correlation matrices, 70
variance, eigenvalues, 70

Interbirth interval
age-related changes, 215, 218
females, 218

K
Kin bias, grooming. See Grooming kin bias, time

L
La Parguera Colony
free-ranging groups, 16–17
La Cueva rhesus macaques, 17
patas monkeys, 17
Laboratory of Primate Morphology and Genetics (LPMG)
as CPRC Museum, 11
skeletal collection
bone loss, 21
brain evolution, 21–22
clinical issues, 21
craniofacial biomechanics, 20–21
mammalian limb development, 20
quantitative genetic analysis, 21–22
tooth and body size, 19
Laboratory of Virology and Genetics (LVG), 11–12, 22–23
Life history trait, AFR
heritabilities, 203
maternal effect, 196–197
matriline differences, 204
non-human primates, 196
Life history, social organization
infant, rhesus macaque, 249
life span, 249–250
males and females rhesus macaque, 248–249
Lifespan, maternal care
description, 253–254
responsibility, female, 254
sex differences, 255
LPMG. See Laboratory of Primate Morphology and Genetics
LVG. See Laboratory of Virology and Genetics

M
Macaca fascicularis
heterogeneity test, 167, 168
scaling, radius length, 168
slopes comparisons, 168

Macaca fuscata
heterogeneity test, 167, 168
scaling, radius length, 168
slopes comparisons, 168

Macaca mulatta, 2, 8
Maternal effect, AFR
animal model, 204
birth weight, 197
breeding values, 196
characteristics, 203–204
higher-ranking baboons, 197
intergenerational transmission, behavior, 196–197
quantitative genetic model, 197

Maximum likelihood methods, 122
Mechanical advantage, anatomical.
See Biceps brachii muscle
Metric and nonmetric cranial traits
among-and within-individual variance data, 70–71
causes, variation, 61–62
comparison, 77
correlation matrices
among-individual variance data, metric and nonmetric, 79, 80
comparisons, 74
description, 71
nonmetric vs. neurocranial, 75
within-individual variance data, metric, 79
within-individual variance data, nonmetric, 81
covariation, 62
direct developmental interactions, 62–63
facial traits, 75
foraminal, hyperostotic and hypostotic traits, 76, 78
genetic and environmental factors, 64
heritable and nonheritable component, 64
hypothetical matrix results
correlation matrices, 72, 73
description, 72
materials and methods
analyses, 67
data, 65–66
distances, metric, 65, 66
integration comparisons, 69–71
list, 65, 66
metric data, 67–68
multistate system, 66
nonmetric data, 68–69
measurement, covariance, 64
ossification, 76
requirements, 62
sources, variation, 62, 63
trait variation, 64
variance, eigenvalues comparison, 72, 74
facial traits, 72
Micro-computed tomography (micro-CT)
DEXA
comparison, 97
technique, 92
technology and method interest variables, 89, 91
results, 89–90
vertebra reconstructions, 89, 91
Mortality
Cayo Santiago rhesus macaques, 180
female, 189, 209, 216
infant, 249
male, 270
probability, 216

N
Natural history. See Self
Neurocranial traits
and facial correlations, 71
theoretical matrix, 70
list, metric and nonmetric, 69
theoretical matrix, 70
Nonmetric traits. See Metric and nonmetric cranial traits

O
Offspring survival
maternal behavioral investment, 215, 218–219
older females, 211
Ontogeny. See Dental maturity and ontogeny differences, rhesus macaques
Osteoporosis
BMD, 87
DEXA, 88
dowager’s hump, 85–86
vertebral fracture, 86–87

P
PAE. See Prenatal androgens effects
Parity
BMD, 108
impact, 97–98
sex and, 21
PBV. See Predicted breeding values
Physical Anthropology. See Caribbean Primate Research Center (CPRC)
Physical anthropology, CPRC
Cayo Santiago, 2–15
Desecheo Island, 16
feral populations, Puerto Rico, 17–18
La Parguera Colony, 16–17
LPMG, 19–22
LVG, 22–23
mutual influences, 1–2
SSFS, 18–19
Population density, 196
Population size and heritability, rhesus macaques description, 124
heritabilities, mean, variances and standard error, 125–126
Postcranial dimensions. See Postcranial morphology, rhesus macaques
Postcranial morphology, rhesus macaques colony, description, 117–118
cranial traits, 118–119
dimensions, postcranial skeleton, 119
estimation, F_s, 118
evolutionary dynamics, 117
genetic differentiation, and baboons, 127
materials and methods group differentiation, 122–124
measurements, 120–121
quantitative genetic methods, 121–122
sample, 119
matrilineal fission, social group formation, 127
quantitative trait loci, 127
results genetic differentiation, 126
heritability and effective population size, 124–126
repeatability, 124
skeletal sample, 118
social structure analyses, 118
Postcranial skeleton measurements, rhesus macaques
Fowler digital caliper, 119, 121
means and standard deviations, male and female, 121
traits, 120–121
Predicted breeding values (PBV)
AFR reliability, 202
phenotypic data and pedigrees, 202
Prenatal androgens effects (PAE)
2D:4D ratios direct and indirect measures, 132
dominance-related behaviors, 133
Prenatal androgens effects (PAE) (cont.)
 female dominance rank, 147
 heritability, 133
 HOX genes, 132–133
 neuroendocrine pathways, 149
 phylogenetic framework, 134
 social development, 133–134
 testosterone-to-estradiol ratio, 132
 young pups, 135
Primate
cercopithecine, 195
 non-human, 196, 203
 reproduction, female, 204

Q
Quantitative genetic analysis
 covariate screens, 47
 SOLAR v 4.2.0, estimation, 47
 transformations, 47
 univariate normality, 47–48
Quantitative genetic methods, rhesus macaques, 121–122

R
Radius
 biceps brachii load arm, 169
 forearm supination, 165
 M. fascicularis, body mass, 168
Rapid propulsive quadrupedal mode
 description, 163
 ontogeny results, 170
Reproduction. See Costs of reproduction, rhesus macaque females
Rhesus macaques
 and baboons, 40
 as Cayo macaques
 adult cranial capacity, 46
 craniofacial measurement, 51, 52
 description, 40
 diversifying selection, 49–50
 heritabilities and standard errors, 50
 quantitative genetic analysis, 47–48
 univariate normality, 47–48
 vector measurement, 49
 postcranial morphology (see Postcranial morphology, rhesus macaques)
 rhesus macaques and patas monkeys
 lip configuration, 19
 male reproduction, 18–19
 postpartum recovery, 19
 rhesus population, 14
Seasonality
 adult female deaths, 214, 216, 217
 reproduction and climatic factors, 214, 216
Selection gradient
 craniofacial phenotypic correlations, 42
discriminant function equation, 49
Self
 archetypes
 description, 266–267
 expression, 267
 neural systems, 267
 attachments, monkeys, 294–295
 behavioral primatology, 263
 brain lesion, monkeys
 communication system, 291
cortical ablations, 290
 opportunistic observations, 290–291
 Cayo Santiago, 264
definitions
 attachments, 265
description, 264–265
developmental programs, 265–266
 monkey’s identity, 265
 mother-infant relation, 266
 self-reflexive consciousness, 264
dissemination and phylogeny, 266
evolutionary psychiatry, 263–264
females, interpretation
 dominance reversals, 293–294
dyadic agonistic interactions, 293
 group J division, 293
 reversal, agonistic, 292–293
 separation, 292
 TN, dominant female, 293
group I dominant male
 affiliation and agonistic status, 288, 290
 removal and return, 288, 290
group I division and fusion
 female, biographical abstract, 274, 275
grooming and agonistic networks, 274, 277, 289
 male, biographical abstract, 274, 276
 systematic observations, 274
 interventions, role, 295
males, interpretation
 mating season, 291
 reproductive strategy, 291–292
materials and methods
 agonism and agonistic network, 271–272

S
Sabana Seca Field Station (SSFS)
 clinical and translational levels, 18
 CPRC, 8
Cayo Santiago, 269
centrality, 273
descriptive field notes, 270
gonomic network, 271
interaction matrices, 270
matrices and diagrams, 272
multidimensional scaling, 273
quotations, field notes, 271
seasonality, 269–270
social networks, 271
natural history, 268–269
passage stage, 295
rhesus monkey social relations
affectional systems, 267–268
friendships, 268
phylogenetic similarity, 267
stages, division and fusion
(see Stages, division and fusion)
Senescence
effects, 210
process, 210
Sexual maturity
after and before, 185
ages, 181
functional maturity, 186
ontogeny, 179
Single photon absorptiometry (SPA), 107
Small familial study, 2D:4D, 150–151
SNPRC. See Southwest National Primate Research Center
Social dynamics. See Behavior and social dynamics, rhesus macaques
Social group differentiation, rhesus macaques
cranial metric and non-metric traits, 122
genetic structure and distances, 123–124
sample size and population size, 122, 123
similarity, 124
Social rank, 135, 146
Socioecological model, 230
Southwest National Primate Research Center (SNPRC), Papio sp.
adult cranial capacities, 46
analyses, CT scans, 45–46
baboons (see Baboons)
calculation, heritability, 46
calottes removal, 44
craniofacial landmarks, 44, 45
linear craniofacial measurements, 44, 45
over-estimation, brain space, 46
pedigreed colony, 43–44
SNPRC baboon skulls, 44
SPA. See Single photon absorptiometry
SSFS. See Sabana Seca Field Station
Stages, division and fusion
stage 1
agonistic interaction, 278, 279
females, 275
grooming and agonistic network, 276, 277
natal males, 278–279
non-natal males, 275–276
stage 2
description, 279
grooming and agonistic network, 279–281
stage 3
description, J and N, 281, 283
rhesus and agonistic network, 281–283
stage 4
description, 283
grooming and agonistic network, 283–285
stage 5
description, 285
grooming and agonistic network, 285–287
group J and N males, agonistic interactions, 285, 287
group J females, agonistic interactions, 285, 287
stage 6
description, 288
grooming and agonistic network, 288, 289
Survival analysis, Kaplan–Meier, 180, 182–183
T
Time constraints model
Dunbar, 228
females, 241
rhesus monkey
kin bias intensity, 231
networks, 230
potential partners, 236–237
time spent, 236
group size and numbers, 240
kin bias
close kin numbers, 237, 238
dominance status, 237–238
potential partners, 237
WGC and BGC, 229–230
Trabecular bone
architectural features, 89
microstructure, 88
progression, 101
Trabecular bone (cont.)
role, 99
three-dimensional core, 89
volume and connectivity, 106

V
Variance
components, 42
phenotype, 39
Vertebrae
lumbar, 99, 106–107

micro-CT measurements, 89
wedge fractures, 96–97

W
WGC. See Within-group contest competition
Within-group contest competition (WGC)
BGC, 229
description, 230
levels, 229