Appendix—Valve Diameters

Mean value diameters (mm)

<table>
<thead>
<tr>
<th>BSA</th>
<th>Mitral valve</th>
<th>Tricuspid valve</th>
<th>Aortic valve</th>
<th>Pulmonary valve</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>RRL</td>
<td>GOS</td>
<td>RRL</td>
<td>GOS</td>
</tr>
<tr>
<td>0.25</td>
<td>11.2</td>
<td>16.0</td>
<td>13.4</td>
<td>19.2</td>
</tr>
<tr>
<td>0.30</td>
<td>12.6</td>
<td>18.0</td>
<td>14.9</td>
<td>21.3</td>
</tr>
<tr>
<td>0.35</td>
<td>13.6</td>
<td>19.4</td>
<td>16.2</td>
<td>23.2</td>
</tr>
<tr>
<td>0.40</td>
<td>14.4</td>
<td>20.6</td>
<td>17.3</td>
<td>24.7</td>
</tr>
<tr>
<td>0.45</td>
<td>15.2</td>
<td>21.7</td>
<td>18.2</td>
<td>26.0</td>
</tr>
<tr>
<td>0.50</td>
<td>15.8</td>
<td>22.6</td>
<td>19.2</td>
<td>27.5</td>
</tr>
<tr>
<td>0.60</td>
<td>16.9</td>
<td>24.2</td>
<td>20.7</td>
<td>29.6</td>
</tr>
<tr>
<td>0.70</td>
<td>17.9</td>
<td>25.6</td>
<td>21.9</td>
<td>31.3</td>
</tr>
<tr>
<td>0.80</td>
<td>18.8</td>
<td>26.9</td>
<td>23.0</td>
<td>32.9</td>
</tr>
<tr>
<td>0.90</td>
<td>19.7</td>
<td>28.2</td>
<td>24.0</td>
<td>34.3</td>
</tr>
<tr>
<td>1.0</td>
<td>20.2</td>
<td>28.9</td>
<td>24.9</td>
<td>35.6</td>
</tr>
<tr>
<td>1.2</td>
<td>21.4</td>
<td>30.6</td>
<td>26.2</td>
<td>37.5</td>
</tr>
<tr>
<td>1.4</td>
<td>22.3</td>
<td>31.9</td>
<td>27.7</td>
<td>39.6</td>
</tr>
<tr>
<td>1.5</td>
<td>23.1</td>
<td>33.0</td>
<td>28.9</td>
<td>41.3</td>
</tr>
<tr>
<td>1.8</td>
<td>23.8</td>
<td>34.0</td>
<td>29.1</td>
<td>41.6</td>
</tr>
<tr>
<td>2.0</td>
<td>24.2</td>
<td>34.6</td>
<td>30.0</td>
<td>42.9</td>
</tr>
</tbody>
</table>

Standard deviations

- **Mitral valve**: BSA 0.3 = ±1.9, BSA 0.3 = ±1.6
- **Tricuspid valve**: BSA 1.0 = ±1.7, BSA 1.0 = ±1.5
- **Aortic valve**: All 1.0
- **Pulmonary valve**: All 1.2

* RRL: data derived from Rowlatt and associates. GOS: = Great Ormond Street “normalized” diameters.

Adapted from de Leval.²

The table lists mean “normal” valve diameters. The first column for each valve comes from the data measured by Rowlatt and associates. The Great Ormond Street (GOS) group have found that these valve measurements tend to underestimate the true in vivo sizes. The data from Rowlatt and co-workers (RRL data) were derived from a large series of normal hearts examined at autopsy. The Great Ormond Street group noted that there was a shrinkage factor due to formalin. Their angiographic estimates correlated to fresh autopsy material and suggested that
the atrioventricular valves were certainly underestimated by the earlier techniques. The London (GOS) workers suggested that the RRL measurements should be multiplied by a factor of 1.43 to equal their fresh measurements (C. Bull, personal communication). Thus this table includes both the original data of Rowlatt and co-workers and the larger estimates of “normal.”

The way we use this table relative to ventricular outflow valves is to consider the RRL valve diameters as the minimum acceptable diameter for a given body surface area and the GOS diameters as the mean to upper limits of achievable valve transplants. From a practical standpoint, it means that we would try to place, for an “adult”-sized freehand aortic valve implant, an allograft of 20 mm (internal diameter) for an individual with a body surface area (BSA) of 1 m² and a valve as large as a 24.6 mm for a 2-m² individual. Once a patient reaches approximately 20 kg in weight, an aortic valve of 17 mm or larger is usually implantable in the aortic position with the techniques described in the foregoing chapters, which is within the acceptable range.

The pulmonary outflow tract is optimally reconstructed with a 22-mm pulmonary valve for a 1-m² individual and could be as large as 26 mm for a 2-m² individual adult. In most patients a valve between the upper and lower sizes is almost always achievable. On the right ventricular outflow tract side, a 14-mm (internal diameter) aortic valve can usually be placed in a 5-kg child; once a child weighs more than 10 kg, a right ventricular allograft conduit of 16 mm or larger is implantable; and in children above 20 kg it is almost always possible to place a 20-mm or larger conduit in the right ventricular outflow tract position. Mercer has argued that a more than 50% reduction in pulmonary valve orifice size is required before significant gradients occur. However, with right-sided conduits (which have length as well as diameter), sizes below the RRL values are not recommended.

References
Age, and aortic valve changes, 81
Aldehyde fixation of bioprosthesis valves, 65–66
Antibiotic solutions
 avoidance of amphotericin B in, 45
 for disinfection of allografts, 44–45, 75
 quality control of, 59
 storage of allografts in, 75
Anticoagulation complications after valve replacement, 5–6
Aortic allograft valve replacement, 97–135
 annulus enlargement in, 122–126
 augmentation aortoplasty with, 130–131
 indications for, 122
 Manouguian technique in, 122–124
 Nicks technique in, 124–126
 aortotomy in, 100–101
 aortoventriculoplasty with, 142–153
 augmentation aortoplasty in, 129–131
 cannulation in, 99
 cardiopulmonary bypass management in, 99–100
 in conduit for corrected transposition, 168–173
 distal anastomosis in, 171–172
 proximal anastomosis in, 173
 ventriculotomy in, 168–171
 contraindications to, 97–98
 coronary ostia variations in, 131–135
 helpful hints in, 119–120
 historical development of, 3–9
 indications for, 97
 noncoronary sinus management in, 109–119
 classic technique in, 114–116
 flange technique in, 109–113
 scallop technique in, 117–119
 and pericardial skirt for hypoplastic pulmonary arteries, 179–181
 pillar suspension in, 120
 preparation for insertion in, 99
 problematic root geometry in, 126–135
 pulmonary artery bifurcation allograft with, 181–186
 nonconfluent arteries in, 186
 in pulmonary valve replacement, 165–167
 reduction aortoplasty in, 127–129
 in right ventricle to pulmonary artery conduit, 156–164
 distal anastomosis in, 158–159
 positioning of allograft in, 160–164
 principles in, 157
 proximal anastomosis in, 159–160
 sizing in, 156–157
 technique of, 157–165
 ventriculotomy in, 157–158
 sizing of root in, 98–99
 in stenosis of pulmonary arteries, 173–179
 distal, 176–179
 proximal, 173–175
 suture lines in
 distal, 104
 proximal, 102–104
 variations in technique of, 121–122
 wet-stored grafts in
 in conduit surgery, 8
 and development of insufficiency, 7
 survival of, 6, 7
Aortic root replacement, 135–153
 helpful hints in, 141–142
 indications for, 137
 Konno-type annular enlargement in, 142–153
 preparation of allograft in, 139
 sizing in, 137–139
 standard technique in, 139–142
Aortic valve
 allografts of. See Aortic allograft valve replacement
 diameters of, 189
 functional anatomy of, 127
 morphology of, 81–88
 root diameter, 42
Aortoplasty for aortic valve implants, 126–135
 augmentation, 129–131
 reduction, 127–129
Aortoventriculoplasty with aortic allograft, 142–153

Banking of allograft valves. See Preimplantation processing
Biology of valve cryopreservation, 21-34
Bioprosthetic valves
 aldehyde fixation of, 65-66
 anticalcification treatment of, 67-71
 diphosphonates in, 69
 polyacrylamide in, 70
 sodium dodecyl sulfate in, 69
 surfactants in, 69
 toluidine blue in, 70
 Triton X-100 in, 69
 calcific degeneration of, 5-6
 glycerol treatment of, 66-67
 mounting on stents, 71-74
 flexible, 73-74
 low-profile, 74
 rigid, 71-73
 pericardial, morphology of, 79-81
 porcine
 morphology of, 76-79
 in right ventricular outflow tract reconstruction, 7-8
 sterilization of, 71
Blood group incompatibility, and valve durability, 29, 30
Bovine pericardial tissue. See Bioprosthetic valves
Brisbane experience with cryopreserved tissue, 15-16

Calcification of transplanted valves, 31
 in xenografts, 5-6
 and anticalcification treatments, 67-71
Calf serum, fetal, in freezing medium, 47
Cell membranes, temperature affecting, 27
Cellular composition of heart valve tissue, 29
Cellular viability
 in cryopreservation, 30-31
 factors affecting, 22-27
 endothelial cells
 preimplantation processing affecting, 82-83, 87
 problems in quantification of, 32-33
 and survival of valves, 31
 fibroblasts, 16, 18, 29
 in cryopreserved valves, 30-31
 preimplantation processing affecting, 85-86
 quantification of, 31-32
 Cold ischemic time in transport of tissue, 40
 Collagen
 in heart valves, 28
 in porcine aortic valve, 76-77
 preimplantation processing affecting, 85
 Conduit surgery
 aortic root replacement in, 135-153
 historical aspects of, 7-8
 right ventricle to pulmonary artery, 156-164
 Corrected transposition, right ventricular outflow tract reconstruction in, 168-173
 Cryopreservation of allografts, 46-52, 76
 advantages of, 16-17
 affecting heart valve tissue, 28-29
 biology of, 21-34
 Brisbane experience with, 15-16
 cell membranes in, 27
 cellular viability in, 30-31
 factors affecting, 22-27
 quantification of, 31-33
 characteristics of heart valves in, 27-28
 control valves in, 47-48
 packaging of, 51
 controlled freeze rate in, 49
 cryoprotective agents in, 25-26, 49
 dilution of, in thawing process, 56, 57-58
 storage of, 27
 and dysequilibrium of cells with external colution, 21
 eutectic point in, 21-22, 23
 factors affecting, 51-52
 fetal calf serum in, 47
 and gasses in freezing solution, 22
 heat sink method of, 49
 historical aspects of, 3-9
 ice crystal formation in, 21-22, 52
 morphologic changes from, 87
 multiple allograft packages in, 51
 nutrient medium in, 47, 51
 osmotic imbalances in, 27
 quality control in, 60
 rapid cooling in, 23
 in right ventricular outflow tract reconstructions, 17-18
 slow cooling in, 23-25
 and survival of valves, 30
 temperature probes used in, 51
 and thawing of tissues, 26-27
 two-step method in, 24
 unresolved issues in, 18-19
 Cryoprotective agents, 25-26, 49. See also DMSO
 dilution of, in thawing process, 56, 57-58
 removal of, 27
 Diameters of valves, 189-190
 Dilution of cryoprotectants, in thawing process, 56, 57-58
 Diphosphonates, in preimplantation treatment of bioprosthesis, 69
 Disinfection procedures, 44-46, 75
 antibiotic solutions in, 44-45
 quality control in, 59
 Dissection of allografts, 40-44
 and assignment of ratings, 43
 quality control in, 60
 sizing procedures in, 42-43
 DMSO as cryoprotectant, 25-26, 47
 and cellular sensitivity to cold shock, 22
 compared with other agents, 49
 dilution of, in thawing process, 56, 57-58
 early use of, 15-16
 Donor selection, 37-39, 59
 Dura mater tissue, glycerol treatment of, 66-67
 Durability of grafts. See Survival of grafts
Index

Endocarditis
fungal, detection of, 45–46
resistance by homograft valves, 7, 9
Endothelial cell viability
preimplantation processing affecting, 82–83, 87
problems in quantification of, 32–33
and survival of valves, 31

Fetal calf serum in freezing medium, 47
Fibroblast viability, 16, 18, 29
in cryopreserved valves, 30–31
preimplantation processing affecting, 85–86
quantification of, 31–32

Formaldehyde as sterilant of bioprosthetic valves, 71
Fresh wet-stored homografts, 4–7
advantages of, 9
in conduit surgery, 8
and development of aortic insufficiency, 7
survival of, 6, 7, 15, 30

Glycerol treatment of dura mater tissue, 66–67
Glycosaminoglycans in heart valve tissue, 28–29

Heart valve tissue
biochemical analysis of, 28
cellular composition of, 29
cryopreservation affecting, 28–29
histologic characteristics of, 27–28

Historical aspects of homografts, 3–9
early work in, 4
fresh wet-stored valves in, 4–7
London homografts in, 6
New Zealand homografts in, 6–7

and prosthetic valve disease, 5–6
in right ventricular outflow tract reconstruction, 7–8

Ischemic time
cold, in transport of tissue, 40
warm allowable limits of, 38
and valve survival, 5, 6, 7, 30

Left ventricular outflow tract reconstruction, 97–152
aortic allograft valve replacement in, 97–135
aortic root replacement in, 135–153

Legal issues in allograft use, 19

Liquid nitrogen
in dry-shipping unit, 54
in vapor storage of allografts, 52–53

London homografts and preservation techniques, 6

Lyophilization of allografts, 75

Membranes of cells, temperature affecting, 27
Mitral valve diameters, 189

Morphology
of bioprostheses, 76–81
pericardial, 79–81
porcine aortic valve, 76–79
of pulmonary and aortic valve allografts, 81–82
preimplantation processing affecting, 82–88
Mortality rate with fresh aortic homografts, 4

New Zealand homograft valve replacements, 6–7

Pericardial bioprostheses, morphology of, 79–81
Pericardial skirt for hypoplastic pulmonary arteries, 179–181

Pericardial tissue for enlargement of stenotic pulmonary artery, 176

Polyacrylamide as anticalcification agent, 70

Porcine valves, morphology of, 76–79. See also Bioprosthetic valves

Preimplantation processing, 65–88
of bioprosthetic valves. See Bioprosthetic valves
cryopreservation in, 46–52, 76
dissection of graft in, 40–44
and donor selection, 37–39, 59
and morphology of allografts, 82–88
procurement techniques in, 39–40
quality control in, 58–60
sterilization and disinfection in, 44–46, 75
storage in, 52–53, 75–76
thawing and dilution in, 55–58
transportation and distribution in, 53–55

Prosthetic valve disease, 5–6

Proteoglycans in heart valve tissue, 28–29
and calcification of transplanted valves, 31
preimplantation processing affecting, 83–84

Pulmonary artery
abnormalities of, and reconstruction of right ventricular outflow, 173–186
bifurcation allograft, 181–186
with nonconfluent arteries, 186

Pulmonary valve allografts of
in aortic position, 16, 167
in pulmonary position, 167–168
diameters of, 189
morphology of, 81–88
replacement in adults, 165–168
aortic allograft in, 165–167
indications for, 165
pulmonary allograft in, 167–168
sizing in, 165
root diameter, 42–43
Right ventricular outflow tract reconstruction, 155-186
abnormal pulmonary arteries in, 173-186
in corrected transposition, 168-173
cryopreserved allograft tissue in, 17-18
historical aspects of, 7-8
hypoplastic pulmonary arteries in, 179-181
pulmonary artery bifurcation allografts in, 181-186
pulmonary valve replacement in, 165-168
right ventricle to pulmonary artery aortic allograft conduit in, 156-164
stenotic pulmonary arteries in, 173-179

Size of valve, and diameter measurements, 189-190
Sizing procedures
in aortic allograft insertion, 98-99
in aortic root replacement, 137-139
in dissection of valves, 42-43
in pulmonary valve replacement, 165
in right ventricle to pulmonary artery aortic allograft conduit, 156-157
Sterilization procedures, 44-46, 75
antibiotic solutions in, 44-45
for bioprosthetic valves, 71
historical aspects of, 3-9
quality control in, 59
and testing for sterility, 46
Storage of allografts, 52-53, 75-76
Surfactants in preimplantation treatment of bioprosthetic valves, 69
Survival of grafts
in conduit surgery, 8
with cryopreserved valves, 4, 30
and donor fibroblast viability, 16, 18, 29
warm ischemia time affecting, 5, 6, 7, 30
with wet-stored grafts, 6, 7, 15, 30
Thawing of cryopreserved tissues, 26-27, 55-58
and dilution of cryoprotectants, 57-58
procedure in operating room, 56-57
rapid rate in, 55
safety precautions in, 58
Thromboembolism after aortic valve replacement, 5
Toluidine blue as anticalcification agent, 70
Transportation, cryogenic, 53-55
Tricuspid valve diameters, 189
Viability
cellular. See Cellular viability of homografts. See Survival of grafts
Vitrification, effects of, 23
Warm ischemic time allowable limits of, 38
and valve survival, 5, 6, 7, 30
Wet-stored homografts, fresh, 4-7
advantages of, 9
in conduit surgery, 8
and development of aortic insufficiency, 7
survival of, 6, 7, 15, 30
Xenografts. See Bioprosthetic valves