Index

A

Acid-base homeostasis
- DASH I and DASH II, 96–97
- diet and the aging process, 94
- osteoclasts and osteoblasts, 94–95
 - PRAL
 - dietary acidity, 95
 - NEAP, 95
 - potassium bicarbonate, 96
 - vegetable-based foods and osteoporosis, 95

Adipocyte hormones
- bone density, 90
- fat mass, 89
- obesity, 51
- weight loss, 8

Alkaline potassium salts
- acid-base composition, 114
- calcium and bone metabolism
 - bone mineral density, 111–112
 - intestinal calcium absorption, 110–111
 - N-terminal propeptide, type 1 collagen, 111
 - osteocalcin, 111
 - parathyroid hormone, 111
 - skeletal metabolism, 112–114
- hip fracture risk, 114
- potassium citrate administration, 115–116

Anthocyanidins
- absorption, 179–180
- acid–base balance, 178
- bioavailability, 179
- bone health
 - in animals, 181, 183
 - cellular studies, 181, 184
 - human observational studies, 180
 - in humans, 181, 182
 - osteopenic rat model, 181
 - in postmenopausal women, 180–181
 - in diet
 - APOSS cohort studies, 179
 - freezing, 179
 - mechanism of action
 - antioxidants, 185
 - cell signaling, 185
 - estrogen and cannabinoid receptors, 185
 - lower serum C-reactive protein (CRP), 185
 - metabolism, 180
 - structure, 178–179

B

Blueberries, bone loss, 152–153

Bone loss
- bone mineral density (BMD) measurement, 148
- bone turnover rates, 148
- chronic low-grade systemic inflammation
 - biomarkers, 9
 - mechanism, 2
 - serum hsCRP assessment, 8–10
- C-reactive protein (CRP), 5
- dried plum, 151–152
- energy restriction, 5
- estrogen replacement therapy, 147–148
- high-sensitivity C-reactive protein (hsCRP), 5–7
- protein supplementation, Chinese postmenopausal women, 123
- tritiated tetracycline (3H-TC), 148
- urinary 41Ca, 148, 149
- vitamin D, 289–290
- weight loss, obese older adults, 5

Bone metabolism, postmenopausal women
- anthocyanins, 375
- antioxidant nutrients, 374
- bALP levels, 376, 378
- biochemical analysis, 375
- biomarkers, 375
- blueberries, 375
- CTX levels, 376, 378
- dried plum, 374
- grape seed proanthocyanidin, 378
- NHANES study, 377
- red fruits, 375
- serum 25(OH)D levels, 376, 378
- statistical analysis, 375–376

Bone mineral density (BMD), 20–23
- chronic low-grade systemic inflammation, 6
- dietary patterns, 2–4
- gender differences, Gambian prepubertal children, 303
- hip bone mineral density (see Hip bone mineral density (BMD))
- hsCRP with BMD concentration, 5–7
- obesity, 45–46
Bone mineral density (BMD) (cont.)
protein supplementation, Chinese postmenopausal women, 122, 123
and soft tissue
adipose tissue, 49
fat depot, 48
fat mass, 48
lean tissue mass, 47–48
soy isoflavones, 150
vitamin D, 289–290

C
Calcifediol. See Vitamin D
Calcification, 361
Calcium absorption, 316
alendronate, 265
anomalies, 266
binding site mechanisms, 269–270
calcium need, 269
25(OH) D, 266–267
double-tracer method, 265
failure of, 267–268
intracellular diffusion, 134–135
LOESS method, 265
long-chain polyunsaturated fatty acids
aging and menopause, 141–142
essential fatty acids (EFAs), 140–141
lumbar spine bone density, 141
in osteoporotic women, 141
net intestinal calcium absorption, 262–263
nutritional osteomalacia, 268–269
paracellular diffusion, 262
paracellular uptake, 134
parathyroid hormone, 262–264
pharmacokinetic method, 264, 265
prebiotics (see Prebiotics)
pregnancy, 269
probiotics (see Probiotics)
regulation, 261–262
transcellular uptake, 134
TRPV6, 134
urine calcium-to-creatinine ratio, 265, 266
Calcium metabolism
GOS
in animals, 317–318
in humans, 319, 320
Mexican Americans adolescents
basal diets, 355
bone mass, 353–354
calcium absorption, 354
calcium intakes, 354, 355
calcium retention, 355
dietary calcium effect, 354
Hispanics, 352
race and ethnicity, 352–353
Calcium supplementation
animal models, 361
calcification, 361
calcium intakes, 361–362

cardiovascular events, risk, 360
cardiovascular safety
blood coagulation, 369
calcium-sensing receptors, 369
clinical implications, 369–370
Kuopio Osteoporosis Study, 367
meta-analyses, 366–368
mortality, 367
pre-dialysis renal impairment, 366
putative mechanisms, 369, 370
serum ionized calcium, 368–369
dose-response effects, 360–361
serum HDL/LDL cholesterol ratios, 361
Cholecalciferol (vitamin D3). See Vitamin D3
and vitamin D3
Chronic low-grade systemic inflammation
bone loss
biomarkers, 27
mechanism, 20
serum hsCRP assessment, 26–28
nutritional strategies to
calcium and dairy foods, 7–9
omega-3 fatty acids, 13–14
protein, 11–12
vitamin D, 9–11
vitamin K, 12–13
origins of
inflammatory mediators, 3, 4
lifestyle and hormonal factors, 2–3
osteoporosis (see Osteoporosis)
odxidative stress, 3
sarcopenia (see Sarcopenia)

Citrus flavanones
bioavailability, 160
bone metabolism
bone clinical data, 164–166
NF-κB, 161–162
preclinical evidence, 162–164
chemical structures of, 158, 159
diglycosides, 159
intake, 158–159
metabolism of, 159
oxidative stress and inflammation
metabolic syndrome, 161
plasma antioxidant capacity, 161
diaryphenols, 161
preclinical data, 160–161

Dairy foods
cheese intake, 310–311
cream intake, 311
milk intake, 309–310
yogurt intake, 310
Dietary calcium intake (CaI)
maximal skeletal development, 326
new bone, substrate, 326
ranges, 331
total body bone mineral content (TBBMC)
black children, 331
block semiquantitative food frequency
questionnaire, 327
calcium intake, 329, 330
correlations, 328
degree of association, 328
descriptive statistics, 328, 329
DXA, 327
log-transformed, 329
median and confidence intervals, 328
multiple regression, 328
reports, 327
Tanner stages, 328–330

Dietary fat composition

cardiovascular guidelines, 75
muscle mass
fat-free mass (FFM), 76
food frequency questionnaire (FFQ), 76
P:S ratio, 76

Dietary patterns
BMC, 20–22
BMD, 20–22
bone loss and inflammation (see Inflammation)
chronic low-grade systemic inflammation, 26–28
glycemic index, 26
protein sources, 23

Dried plum, bone loss, 151–152

E
Energy restriction
bone loss, 35
and exercise, 38–39
FFM and hip BMD, 38, 39
muscle, 36
with physical activity, 36–37
weight loss, 32, 35

Ergocalciferol (vitamin D2). See Vitamin D2
and vitamin D3

F
Fat-bone relationship
central vs. peripheral fat, 87–88
feeding effects, 90–91
lean masses
hip bone density, 87
multiple regression analysis, 86
in pre and postmenopausal women, 86–87
leptin, 90
mechanisms of
adipocyte hormones, 88–89
pancreatic β-cell hormones, 89–90
weight-bearing and non-weight-bearing bones, 88
in postmenopausal women, 90
premenopausal women
bone turnover, 90
lean mass, 90

soft tissue mass
and fractures, 85–86
in postmenopausal women, 84
skeletal size, 84–85
total hip bone mineral density, 84, 85

G
Galacto-oligosaccharides (GOS)
adaptation, 319–321
breastfed infants, 316
calcium absorption, 316
calcium metabolism
in animals, 317–318
in humans, 319, 320
enzymatic production, 316
galactose chain, 316
gastrointestinal tract, prebiotic influence,
316–317
NDO, 316
prebiotics, 135

H
Hesperetin. See Citrus flavanones
High-protein-low calcium intake
calcium isotopes, 127–128
cross-sectional and cohort studies, 128
definition of, 126–127
growing bone
calcium supplementation, 129
in Caucasians and Asians, 128
in female ballet dancers, 128
Framingham off-spring cohort, 129–130
French epidemiologic study, 129
increased fracture risk, 129, 130
intervention studies, 128–129
Norwegian follow-up study, 129
High-sensitivity C-reactive protein (hsCRP)
with BMD, 23–25
bone loss, 23–25
chronic low-grade systemic inflammation, 26–28
dietary patterns and systemic inflammation, 26, 27

Hip bone mineral density (BMD)
annual assessment, 216
baseline characteristics, 215
calcium intake, 214–216
25(OH)D level, 214, 216
femoral neck BMD, 216
HSA, 215
Lunar DPX-IQ, 214–215
physical activity, 216
serum biochemistry, 215–216
serum C-telopeptide and N-telopeptide levels, 215
stress fracture and longitudinal changes, 214

Hip fractures. See Vitamin B and carotenoids intake
Hip structural analysis (HSA), 215
Hypovitaminosis D, 274, 275
I
Inflammation
dietary patterns and bone loss
 chronic low-grade systemic inflammation, 26–28
 C-reactive protein, 23
cytokines, 23
glycemic index, 26
hsCRP with BMD concentration, 23–25
nutrient-dense dietary patterns, 26
plant-based foods, 26
Western-type diet, 26
flavanones impact, 160–161
Intact parathyroid hormone (iPTH), 228–233

M
Malnutrition and aged care residents
dairy foods, 338–339
dietary modifications, 339
food fortification, 338
fracture risk, 336–337, 340
mean daily supplementation dose, 338
morbidity and mortality, 336
nutrient intakes, 340
ONS, 337
risk factor, 336

N
Naringenin. See Citrus flavanones
Natural products
 blueberries, 152–153
dried plum, 151–152
soy isoflavones (see Soy isoflavones)
Non-digestible oligosaccharides (NDOs), 316
Nutritional and lifestyle risk factors
 in Australian women, 62, 63
eating patterns, 62
 in female twins
 alcohol consumption, 63
 average daily cigarette consumption, 64, 66
 average monthly alcohol consumption, 64, 65
 BMI, 65, 67
 median (IQR) dietary calcium intake, 64
 nonparametric tests, 64
 playing hours, 63
 questionnaires, 63
 smoking habits, 63
 sporting activity, 64, 66
 walking activity, 65, 66
 musculoskeletal injuries and pain, 62–63
 physical inactivity, 62
 smoking, 62
 Young Female Health Initiative (YFHI), 63

O
Obesity
 adipose-derived hormones
 adiponectin, 51
 leptin, 51

 aging
 bone mineral density, 33
 sarcopenia, 32
 areal and volumetric bone mineral density
 DXA, 44
 pQCT, 44
 bone and diet-induced
 3D trabecular microarchitectural changes, 52
 high-fat diet (HFD), 52–53
 bone mineral density and soft tissue
 adipose tissue, 49
 fat depot, 48
 fat mass, 48
 lean tissue mass, 47–48
 cardiometabolic risk, 32
 cardiovascular disease, 33
 fracture risk, 46–47
 health related risk
 arthritis, 34
 cardiovascular disease, 33
 metabolic syndrome, 33–34
 mobility disability, 35
 mortality risk, 34
 IGF-1, 51–52
 inflammatory cytokines, 51
 metabolic syndrome, 33–34
 peptides, 52
 prevalence, 32
 sarcopenic obese older adults, 32
 in Saudi women (see Vitamin D)
 serum 25-hydroxyvitamin D and parathyroid
 hormone, 49–51
 sex steroids, 49
 volumetric BMD and bone quality, 45–46
 weight loss
 caloric restriction, 54
 increased fracture risk, 53
 trabecular and cortical bone parameters, 53–54
 Omega-3 fatty acids, inflammation, 26
 Omega-6 fatty acids, inflammation, 26
 Oral nutrition supplements (ONS), 337
 Osteoporosis, 308, 315
 chronic low-grade systemic inflammation
 BMD, 6
 fracture risk, 6
 proinflammatory cytokines, 6
 vegetable-based foods, 95

P
Parathyroid hormone (PTH), 262–264
 in Asian adult subjects, 285, 287
 in Asian children, 285, 288
 in black subjects, 285, 286
 calcium supplementation, 7–8
 DiaSorin LIAISON rapid platform assay,
 284, 285
 DiaSorin radioimmunoassay, 284, 285
 excess body fat, 50
 inflection point, 284–286
 modulators, 285
obesity, 49
plateau, 283–286
Peripheral quantitative computed tomography (pQCT), 44, 45, 53, 104, 151
Physical activity
energy restriction, 36–37
hip bone mineral density (BMD), 216
obesity, older adults
bone, 36
energy restriction with, 36–37
muscle, 37
protein supplementation, Chinese postmenopausal women, 121
Potential renal acid load (PRAL)
acid-base homeostasis, 95–96
bone catabolic mechanisms, 105–106
calcium balance and bone turnover marker
bone resorption, 102, 103
intestinal calcium absorption, 102
metabolic acidosis, 102
Canadian multicentre osteoporosis study, 101
densitometric bone outcomes and dietary acid load
in adults, 103–104
in children, 104–105
dietary acid, 95
diet-related acid load, 100–101
NEAP, 95
potassium bicarbonate, 96
Prebiotics, 316
animal study, 136, 137
galacto-oligosaccharides (GOS), 135
inulin, 135
mRNA levels, 135
in older women, 137
short-chain fatty acids (SCFA), 135
in young girls, 137
Probiotics
Bifidobacterium bifidum, 138
definition of, 138
in Lactobacillus helveticus, 138
lumbar spine and femur bone mineral content, 138, 139
mineral absorption, 138
Protein supplementation, Chinese postmenopausal women
bone loss, 123
calcium and calcium plus protein groups
anthropometry, 121
baseline characteristics of, 122
biochemistry, 121
bone measurements, 121
bone mineral density (BMD), 122, 123
dietary intakes, 121
inclusion criteria, 120–121
informed consent form, 121
physical activity (PA) level, 121
randomization, 121
statistical analysis, 122
calcium intake, 120
osteoporosis, prevalence of, 120
in western Australian women, 123
S
Sarcopenia
aging, 32
chronic low-grade systemic inflammation
adipose tissue, 3, 5
catabolic dysregulation, 5
cytokines/insulin resistance, 4, 5
multiple lifestyle, 5
fractures, 72
grip strength and age, 72, 73
leg strength and muscle mass, 72, 74
muscle mass and age, 72, 73
nutrition and muscle mass
environmental influences, 72
inflammation, 74
insulin resistance, 74
long-chain fatty acids, 73–74
saturated fatty acids (SFA), 73
prevalence of, 72
Sexual dimorphism, Gambian prepubertal children
anthropometry, 302
BMC, 303
BMD, 303
bone area (BA), 303
data handling and analysis, 302–303
DXA, 302
subject characteristics, 303
Skin synthesis and vitamin D, 204
Soy isoflavones
BMD, 150
bone microarchitecture, 150–151
equol, 151
for postmenopausal women, 149, 150
risk of fractures, 149
T
Transient receptor potential vanilloid (TRPV6), 134, 135, 288
V
Vitamin B and carotenoids intake
baseline assessment, 172
food frequency questionnaire, 172–173
lowest quartile vs. highest quartile, 173
men vs. women, 173–174
patient history, 173, 174
Vitamin D
active component, 240
assay variations, 292–293
assessing method, 240
BMD, 289–290
bone loss, 289–290
bone mineral density, 257
bone remodeling markers, 289–290
calcium absorption (see Calcium absorption)
calcium supplementation, heart rate and blood pressure compliance, 345
25-hydroxyvitamin D levels, 344
hyperparathyroidism, 344
Vitamin D (cont.)
intakes assessment, 345–346
juxtaglomerular apparatus, 344
laboratory analysis, 346
medication, 345
outcomes, 346–347
pathogenesis and progression, 347
proinflammatory cytokine production suppression, 344
PTH production suppression, 344
quality assurance and statistical analyses, 346
Canadian Health Measures Survey, 249
chronic nonspecific illness, 348
dietary fat, 241–243
dietary phytosterols, 241
25(OH)D levels, 275
epidemiological association studies
fall follow-up, 198–199
muscle strength loss, 198
physical performance score, 198
exogenous sources, 248
fall incidence
community-dwelling seniors, 199
fracture incidence, 199
in older persons, 199
food fortification
Canadian Community Health Survey, 253, 255
discretionary fortification, 253–254
food vehicle, 256
IOM recommendations, 254–255
mandatory fortification, 253, 256
margarine, 253
milk and milk alternatives, 253
National Nutrition Survey, 256
population micronutrient intakes, 253
randomized trials, 254
US National Health and Nutrition Examination Survey, 253, 255
white wheat flour, 256
gastric acid production, 240–241
hip fractures, incidence of, 198
hypovitaminosis D, 274, 275
intestinal calcium absorption, 286–288
mechanistic studies, 200
meta-analysis, 200
national surveys, 248–249
natural food sources, 252–253
passive diffusion, 240
pleiotropic (nonclassical) effects
cardiovascular diseases, 291
maternal–neonatal health, 291–292
pre-and postmenopausal Saudi women
age and anthropometric characteristics, 206–207
BMI distribution, 206, 208
clothes style, 206, 209
cross-sectional study, 205
CTX measurement, 206
“healthy cohort” effect, 209
intact PTH measurement, 205–206
milk intake, 207
obesity measurements, 206
serum 25(OH)D measurement and distribution, 205–207
serum FSH measurement, 206
specimen collection, 205
statistical analysis, 206
supplementary intake, 209
vitamin D supplements, 206–207
and PTH
in Asian adult subjects, 285, 287
in Asian children, 285, 288
in black subjects, 285, 286
DiaSorin LIAISON rapid platform assay, 284, 285
DiaSorin radioimmunoassay, 284, 285
inflection point, 284–286
modulators, 285
plateau, 283–286
randomized controlled trials
falls, 276, 281–282
on fractures, 276–280
recommended intakes, 250
research agenda, 201
secular trends, 274
serum concentrations, 248
skin synthesis, 204
status, 274
sunlight exposure, 249–250
supplementation, 250–252
surrogate markers, 276, 283
UV skin synthesis, 248
v.s. vitamin D$_3$
half-life, 190
intervention trials, 190–194
in postmenopausal women, 190
serum 25(OH)D level, 190, 195
systolic blood pressure reduction, 190, 195
Vitamin D$_3$ and vitamin D$_2$
area under curve values, 223
characteristics and outcomes of studies, 221–223
diverse diet, 220
enzymatic hydroxylation process, 220–221
homeostatic control, 220
meta-analysis, 221
metabolites deactivation, 221
outdoor activity, 220
random effects model, 221
serum 25(OH)D, 220, 221, 223
side-chain oxidation, 221
Vitamin D supplementation, 250–252
in children and adolescents
biochemical markers, bone turnover, 233–234
clinical trials, 228
1,25(OH)$_2$D, 228–232
intervention trials, 228
iPTH, 228–233
serum 25(OH)D, 228–232
skeletal health outcomes, 228
in Asian adult subjects, 285, 287
in Asian children, 285, 288
in black subjects, 285, 286
DiaSorin LIAISON rapid platform assay, 284, 285
DiaSorin radioimmunoassay, 284, 285
inflection point, 284–286
modulators, 285
plateau, 283–286
randomized controlled trials
falls, 276, 281–282
on fractures, 276–280
recommended intakes, 250
research agenda, 201
secular trends, 274
serum concentrations, 248
skin synthesis, 204
status, 274
sunlight exposure, 249–250
supplementation, 250–252
surrogate markers, 276, 283
UV skin synthesis, 248
v.s. vitamin D$_3$
half-life, 190
intervention trials, 190–194
in postmenopausal women, 190
serum 25(OH)D level, 190, 195
systolic blood pressure reduction, 190, 195
Vitamin D$_3$ and vitamin D$_2$
area under curve values, 223
characteristics and outcomes of studies, 221–223
diverse diet, 220
enzymatic hydroxylation process, 220–221
homeostatic control, 220
meta-analysis, 221
metabolites deactivation, 221
outdoor activity, 220
random effects model, 221
serum 25(OH)D, 220, 221, 223
side-chain oxidation, 221
Vitamin D supplementation, 250–252
in children and adolescents
biochemical markers, bone turnover, 233–234
clinical trials, 228
1,25(OH)$_2$D, 228–232
intervention trials, 228
iPTH, 228–233
serum 25(OH)D, 228–232
skeletal health outcomes, 228
serum 25OHD response
BMI influence, 239
24,25(OH)2D level, 239–240
 genetic determinants, 238–239
 vitamin D absorption (see Vitamin D)

W
Weight-bearing physical activity (WBA)
maximal skeletal development, 326
new bone formation, 326
total body bone mineral content (TBBMC)
calcium intake, 329, 330
correlations, 328
degree of association, 328
descriptive statistics, 328, 329
DXA, 327
log-transformed, 329, 330
median and confidence intervals, 328
multiple regression, 328
reports, 327
Slemenda questionnaire, 327
Tanner stages, 328–330

Weight loss
on cortical/trabecular bone, 53–54
energy restriction
bone loss, 35
and exercise, 38–39
muscle, 36
increased fecal-fat excretion, 7
obesity
caloric restriction, 54
increased fracture risk, 53
trabecular and cortical bone parameters, 53

descriptive statistics, 328, 329
DXA, 327
log-transformed, 329, 330
median and confidence intervals, 328
multiple regression, 328
reports, 327
Slemenda questionnaire, 327
Tanner stages, 328–330

Weight loss
on cortical/trabecular bone, 53–54
energy restriction
bone loss, 35
and exercise, 38–39
muscle, 36
increased fecal-fat excretion, 7
obesity
caloric restriction, 54
increased fracture risk, 53
trabecular and cortical bone parameters, 53

descriptive statistics, 328, 329
DXA, 327
log-transformed, 329, 330
median and confidence intervals, 328
multiple regression, 328
reports, 327
Slemenda questionnaire, 327
Tanner stages, 328–330

Weight loss
on cortical/trabecular bone, 53–54
energy restriction
bone loss, 35
and exercise, 38–39
muscle, 36
increased fecal-fat excretion, 7
obesity
caloric restriction, 54
increased fracture risk, 53
trabecular and cortical bone parameters, 53

physical activity
bone, 36
energy restriction with, 36–37
muscle, 37
recommendations for
calories, 37
exercise, 38
protein intake, 37