Index

A
Abortion, 447–448
Accommodation, organ transplants
vs. blocking immunity
enhancement, 83
soluble antigen, 82–83
complement activation control, 83
cytoprotection, 83
immunity
antibody-mediated injury, 82
fetus, 80–81
local regulation, 81–82
transplants, 81
mechanisms, 79–80
Adeno-associated virus (AAV), 195
Adipose-derived stromal cells (ASCs), 92
Adrenal transplantation, arthritis
advantages of, 417
blood sequential study report, 416–417
clinical impact of, 412–414
etiology of, 415
extracellular matrix (ECM), 411
fetal adrenal tissue collection, 411
goals of, 410
informed consent, 410
mobility restoration, 415
neural crest cells, 411
neuropathic pain, 411
patient screening, 410
retrieved cell histology, 415–417
rheumatoid arthritis, 412
weight gain, 415
Adrenocorticotropic hormone deficiency, 178
Alcoholic fatty degeneration. See Liver tissue transplant
Alcoholic steatosis, 339
Alveolar type II (AT2) epithelial cells, 149
American Spinal Injury Association (ASIA)
classification, 334–336
Amniotic fluid-derived cells (AFDCs), 428
Amniotic fluid-derived stem cells (AFS cells), 444–445
Amyotrophic lateral sclerosis (ALS), 315
Antibody-mediated injury, 82
Aorta-gonad-mesonephros (AGM), 163
Aromatic l-amino acid decarboxylase
(AADC), 194, 195
Artificial organ transplant
artificial bladders, 12
artificial hearts, 11
artificial limb, 11
artificial lungs, 12
artificial ovaries, 12
artificial pancreas, 12
brain pacemakers, 10–11
cardia and pylorus valves, 11
corpora cavernosa, 11
ear, cochlear implant, 11
eye, visual prosthetic material, 11
liver dialysis, 11
Autoimmune thyroiditis, 35

B
Bare lymphocyte syndrome (BLS), 206
Biobanking
cardiovascular tissue engineering, 426–427
cryopreservation
chemically defined nontoxic, 424
freezing, 424
vitrification, 424–425
culture collections, practice guidelines, 423–424
definition, 423
patient health history, 423
perinatal cell source
endothelial progenitor cells (see Endothelial progenitor cells)
umbilical cord-derived cells, 431–433
prenatal cell sources, 428
private and public
biological life insurance, 426
cartilage bone, 426
regenerative medicine, 426
side effect, 426
staff training, 425
stem cells, 426
tissue engineering, 425
umbilical cord blood, 425–426
quality control, 423
specimens authenticity, 423
Biofabrication, 10
Blast-colony-forming cells (BL-CFC), 28
Bone marrow-derived mesenchymal stem cell therapy
chronic kidney disease, 323, 325 (see also Kidney
tissue transplant)
spinal cord injury, 336
Bone marrow-derived mononuclear cell (BMMC) therapy
chronic respiratory disease, 307–308 (see also Lung
tissue transplant)
spinal cord injury, 336
Bone Marrow Donors Worldwide (BMDW), 425
Bone marrow MSCs (BMSCs), 91–92
Bone morphogenetic protein-4 (BMP4), 28

C
Carbon tetrachloride-induced liver injury, 149–150
Cardia and pylorus valves, 11
Cardiac tissue transplant
vs. alternative therapy, 352
cardiomyocyte/cardioblast cells, 353–354
cardiomyocyte progenitor cells, 355
clinical manifestation, 347–348
diabetic cardiomyopathy, 349
efficacy, 352–353
extracellular matrix, 354
follow up, 349
fresh cardiac tissue fragments, 348–349
HLA-randomized cardiac transplant
cardiac output, 350, 352
ejiction fraction, 349, 351
end-diastolic volume, 349, 351
end-systolic volume, 349–351
heart rate, 350, 352
pretransplant and posttransplant evaluation, 350, 353
stroke volume, 349, 350
medical treatment guidelines, 350
nonspecific effects of, 355
patient screening, 348
Cardiomyopathy
causes, 347
cell therapy, 348 (see also Cardiac tissue transplant)
dilated, 347
hypertrophic, 347
restrictive, 347
treatment, 347–348
Cardiovascular tissue engineering, 426–427
CBP/p298-interacting transactivators with glutamic acid (E)
and aspartic acid (D)-rich tail 2 (Cited2), 31
Cellular therapy
delivery systems
biocompatible biomaterials, 190
collagen, 190
hydrogels, 189–190
future aspects, 190–191
history of, 185–186
master cell bank
cell choice, 188
cell growth and harvest consistency, 188
data tracking, 186
diabetic cardiomyopathy, 349. See also Cardiac
tissue transplant
diabetic nephropathy (DN), 321, 325. See also Kidney
tissue transplant
diffusion chambers, 291
diGeorge syndrome
cell-mediated immunity, 379
cell therapies, 382
chromosomal abnormalities, 379
delayed-type skin hypersensitivity, 379
facial features, 379
fetal thymus transplantation
 beneficial effect, 381
 cell-mediated immunity, 380
 immunodeficiency, 379–380
 peculiar facies, 380
 T-cell precursors differentiation, 380, 381
 X-ray manifestations, 380
heart malformations, 379
hypoparathyroidism, 379
immune reconstitution, 382
Dimethyl–prostaglandin E2 (dmPGE2), 9
Dimethyl sulfoxide (DMSO), 424
Disc-related low back pain
 amniotic fluid cell therapy
 amniotic fluid cells, 254
 amniotic fluid collection, 252
 bone regeneration, 257–260
 clinical assessments, 252–253
 degenerative lumbar intervertebral disc, MRI, 252
 pain score, 253, 254
 patient history, 252
 progenitor cells differentiation, 261–262
 prolapsed intervertebral disc, 252
cell therapy, 252
clinical manifestation, 251
growth factors, 251
intrafacial C-arm-guided amniotic fluid instillation, 263
nonpharmacological treatment, 253–254
pathogenesis, 251
pathophysiology, 251
pharmacological treatmen, 253
physical therapies, 251
randomized clinical trials, 260–261
simple cell therapy, 262
tumor necrosis factor alpha, 260
preimplantation
 inner cell mass, 27–28
 totipotent stem cells, 27
Embryonic germ cells (EGs)
 animal models, 115
 clinical studies, 115–116
 primordial germ cells
 FGF2, 115
 growth factors, 114
 imprints, 114
 migration, 114
 molecular markers, 115
 pluripotent stem cells, 114
Embryonic precursor tissue transplantation
 embryonic precursor tissues
 advantages, 365
 disadvantages, 365
 gestational age and growth potential, 366, 367
 human and pig kidney precursors, 366
 optimal gestational window, 365, 366
E42 pig pancreatic tissue, diabetes
 beta-cell replacement, 367
 endocrine and exocrine elements, 369
 hyperglycemia, 369, 370
 immune-competent mice, 369, 371
 insulin secretion and histological appearance, 368–369
 mouse transplantation model, 367
 non-human primate model, 373, 374
 optimal gestational “window,” 367
 vasculature patterns, 371–373
organ-specific stem/progenitor cells, 365
vs. pluripotent ESC, 365
Embryonic stem (ES) cells
 animal models
 cell therapy, 110
 heart, 110–111
 neurodegenerative disorders, 111
 Stargardt’s macular dystrophy, 112
 human embryonic stem cells, 109
 induced pluripotent stem cells, 109–110
 pluripotency, 109
 therapeutic potential, 112
 transplantation
 ooplasmic transfer, 8
 parthenogenesis, 8–9
 somatic cell nuclear transfer, 8
Endothelial progenitor cells
 coagulation and inflammatory complications, 428
 endothelial cells (ECs), 428–429
 mononuclear blood cells, 430
Epiblast stem cells, 27, 28
 in animal models, 113–114
 blastocyst stage, 112
 molecular markers, 113
 pluripotency, 113
 transcription factors, 112–113
Epidermal growth factor (EGF), 68
Erythropoietin, 31–32
F

Fetal liver cell transplantation

- clinical outcomes
 - adenosine deaminase deficiency, 229–230
 - aplastic anemia, 230
- experimental models of, 229
- fetal liver cells
 - cell markers, 226
 - cryopreservation, 225
 - endothelial and hematopoietic precursors, 226
 - ESCs and iPSCs, 225–226
 - intraportal transplantation, 228
 - intrasplenic transplantation, 228
 - orthotopic injection site, 228
 - pancreatic markers, 227–228
 - primary culture of, 221–222
 - proliferative activity, 228
 - serum-free medium, 222–223
 - side population cells, 226
 - via hepatic artery, 228–229
 - yolk sac hematopoiesis, 226–227
- immortalized fetal liver cells
 - immunohistochemistry assay, 224
 - intrasplenic transplantation, 224–225
 - RT-PCR and immunocytochemical assays, 224
 - Simian virus 40 DNA, 223–224
- xenogenic hepatocytes, 223

Fetal liver transplantation (FLT)

- fetal cells preparation, 206
- graft-versus-host disease, 205

Immunological considerations

- allo-determinants, 215–216
- B lymphocytes, 215
- donor stem cells differentiation, 215
- host HLA antigens, 215
- negative selection and tolerance, 216
- self-HLA antigens, 215
- T lymphocytes, 214–215

Postfertilization, 205

Postnatal transplantation

- clinical outcomes, 210
- inborn errors of metabolism, 209–210
- severe combined immunodeficiency, 206–208

in utero

- advantages, 206
- hemoglobinopathies, 213–214
- hemophilia, 214
- immunodeficiency, 210–213
- inborn errors of metabolism, 214

Fetal thymus transplantation (FTT)

DiGeorge syndrome

- beneficial effect, 381
- cell-mediated immunity, 380
- immunodeficiency, 379–380
- peculiar facies, 380
- T-cell precursors differentiation, 380, 381
- x-ray manifestations, 380

lymphoma

- advantages of, 406–407
- Ann Arbor stage IV, 400, 402, 405, 406

B cell chronic lymphocytic leukemia/lymphoma, 402
diffuse large B cell lymphoma, 402
extracellular matrix, 398–399
follicular lymphoma, 401
freshly collected thymus glands, 398
Hodgkin’s lymphoma, 398
human leukocytic antigen, 405–406
informed consent, 398
mixed cellularity lymphoma, 403
patient screening, 398
precursor T cell lymphoma, 401, 403
T cell output, 404–405
thymus grafting, 405

Fetal tissue research, 446

Fetomaternal cell trafficking

- fetal tissue transplants
 - fetal cells/tissue persistence, 19–20
 - fetal neuronal tissue, 19, 20
 - future aspects, 20–21
 - graft-versus-host response, 18
 - microenvironment, 20
 - tissue grafting, 20

maternal tolerance

- homograft survival, 16
- indoleamine 2,3-dioxygenase, 16
- local and systemic mechanisms, 16
- microchimerism, 16–17
- neoplastic cells, 17
- non-inherited maternal human leukocyte antigens, 17
- microchimerism
 - maternal illness, 18
 - transplant tolerance, 17–18

Fibroblasts

- growth factor, 68
- wound repair
 - migration, 71
 - proliferation, 70–71
 - TGF-b level, 69–70

Fibrosis

- acute injury, 145
- cytokines, 145
- innate immunity, 145
- leukocytes ingression, 145
- liver disease
 - cirrhosis, 147
 - factors affecting, 146–147
 - hepatic stellate cells, 147
 - pathogenesis of, 147
 - treatment, 148

Fibromyalgia

- acute respiratory distress syndrome, 145
- chronic obstructive pulmonary disease, 146
- idiopathic pulmonary fibrosis, 145–146
- progressive shortness of breath, 146

G

Glucagon-like peptide (GLP)-1, 271–272
Gonadotropin deficiency, 178
Graft-versus-host disease (GVHD), 173
Growth factors
- epidermal growth factor, 68
- fibroblast growth factor, 68
- fibroblasts (see Fibroblasts)
- insulin-like growth factor, 68–69
- platelet-derived growth factor, 66–67
- transforming growth factor-b, 67–68
- vascular endothelial growth factor, 69

Growth hormone deficiency, 178

H
Health Assessment Questionnaire (HAQ), 254
Hemangioblast, 28
Hepatocyte cell transplantation (HCTx), 219–220
Herpes simplex virus type 1 thymidine kinase (HSV1-tk), 200
Heterotopic fetal lung tissue transplantation. See Lung tissue transplant
Heterotopic kidney transplantation. See Kidney tissue transplant
Homing effect, 317
Human cord blood (hCB) transplantation, 9
Human fetal pancreas
- in diabetes
 - immunological graft rejection, 286–287
 - islet-like cell clusters, 287
 - tissue antigen, 286
 - transplantation sites, 286
- differentiation of, 285
- immunogenicity, 286
- maturation of, 286
- pancreatic progenitors
 - diffusion chambers, 291
 - immunosuppression, 290–291
 - maturation, hESC, 287–290
 - microcapsules, 291
 - source, 287
Human immunodeficiency virus (HIV), 4
Human islet-derived progenitor cells (hIPCs)
- differentiation of
 - β-cell progeny, 244
 - efficiency of, 242–243
 - embryonic stem cells, 242
 - histone modifications, 242
 - islet-like cell aggregates, 242
 - non-β-cells, 243–244
 - epithelial-mesenchymal transition, 241–242
- transplantation of, 244
Human leukocyte antigen (HLA)
- cardiac transplant
 - cardiac output, 350, 352
 - ejection fraction, 349, 351
 - end-diastolic volume, 349, 351
 - end-systolic volume, 349–351
 - heart rate, 350, 352
 - pretransplant and posttransplant evaluation, 350, 353
 - stroke volume, 349, 350
- kidney tissue transplant
 - albumin, 328–329
glomerular filtration rate, 327, 329
leukocytic and lymphocytic infiltration, 329
properties, 330
Hyaluronic acid (HA), 72
Hypertension, 323. See also Kidney tissue transplant

I
Idiopathic Parkinsonism
- future aspects
 - animal studies, 362
 - extracellular matrix, 361–362
 - fetomaternal cell transfer, 362
 - iatrogenic chimera, axilla
 - fetal neuronal tissue, 360
 - fetal tissue heterotopic subcutaneous graft, 359–360
 - fetal tissue retransplant, 359
 - HADS questionnaire, 361
 - immunological insensitivity, 361
 - mental status examinations, 361
 - molecular marker studies, 361
 - Parkinson’s Disease Unified Rating Scale, 361
 - scanning electron microscopic study, 360–361
Immunodeficiency, in utero FLT
- bare lymphocyte syndrome, 210–211
 - Chediak-Higashi, 212, 213
 - chronic granulomatous disease, 210
 - immunoreconstitution, 212
 - infections, 210
 - sclerosing cholangitis, 212
Immunosuppression, 3
Induced pluripotent stem cells (iPSC), 443
Inner cell mass (ICM), 27–28
Insulin-like growth factor, 68–69
In utero hematopoietic stem cell transplantation (IUHSCTx)
- complications, 172–173
 - engraftment after
 - advantage, 171
 - disadvantage, 171
 - donor allografts, 172
 - host-cell environment, 172
 - host immune system, 172
 - immunosupression, 172
 - experimental animal model
 - allogeneic and xenogeneic HSC engraftment, 171
 - MHC-mismatched donors engraftment, 170–171
 - future aspects, 173
 - human clinical experience, 171
 - therapeutic rationale of, 169–170
In utero transplantation (IUT)
- fetal liver
 - advantages, 206
 - hemoglobinopathies, 213–214
 - hemophilia, 214
 - immunodeficiency, 210–213
 - inborn errors of metabolism, 214
- mesenchymal stem cells
 - in animal models, 164–166
 - fetal MSC, 163–164
 - in human fetuses, 166
Ischemic cardiomyopathy, 349. See also Cardiac tissue transplant
Islet neogenesis-associated protein (INGAP), 272

K
Kidney stem cell
budding, metanephric mesenchyme transcription factors, 124–125
ureteric bud (see Ureteric bud)
Wolfian duct, 123–124
embryonic development, 121
endothelial cells, 132
fetal kidney stem cells
clonogenic assays, 135
geometric tagging, 135, 136
heterogeneous cells transplantation, 132–133
obstacles in, 132
surface marker expression, 133–135
whole organ transplantation, 132
intermediate mesoderm, 122
nephron segmentation, 131
pitfalls and misinterpretations
fully differentiated cell type with some progenitor properties, 137
intrinsic stromal progenitor isolation, 137
partial progenitor isolation, 138
resident progenitor isolation, 135–137
renal vasculature, 131
vascular endothelial growth factor, 131
Kidney tissue transplant
bone marrow mesenchymal stem cells, 323, 325
cardiovascular disease risk, 325
clinical manifestation, 321
clinical staging, 323
disease grading, 322
drugs, 322
ECM activity, 322–323
fresh fetal kidney tissue, 322
glomerular filtration rate, impact on, 323–325
HLA-randomized fetal tissue transplantation albumin, 328–329
glomerular filtration rate, 327, 329
leukocytic and lymphocytic infiltration, 329
properties, 330
microalbuminuria, 325, 327
nonspecific effects of, 330
patient screening, 322
renal function, impact on, 323, 326–327

L
L-3,4-dihydroxyphenylalanine (L-dopa), 194
Leukopenia, 399. See also Fetal thymus transplantation (FTT)
Liver diseases
hepatocyte cell transplantation, 219–220
liver repopulation, hepatoblasts
dormant stem-like cells, 221
embryonic day, 220
fetal liver development, 220
flow cytometry and single cell-based assays, 221
gestation, 220, 221
gut endoderm differentiation, 220
oval cells, 221
orthotopic liver transplantation, 219
Liver fibrosis
cirrhosis, 147
factors affecting, 146–147
hepatic stellate cells, 147
pathogenesis of, 147
placental-derived stem cells
CCl4 administration, 149–150
cirrhosis, 152
exogenous stem cells, 152
hAEC differentiation, 152–153
treatment, 148
Liver tissue transplant
biochemical and metabolic impact of, 341–342
bone marrow-derived mesenchymal stem cells, 340
clinical manifestation, 339–340
fragmentation and cellular migration, 342, 344
hepatocyte transplantation, 342
host albumin level, 341, 344
host triglyceride level, 341, 344
human amniotic epithelial cells, 342
inflammatory/immunological response, 342, 344, 345
nonspecific effects of, 345
orthotopic liver transplantation, 342
patient screening, 340
posttransplant evaluation, 342–344
progenitor cells, 339–340
transplant procedure, 341
Lou Gehrig’s disease, 315
Lung fibrosis
acute respiratory distress syndrome, 145
chronic obstructive pulmonary disease, 146
idiopathic pulmonary fibrosis, 145–146
placental-derived stem cells
AT2 differentiation, 149
Clara cell loss, 150
hAEC, 148–149
murine BM-MSC autologous transplantation, 148
surfactant proteins production, 149–150
WJ-MSC, 148
progressive shortness of breath, 146
Lung tissue transplant
adult stem cells, 311
airway remodeling, 312
BMMC therapy, 307–308
donated tissue under axilla, 309
extracellular matrix, 309
fresh fetal lung tissue extraction, 308–309
functional impact, 310–312
hepatitis and HIV screening, 308
informed consent, 308
malnutrition, 313
morphogenic interaction, 309
nonspecific positive effects, 312–313
pre-and post-heterotopic lung tissue transplant, 309–310
second-trimester fetus, 308
spirometry, 308
surfactant protein B, 311

M
Master cell bank
cell choice, 188
cell growth and harvest consistency, 188
data tracking, 186
end of product, 188
human virus detection, 187–188
logbooks and prebanks, 186
mother donor, 186
storage, 186
Maternal-fetal tolerance, 29–30
Mesenchymal stem cells (MSCs)
chemokine receptor, 162
definition, 87
function and localization, 163
immunologic properties
adult-derived MSCs, 91–92
fetal-derived MSCs, 93
immunoregulation, 90–91
phenotype and immunogenicity, 90
isolation, 87, 162
vs. mesenchymal stem cells, 88
murine fetal liver-derived MSC
differentiation, 162
myocardial infarction, 88
surface markers, 162
umbilical cord
structure, 89
Wharton’s jelly (WJs), 89–90
in utero transplantation
in animal models, 164–166
fetal MSC, 163–164
in human fetuses, 166
Microcapsules, 291
Microchimerism
fetal
abnormal pregnancy, 33–34
in autoimmune disease, 34–35
in health, 33
in malignant disease, 34
fetomaternal cell trafficking
maternal illness, 18
transplant tolerance, 17–18
maternal, 35
maternal illness, 18
transplant tolerance, 17–18
Motor neuron disease (MND), 317. See also Neuronal tissue transplant
Myristoylated alanine-rich C kinase substrate (MARCKS) protein, 150

N
National Health and Medical Research Council (NHMRC), 5
Neural stem cell (NSC) transplants
Alzheimer’s disease, 266
Huntington’s disease, 266
multiple sclerosis, 266–267
Parkinson’s disease, 266
Pelizaeus-Merzbacher disease, 266
spinal cord lesions, 267
stroke, 267
Neuronal tissue transplant
motor neuron disease
clinical outcomes, 317–318
neuro-microenvironment, 318
potentiality, 316–317
posttraumatic quadruplegia
astrocytoma grade II, 334–335
bone marrow-derived mesenchymal stem cell
transplants, 336
bone marrow-derived mononuclear cell
transplants, 336
calcitonin and gabapentin, neuropathic pain, 335
clinical manifestation, 336
clinical research, 333–334
halo, 335
heterotopic transplantation, 336–337
rationale for, 337
road accident, 333–334
Nonalcoholic fatty liver disease (NAFLD), 339
Nonalcoholic steatohepatitis (NASH), 339
Non-inherited maternal antigens (NIMA), 170
Obstetrical cell sources, cardiovascular tissue engineering
congenital heart defects, 428
endothelial progenitor cells, 428–431
prenatal cell sources, 428
umbilical cord-derived cells, 431–434
Ooplasmic transfer, 8
Organ printing, 10
Organ Procurement and Transplantation Network (OPTN), 10
Orthotopic liver transplantation (OLTx), 219
Oswestry low back pain disability questionnaire, 253
Oxytocin deficiency, 178
Pancreas development
gene expression
eukaryotic proteins, 240–241
growth and differentiation factors, 239–240
islet b-cells, 241
transcription factors, temporal regulation, 238, 239
in human
hormone expression, 238
morphological studies, 237
pdx1 gene, 237
vs. rodent pancreatic cell types, 238
ventral and dorsal bud, 237–238
mouse models, 237
Pancreatic ductal homeobox 1 gene (Pdx-1), 271
Pancreatic regenerative medicine
insulin-producing cells
adult stem cells, 278
embryonic stem cells, 274–278
decidu cells expansion, 272
exocrine cells expansion, 272
nonpancreatic cell differentiation, 272–273
molecular markers of
gene expression cascade, 270–272
islet regeneration, 270
progenitors and stem cells expansion
adult stem cells, 273
cord blood embryonic-like stem cells, 274
mesenchymal stem cells, 274
neonatal stem cells, 273–274
umbilical cord and blood stem cells
transcription pathways, 279
UCB-MSC, 278
Wharton’s jelly-derived MSC, 279

Paralysis, 335
Parkinson’s disease
BrdU, 193
cell therapy, 358
cell implant, target region, 195
donor ES cells, 198–200
double-blind studies, 196–197
early stage clinical research, 196
fetal cell transplant, technical problems, 198
future strategies, 201
Lewy bodies, 197–198
Parkinsonism, 200–201
teratoma, 199–200
complications, 357
dentate gyrus, 357
fetal tissue transplantation (see also Idiopathic Parkinsonism)
drug therapy, 358
organ-specific and nonspecific stem cells, 358
subcortical fetal midbrain tissue, 359
neurogenesis, 358
neuron degeneration and regeneration, 358
subventricular zone, 357
symptoms of, 194
therapeutic options for
deep brain stimulation, 194–195
gene therapy, 195
pharmacotherapy, 194

Parkinson’s Disease Unified Rating Scale, 361
Parthenogenesis, 8–9

Pituitary gland
functions, 177
hypopituitarism
causes of, 177
consequences of, 178
treatment of, 178
transplantation
 canine model, 179
pituitary gland extract injections, 179–180

regenerative medicine, 180
technologic and pharmacologic limitations, 180–181

Pituitary stem cell (PSC) transplantation
adenomas, 182–183
candidates for, 181
chromophobes, 181
follicular cells, 181–182
folliculo-stellate cells, 181
human pituitary stem cells, 183
marginal cells, 182
regenerative medicine, 180, 183
side population cells, 182
stem cell markers, 182

Placental-derived stem cells
vs. adult tissue-derived stem cells, 141–142
amniotic fluid, 141, 144
compartment, 141
human amnion epithelial cells, 141, 144
vs. human embryonic stem cells, 141–142

Poly-L-lactic acid (PLLA) scaffold vs. 2D culture
human hepatocytes, 51–53
porcine hepatocytes, 58
rat hepatocytes
fetal rat hepatocytes morphology, 54, 55
growth factors, 54
NA, DMSO, and OSM combinations, 52, 54
per cell number-based comparison, 54, 56
SEM images, 55, 56
time-course changes, albumin, 54, 55

Porcine endogenous retrovirus (PERV), 4–5

Platelet-derived growth factor, 66–67

Poly-L(lactic acid (PLLA) scaffold vs. 2D culture
mouse hepatocytes, 51–53
porcine hepatocytes, 58
rat hepatocytes
fetal rat hepatocytes morphology, 54, 55
growth factors, 54
NA, DMSO, and OSM combinations, 52, 54
per cell number-based comparison, 54, 56
SEM images, 55, 56
time-course changes, albumin, 54, 55

Porcine endogenous retrovirus (PERV), 4–5

Primary biliary cirrhosis, 35

Primordial germ cells (PGC), 17

Prolactin deficiency, 178

Proteinuria, 321

Q
Quadriplegia. See also Neuronal tissue transplant
clinical manifestation, 333
definition, 335

S
Severe combined immunodeficiency (SCID), 171, 206–208
Sjögren’s syndrome, 35
Somatic cell nuclear transfer (SCNT), 8, 444
Spinal cord injury
 fetal neural tissue transplantation
 functional recovery, 299
 future aspects, 303
 graft-mediated/graft-originated circuits, 302
 host regeneration, 298
 neuroprotection, 302–303
 organism-level outcome, 300–301
 primate studies, 300
 “spinal relay” stations, 298
 substituting supraspinal control, 298
 transection cavity, 299
 urine retention, 299
 xeno-heterotopic transplantation model, 298–299
 histology, 299, 300
 nonsurgical and surgical methods, 297
 pathophysiology of, 297
 recovery, 297
Spinal cord neuronal tissue transplantation, 316–319.
 See also Neuronal tissue transplant
Stargardt’s macular dystrophy, 112
Stem cells
 embryoblast, 442
 human embryonic cells, 442–443
 induced abortion, 441–442
 induced pluripotent stem cells, 443
 leukemia inhibitory factor, 442
 somatic cell nuclear transfer, 444
 transplantation
 cord blood stem cell, 9
 embryonal stem cell, 8–9
Systemic sclerosis, 35

T
Three-dimensional culture
 albumin production, 49, 52
 experimental protocol
 basal culture medium, 50
 disk-shape PLLA scaffolds, 49
 fetal porcine hepatocytes isolation, 50
 implantation studies, 50–51
 mouse liver cell isolation, 49–50
 soluble factors, 50
 fetal hepatocyte, 47–48
 future perspectives
 microenvironment, 60–61
 NA and DMSO combinations, 60
 sparse cellular growth, 61
 synergistic effects, 59
 tissue polarity, 61
 gel-based culture, 48
 hepatocyte aggregate (spheroid) formation, 48
 macroporous scaffold-based, 48–49
 mouse hepatocytes
 cell-loaded 3D scaffolds, 52–54
 PLLA vs. 2D monolayer culture, 51–53
porcine hepatocytes
 cell density, PLLA scaffold, 58, 60
 vs. 2D monolayer culture, 58
 per cell-based functional comparison, 58
 time-course changes, albumin, 58, 59
 tissue availability and physiological similarities, 57–58
rat hepatocytes
 cell-loaded 3D HA scaffolds, 55–57
 PLLA vs. 2D culture (see Poly-L-lactic acid (PLLA) scaffold)
Thymus transplantation. See Fetal thymus transplantation (FTT)
Thyroid-stimulating hormone deficiency, 178
Tissue transplant
 bioethics, 439–440
 cardiac (see Cardiac tissue transplant)
 euthanasia and cloning, 440–441
 kidney (see Kidney tissue transplant)
 liver (see Liver tissue transplant)
 lungs (see Lung tissue transplant)
 morality, 439
 neuronal (see Neuronal tissue transplant)
Transforming growth factor-b, 67–68
Triple-drug therapy, 3
Trophoblast stem cells
 animal models
 expression and knockout studies, 109
 human ES, 109
 ICM and trophectoderm, 108
 molecular mechanisms, 108
 blastocyst stage, 107–108
 FGF4, 108
 inner cell mass, 107
 placenta, 107
 trophectoderm regulation, 107
Type 1 diabetes
 clinical characteristics, 269
 umbilical cord stem cells, 282
 clinical applications, 278–279
 HbA1c levels, 281
 therapeutic potential, 279
 vs. umbilical cord blood cells, 280

U
Umbilical cord serum cytokines, 32
Umbilical cord stem cells, 445
 cardiovascular tissue engineering, 431–434
 transcription pathways, 279
 UCB-MSC, 278
 Wharton’s jelly-derived MSC, 279
Unified Parkinson’s disease rating scale (UPDRS), 196–197
United Network for Organ Sharing (UNOS), 3–4
Ureteric bud
 cap mesenchyme
 Six2+ stem cells, 130
 stem cell niche, 130
 Wnt9b, 130
Ureteric bud (cont.)
mesenchymal-epithelial transition
 cellular lineage and lineage tracing, 125–127
 Cre-Lox system, 126–127
 multipotentiality, 127–128
 phenotypic change, 125
 Sall1 expression, 129
 self-renewal and multi-differentiation, 125, 128–129
 Six2 expression, 129
 temporal regulation, 126

V
Vascular endothelial growth factor, 28, 69
Vasopressin deficiency, 178
Visual analog pain scale (VAS), 254
Vitrification, 424–425

W
Walking distance in meters (WD), 254
Wharton’s jelly (WJCs), 89–90
 vs. adult MSC, 94
 engraftment of, 93–94
 immunosuppression
 adult-derived MSCs, 96–97
 fetal-derived MSCs, 97–98
 regulatory T Cells
 adult-derived MSCs, 99
 fetal-derived MSCs, 99
 generation, 95–96
 tolerance induction, 95–96
Whole fetal pancreas transplantation
 clinical outcomes
 glycosylated hemoglobin, 386
 HLA-randomized first-trimester fetal pancreas transplant, 389–391
 islet-like cell clusters, 392, 394
 pre-transplant albumin level, 387
 wounds, 387, 388
 extracellular matrix, 392
 future aspects, 394–395
 HLA-randomized first-trimester, 385–386, 392–393
 insulin-producing islet-like cell clusters, 385
 material and method
 cellular study and microscopy, 387
 diabetic nephropathy, 386
 glycosylated hemoglobin, 386
 hysteroscopy, 386
 screening test, 386
 pancreatic stem cells, 392
 streptozotocin-induced diabetes, 385
 Wilms’ tumor (WT), 133
Wound repair
 blood coagulation process, 65
 extracellular matrix synthesis and remodeling, 72–73
 fibroblasts, 65
 growth factors
 epidermal growth factor, 68
 fibroblast growth factor, 68
 fibroblasts (see Fibroblasts)
 insulin-like growth factor, 68–69
 platelet-derived growth factor, 66–67
 transforming growth factor-b, 67–68
 vascular endothelial growth factor, 69
 intrinsic differences, 66
 tissue remodeling activation, 66
 wound contraction, 73
 wound size, 66

X
Xenotransplantation
 disease transmission problems
 human immunodeficiency virus, 4
 porcine endogenous retrovirus, 4–5
 zoonosis, 4
 ethicality of, 7
 human fetal testis tissue xenografts, 5
 immunological problems
 accommodation, 7
 acute vascular rejection, 6–7
 cellular and vascular rejection, 7
 hyperacute rejection, 6
 organ source, 5–6
 ovarian tissue, 5
 pig cells and tissues transplantation, 5
 piscine–primate transplant, 5
 xeno(allo)-cellular transplant, 5

Z
Zoonosis, 4